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Abstract—The use of digital technologies in providing health
care services is collectively known as eHealth. Considerable
progress has been made in the development of eHealth services,
but concerns over service integration, large scale deployment,
and security, integrity and confidentiality of sensitive medical
data still need to be addressed. This paper presents a solution
proposed by the Data Capture and Auto Identification Reference
(DACAR) project to overcoming these challenges. The DACAR
platform uses a Single Point of Contact, a rule based information
sharing policy syntax and data buckets hosted by a scalable and
cost-effective Cloud infrastructure, to allow the secure capture,
storage and consumption of sensitive health care data.

Currently, a prototype of the DACAR platform has been
implemented. To assess the viability and performance of the
platform, a demonstration application, namely the Early Warn-
ing Score, has been developed and deployed within a private
Cloud infrastructure at Edinburgh Napier University. Simulated
experimental results show that the end-to-end communication
latency of 97.8% of application messages were below 100ms.
Hence, the DACAR platform is efficient enough to support the
development and integration of time critical eHealth services.
A more comprehensive evaluation of the DACAR platform in a
real life medical environment is under development at Chelsea
& Westminster Hospital in London.

Index Terms—eHealth, Cloud, Platform as a Service, Security,
Single Point of Contact, Information Sharing Policy, Data Bucket

I. INTRODUCTION

The use of modern communication infrastructures in
medicine and the ubiquitous provision of health care services
are in general subsumed under the term “eHealth” [1]. It
necessitates a total reform and digitalisation of a health care
system, including its production, supply and management [2].
Such technical innovations are expected to improve the quality
of health care services, while lowering both the capital and
operational costs significantly. Hence, the governments of the
USA [3], Canada [4], UK [5], Japan [7], Korea [2] and of the
European Union [6] are keen to shift their traditional health
care services to a new paradigm, and to make eHealth a top
priority on their policy agendas.

Though considerable research effort has been made in the
literature relating to developing individual eHealth services,
there is a lack of an open eHealth services platform which
would allow the integration of such services into flexible,
reliable, multifunctional and cost-effective eHealth systems, as
well as their large scale deployment and delivery. Furthermore,
a key challenge in eHealth is to use captured patient data in

multiple forms and contexts, while maintaining strict access
rights. It has been pointed out that health care data are subject
to a variety of threats and attacks, and that inconsistency and
loss of data have resulted in severe consequences [10]. There-
fore, a complete eHealth services platform should also provide
mechanisms to reinforce the integrity, security, confidentiality
and auditability of sensitive medical data throughout their life
cycle [8].

The aim of the Data Capture and Auto Identification Refer-
ence (DACAR) project is to develop, implement, validate and
disseminate a novel, secure, “in-the-cloud” service platform
for capture, storage and consumption of data within a health
care domain. The objectives of the project include:

• Development of novel distributed and secure infrastruc-
tures based on role and inter-domain security polices;

• Smart device and system integration platform based on
novel digital forensic security technology;

• Generic risk assessment strategy for smart device and
system integration;

• Clinical evaluation, dissemination & commercialisation.
The remainder of this paper is organised as follows. Firstly

an overview of the DACAR platform is given in Section II,
and then the design of the system components are discussed
in Section III, including medical data capture (Section III-A),
storage (Section III-B), and consumption (Section III-C). The
current implementation of the DACAR platform together with
its demonstration applications are outlined in Section IV,
followed by preliminary evaluation results. Work related to
DACAR is highlighted in Section V. Finally, conclusions and
future work are presented in Section VI.

II. SYSTEM OVERVIEW

A. System Model

DACAR’s system model consists of the following concepts:
1) Domain: A domain refers to a distinct business area

that is administered by a single organisation. A health care
application may involve multiple domains, such as hospitals,
pharmacies, insurance companies and research institutions.
The domains cooperate with each other to form a Circle of
Trust (CoT), where each CoT member keeps a registry of
trustworthy services provided by other CoT members.

2) User: A user refers to a consumer of an eHealth appli-
cation, which can be a person or an impersonated service. A



user must be a member of at least one domain, which is able
to resolve the user’s identity into a specific role.

3) Object: An object refers to any entity that is managed
by an eHealth system, such as patients and medical devices.
An object is identified by a unique identifier (UID) assigned
by its owner domain. An eHealth system should withstand
content oriented and contextual privacy attacks, which means
that even if an adversary has the capability of disclosing
sensitive information from storage or communication channels,
the adversary is neither able to find out that the information is
associated with which object, nor to link the actual source and
the destination of a message [11]. Therefore, opaque object
pseudonyms shall be used in place of object UIDs [12].

4) Attribute: An object is described by a set of attributes,
which are atomic units of information of primitive data types.
For example, a patient object may comprise of a name attribute
of string type, and of blood pressure and heart rate attributes
of float type. Keeping attributes atomic offers two advantages.
Firstly, it is convenient to generate complex medical docu-
ments, e.g. electronic health records, from atomic attributes
dynamically. Secondly, it is also flexible to share atomic
attributes among domains under the governance of fine-grained
information sharing polices.

In practice, not only the core value of an attribute needs
to be stored, but also a number of relevant meta data, e.g.
the unit, capturer, location, time and device used to collect
the data. When sufficient meta data are preserved, an eHealth
application is able to document medical events occurring in
the past, and to reconstruct them accurately at a later time.

5) Service: DACAR adopts a Service Oriented Architecture
(SOA) to support the integration of eHealth services for
data capture, storage and consumption purposes. A service
refers to a course-grained, discoverable software entity that
exists as a single instance and interacts with applications
and other services through a loosely coupled, message-based
communication model [13]. From a technical point of view,
SOA captures many of the best practices of previous soft-
ware architectures, including abstraction, autonomy, testability,
loose coupling, reusability and statelessness.

6) Hosting Infrastructure: DACAR considers Cloud com-
puting environment as its primary hosting infrastructure. The
term “Cloud computing” became popular in 2007, with more
than 20 definitions given in [14]. The characteristics of Cloud
computing appear well-suited to meet the demand of eHealth
applications, because a Cloud is inherently service oriented,
loose coupling and strong fault tolerant [15]. Also, the business
model of Cloud computing can significantly reduce the IT
expertise and financial resources for small and medium sized
participants to embark on large scale eHealth applications.

From a computing resource provision point of view, Cloud
systems are broadly divided into three categories: public
Clouds, private Clouds and hybrid Clouds [16], [17]. Public
Clouds are confronted with more security challenges, and thus
it is more difficult to guarantee the security of data stored in
a public Cloud [18]. Hence, DACAR uses a private Cloud
for data storage, and considers a hybrid Cloud for hosting

Fig. 1. Conceptual structure of the DACAR platform

service instances. From a service provision point of view,
Cloud systems can be classified into at least four categories:
Hardware as a Service (HaaS), Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS) [14]. DACAR focuses on the PaaS layer, and aims at
providing developers with a platform that addresses the most
common requirements of eHealth applications.

B. DACAR PaaS

The DACAR PaaS provides a set of foundation services, so
that developers do not need to implement eHealth applications
from scratch and deal with common issues repeatedly. Typical
requirements of eHealth applications include:

• Authentication – cryptographic protocols that allow an
entity to prove to a remote end its identity.

• Authorisation – individual- and role-based policies that
endow entities with access rights to resources.

• Data Persistence – long-term storage of medical at-
tributes, including their core values and meta data.

• Data Integrity – functions that ensure data are accurate,
complete and consistent during any operations.

• Data Confidentiality – mechanisms that assure stored or
transmitted data are accessible only to those authorised to
have access, yet well protected from possible disclosure.

• Audit Trail – mechanisms that keep track of a chronolog-
ical sequence of audit records pertaining to internal and
external events and their implications.

Figure 1 shows a three-layer architecture of DACAR PaaS.
At the bottom are Security and Confidentiality Mechanisms,
which are used to meet the authentication, data integrity
and confidentiality requirements. DACAR supports federated
identity providers running a range of user authentication
protocols, from traditional RADIUS [19] and Kerberos [20],
to recent OpenID [21] and U-Prove [22]. In addition, the
DACAR platform provides libraries and APIs for application
developers to implement secure SOAP [23] services. This
allows a number of security functions, e.g. digital signature,
integrity checksum, hashing and encryption to be applied to
application-specific portion of communication payload.



In the middle is the Single Point of Contact (SPoC),
which is used to meet the authorisation requirement. A SPoC
consists of two parts: a policy repository and a policy engine.
The policy repository holds domain ontology, i.e. definitions
of identities, roles, operations, services, objects, attributes
and access rights. Each SPoC represents a single domain,
and multiple SPoCs form a peer-to-peer (P2P) network that
represents a CoT. Information requests are routed through the
P2P network to an appropriate SPoC, which uses its policy
engine to check the requester’s identity, role, and grants access
rights according to existing rules in the policy repository. A
SPoC authorisation is issued in the form of a Service Ticket
or a Data Ticket, which are security tokens protected by the
SPoC’s digital signature.

On the top are four system services:
1) The Data Bucket service offers long-term persistence

of attributes and supports the Creation, Reading, Updating
and Deletion (CRUD) of attribute values and associated meta
data. Each attribute is stored in a single data bucket hosted
by a Cloud infrastructure, and its CRUD service endpoint is
registered with the SPoC of the attribute owner domain.

Any application service can put/get data to/from a data
bucket, as long as it satisfies two conditions. Firstly, the
service needs to know the qualified name of the target attribute,
which is defined by domain ontology. Secondly, a rule needs
to be established in the SPoC’s policy repository to allow
the service, or in the case of impersonation, the service
invoker’s identity or role, to perform CRUD operations over
that attribute. If both conditions are met, the service is able to
make a data request to the SPoC, which replies with a Data
Ticket, carrying a reference to the CRUD service endpoint,
a list of authorised operations, period of validity, and one-off
session keys encrypted by the public keys of the requester and
the CRUD service respectively. A Data Ticket may also carry
data anonymisation and sanitisation instructions for the CRUD
service to follow, as required by security policies.

2) The Identity Mapping service resolves user and ob-
ject identifiers into pseudonyms, and vice versa. To enhance
the contextual privacy of an eHealth application, opaque
pseudonyms should be used in place of transparent user
and object Ids, e.g. 12478c1abd instead of PatientNo.253.
Hence, the DACAR platform uses pseudonyms whenever it
is possible, and only reveals real identities to authorised
individuals, roles and services when it is absolutely needed.

3) The Access Control service enables patients to create,
edit and remove information sharing policies about their own
attributes. DACAR adopts a patient-centric point of view, and
regards a patient as the real owner of his/her medical data.
Hence, the rights of access to such data should be defined by
the patients themselves to their trust circle. The access control
service provides a friendly user interface, so that authenticated
users can easily set up policies controlling what personal
information is available to whom, and what medical services
they would like to subscribe to.

4) The Audit Trail service gathers text-based logs from
application services, showing who was the active user, and

Fig. 2. DACAR application service consumption process

what operations the user has performed during a given period
of time. eHealth applications can benefit from the audit trail
service in many different ways. Firstly, a sufficiently detailed
audit trail enables the reconstruction of medical events and
scenarios. Secondly, it keeps track of changes made to a
system, and helps to roll them back when necessary. Thirdly,
it provides evidence for digital forensics technologies, such
as the Digital-DNA [25], to detect security anormalies and
carry out countermeasures automatically. Finally, it facilitates
the monitoring and analysis of the usage of computing re-
sources, and thus helps to improve on the scheduling and load-
balancing of the underlying Cloud infrastructure.

C. Work Flow

Figure 2 shows a storyboard of DACAR’s work flow.
Typically, a user consumes an eHealth service developed on
the DACAR platform, in five steps as below:

Step 1 Authentication: The user logs on from one of the
federated identity providers using a user name and a password,
or other unique personal biometric information.

Step 2 Request for a service: The user’s client software
forwards the security credential obtained in step 1 to a
responsible SPoC, together with a service request.

Step 3 Instantiate the service: The SPoC checks the user’s
identity, resolves it into a role, and matches the service request
to existing security policies. In the case that the service is
provided by the local domain, the SPoC is able to tell whether
the user is allowed to consume this service, and to locate the
service endpoint within the Cloud. However, if the service is
provided by a foreign domain in the CoT, the SPoC will route
the service request to another SPoC over the P2P network.
For example, when a clinician needs to make contact with a
patient’s relatives in an emergency, he sends a request for a
police registry service to the local health care SPoC, which
forwards the request to a remote police SPoC.

Step 4 Authorisation: If the service request is permitted
by corresponding security policies, the SPoC that made the
decision creates and signs a Service Ticket. This contains the
user’s pseudonym and role (supplied by the user’s local SPoC),



Fig. 3. Smart medical handheld devices

a reference to the service endpoint, period of validity, and one-
off session keys that enable the user’s client software and a
service instance to establish a secure SOAP session. Other-
wise, a message is returned to tell the reason for rejection.

Step 5 Consume the service: Finally, the user’s client soft-
ware initiates a secure session using the information provided
in the Service Ticket and starts to consume the service. If
the service requires CRUD operations over certain attributes,
the service itself becomes a consumer of related Data Bucket
services. In this case, the service needs to go through Step 1
to 4 to obtain necessary Data Tickets from a SPoC using the
service’s own identity, or the service consumer’s identity and
role. In the latter circumstance the service is “impersonated”,
and shall use the Service Ticket received from its consumer
as a complementary security credential – a Service Ticket
carries a user’s pseudonym and role, and is signed by a SPoC
authority, as explained in Step 4.

III. DESIGN

The main objective of the DACAR project is to support
the development and integration of eHealth services for the
capture, storage and consumption of sensitive medical data.
This section elaborates on DACAR’s system components and
approaches in accordance with these three aspects.

A. Data Capture

DACAR’s approach for simple, efficient and secure capture
of medical data involves four components: Radio Frequency
Identification (RFID), smart mobile devices, hybrid network
connectivity and secure SOAP services.

Radio Frequency Identification is a technology that can
be used to identify, authenticate, track and trace medical
objects, as well as to gather information about them and their
environment [26]. An RFID system consists of a transpon-
der tag, a reader, a software programme for processing the
data collected, and a database for data persistence. RFID
transponder tags can be passive or active. Passive tags have no
processing capability and no internal power source, and thus
can only work within a short range. DACAR employs passive
RFID tags for identification purposes, e.g. patient wristbands.
In contrast, active RFID tags have processing and storage
facilities supported by an internal power source, so they can
work like microcomputers and transmit data up to tens of
meters. Active RFID tags can be integrated with sensors,
which raise awareness about a medical context. DACAR uses
active RFID tags to collect patients’ medical data in real time.

Table Column Data Type Constraint

Core Data Id Integer Primary Key
MetaId Integer Foreign Key
Value String Not Null

Meta Data

Id Integer Primary Key
Unit String Not Null

Object Guid Not Null
Capturer Guid
Device Guid

Location Guid
Time DateTime Not Null

TABLE I
DESIGN OF THE DATA BUCKET SCHEMA

Smart mobile devices, such as mobile phones, PDAs and
tablet PCs are used as RFID readers, which collect attribute
values from RFID tags, and then transmit them to correspond-
ing Data Buckets in the Cloud. Figure 3 illustrates the PDAs
and tablet PCs designed and manufactured by CipherLab UK
for the DACAR project. These devices are based on Windows
or Windows Mobile operating systems, and feature easy to
decontaminate coating, video camera, bar code reader, RFID
reader, bluetooth and WiFi modules. Also, fingerprint access
control guarantees that the devices can only be used by
authorised medical staff.

A RFID reader requires a communication channel to relay
the captured data to the application layer. DACAR uses hybrid
network connectivity, which comprises of a wired Intranet
backbone, fixed wireless access points, roaming mesh routers,
and cellular network. The wired Intranet can cover the main
buildings of a health care institution, connecting workstations
in offices and wards to web and database servers. This network
can be extended by a number of fixed wireless access points
to cover areas in the vicinity of the main buildings. The range
of wireless signal can be further extended on demand by
roaming mesh routers [27] when a temporary ad-hoc network
is needed in emergencies. In the case of RFID reader based-
on a smart mobile phone, it would be possible to access the
3G/4G cellular network as well. This is especially helpful
for medical staff on the move, e.g. sending patient data to
a hospital from an ambulance for rapid diagnosis purposes.

A major concern for transmitting confidential medical data
over a wireless or public network is security. To address this,
the DACAR PaaS provides libraries and APIs for implement-
ing secure SOAP services, as discussed in Section II-B. A
SPoC is used to distribute Service and Data Tickets, so that
application participants are able to follow the same protocol
to encrypt and decrypt their messages.

B. Data Storage

After a considerable amount of medical data are captured,
a scalable solution is needed for storing them. The DACAR
platform keeps attributes in an atomic format to enhance their
reusability and manageability, as discussed in Section II-A. A
third important rationale behind this design is that an atomic
attribute can be physically hosted by a single data bucket,
which is convenient to deploy, migrate, redeploy and back-up



Query Syntax Description
Identifiers Column names, e.g. Value, Unit and Object
Literals Literal values, e.g. “Alice” and 3.14
Types All C# primitive data types, Guid and DateTime

Operators
Arithmetic, e.g. +, −, ∗, / and %
Relational, e.g. ==, ! =, >, >=, < and <=
Logical, e.g. &&, || and !

Variables
Transparent Ids, e.g. $Chelwest.CP.JD0$
Aggregate values, e.g. $MIN$, $MEAN$ and $MAX$
Sequence numbers, e.g. $SEQ$, $FIRST$ and $LAST$

Predicates Chain of queries, e.g. [pre1][pre2][pre3]...

TABLE II
SUMMARY OF DACAR’S DATA BUCKET QUERY SYNTAX

within a Cloud. Compared to a traditional database, the data
bucket approach is designed to be more flexible and scalable.

A key to understanding DACAR’s data buckets is their
attribute-oriented character. For example, all patients’ blood
pressure data are uploaded to, and preserved by, the same
data bucket that is dedicated to the Blood Pressure attribute.
The way of distinguishing different data samples is through
their meta data. Table I outlines the relational schema of a
data bucket, where a core data entry only stores the value
of an attribute, and a foreign key refers to a meta data entry
that supplements the unit of that value, its owner object, and
contextual information such as who captured the value, using
which device, at what location and at what time.

I/O operations of a data bucket are carried out via the CRUD
service, of which the service endpoint is registered with the
SPoC that represents the owner domain of the corresponding
attribute. Considering that the cost of storage capacity is
becoming lower and lower, the DACAR platform deprecates
conventional Update and Delete operations. Instead, it pre-
serves all historical attribute values for audit trail purposes, and
returns the most recent value of an attribute, where a single
valid value of that attribute is required.

A challenge for the design of the CRUD service is efficient
filtering of complex meta data. RESTful web services [24]
are proposed to allow a service consumer to send dynamic
queries in JSON [28] or AtomPub [29] format to a service
provider, to retrieve exactly the data that the consumer needs.
This approach can reduce the response time and the cost of
network bandwidth and processing power for a data intensive
web application. It is especially beneficial to mobile devices
having limited computing resources and battery life. However,
currently the DACAR platform mainly supports secure SOAP
services, which is also the technology used to implement the
CRUD service. Until libraries and APIs for secure RESTful
services are completed, the DACAR platform currently pro-
vides an easy to use query syntax, as outlined by Table II,
so that a service consumers can make a dynamic data request
over SOAP, without requiring a service provider to implement
large numbers of cumbersome web methods.

Firstly, the query syntax supports Identifiers, i.e. column
names of the data bucket schema, Literal values, and all prim-
itive data Types of the C# programming language, as well as

the Global Unique Identifier (Guid) and DateTime composite
data types. Secondly, it supports common arithmetic, relational
and logical Operators. Thirdly, it supports Variables, which
are names or key words between two dollar signs. A variable
is needed in the following circumstances:

• Transparent IDs – it is likely that a service consumer
only knows the transparent ID of a target object, whereas
the object is referred to using an opaque pseudonym in
security policies and data buckets. In this case, the service
consumer can remind a CRUD service to resolve the ID
into a pseudonym using the Identity Mapping Service, by
putting the ID between dollar signs.

• Aggregate Values – these are similar to aggregate func-
tions of SQL.

• Sequence Numbers – the CRUD service sorts data sam-
ples in an intermediate result set according to their time
stamps, and endows each of them with a temporary
sequence number, so that a service consumer can specify
a sub set that is required from a large collection.

Finally, the query syntax supports a chain of Predicates. A
predicate is a partial query between two square brackets, and
a chain of predicates serves as multiple “Where” clauses in
SQL to narrow down a result set. Also, a predicate provides
the scope for a CRUD service to evaluate the actual value of a
variable at run time. In other words, the intermediate result set
is updated once a predicate is processed, and the actual value
of an aggregate or sequence variable is changed accordingly.

It is easier to understand the query syntax using a concrete
example. Suppose that an eHealth application needs to find
out the last five body temperature samples, which were above
37.5 ◦C, of critically ill patient JohnDoe at Chelsea &
Westminster Hospital, since 9 : 30am, Jan 1st, 2011. The
query below can be used in the case that the application only
knows the patient’s transparent Id as Chelwest.CIP.JD0:
[ Object == $Chelwest.CIP.JD0$ && Value >= 37.5 &&

Time >= DateTime(2011,1,1,9,30,0) ][ $SEQ$ > $LAST$ - 5 ]

Another important issue that must be considered while
designing the data bucket is data encryption. Here, a funda-
mental question is where the encryption should be performed.
Application-level encryption means that sensitive medical data
are encrypted and decrypted by application services, which
is transparent to the underlying database engine. On the
other hand, database-level encryption means that data are
encrypted and decrypted by the database engine automatically
before written to and read from the disk. Both approaches
can protect data from storage attacks effectively, e.g. theft
of storage media, but they both have distinct disadvantages.
Application-level encryption suffers from considerable per-
formance overheads, because the size of encrypted data can
be much larger than the original plain text. Furthermore, the
encryption process eliminates all data type information, as the
original data have to be converted into strings. Comparatively,
database-level encryption is more efficient and does not require
any change to the application layer. However, it is vulnerable
to malicious DBAs, which is an inherent problem.



Currently, the DACAR platform adopts database-level en-
cryption, because sensitive medical data are only stored within
a private Cloud, which is set up and maintained by trustworthy
administrators. Oracle Transparent Database Encryption [30],
or SQL Server Encryption [31] are used to encrypt the data
buckets automatically. Of course application developers who
plan to store data in a public Cloud can still resort to
application-level encryption schemes such as [32] and [33].

C. Data Sharing

The most important goal of the DACAR platform is to allow
trustworthy individuals, roles, application services and sub-
systems to consume captured medical data in many different
ways, while maintaining strict access rights. This is achieved
by DACAR’s information sharing policy.

The policy syntax is designed as below:
[Permission] [Requester] [Operations] [Attributes] of [Object]

with [Context] from [Owner] for [Multiplicity] records in [Time
Window] using [Compliance].

• Permission indicates the action of the rule and defines
whether a request meeting the rule criteria will be per-
mitted or denied.

• Requester identifies the source of a request as a specific
individual or the membership of a certain role.

• Operations refer to create, read, update and delete.
However, the DACAR platform deprecates update and
delete operations, as discussed in the previous section.

• Attribute is a unit of information describing an Object.
• Context identifies the reason why the information is

being shared. It also governs the level of access and
permissions associated with information exchange, and
thus affects the priority accorded to information requests.

• Owner defines a role with sufficient privileges to manage
all aspects of an information element, and to permit or
deny access to an information element, as required by
legislation and defined responsibilities.

• Multiplicity defines the maximum number of records that
can be shared over a period of time.

• Time Window defines the period of validity of a rule
using ISO 8601 coordinated universal time format.

• Compliance refers to legislative requirements that affect
the exchange of information, as well as data anonymisa-
tion and sanitisation instructions.

The policy elements discussed above can be used flexibly
while composing security rules for different purposes:

1) Service Authorisation: A service authorisation rule allows
or denies certain individuals or roles to consume an application
service. In this circumstance, the Object element is used to
identify a service that a rule is about, and Attributes, Context,
Multiplicity and Compliance elements can be omitted.

2) Service Subscription: This represents a patient’s sub-
scription to a specific eHealth service, and thus automatically
allows creation and reading of arbitrary numbers of attribute
records, as needed by the service to fulfil its functionality.
Context and Multiplicity elements can be omitted in this case.

Machine Cloud Node A & B Cloud Controller
Processor Dual Core Xeon 3.0GHz ∗ 4 Quad Core Xeon 2.8GHz
Memory 32GB Dual Rank 800MHz 12GB DDR3 1,333MHz
Storage 73GB SCSI 10, 000RPM ∗ 6 1TB SATA 7,200RPM

LAN Intel Pro 1000PT ∗ 4 Intel Pro 1000PT
WAN 1Mbps Optical Fibre 1Mbps Optical Fibre

TABLE IV
HARDWARE SPECIFICATIONS OF THE EXPERIMENTAL CLOUD

3) Specific Consent: This policy type enables a patient to
grant access rights for his/her own attributes to trustworthy
individuals and roles in a fine-grained manner. It also allows an
impersonated service to access a patient’s information, using
its consumer’s identity or role.

4) General Consent: Sometimes it is difficult for a patient
to name the grantees for a specific consent, because they are
unclear, unknown, or hard to describe. A general consent is
useful in this situation to facilitate information sharing in a
coarse-grained manner. The Context element is used for a
patient to express the willingness to share his/her information
with services for a certain purpose, from a certain domain, or
above a certain level of importance.

5) Investigation: This policy type is only used in excep-
tional situations, such as a medical incident investigation, to
obligate unconditional information sharing. Hence, elements
such as Requester, Context and Multiplicity can be omitted,
whereas the Compliance element may require the investigator
to possess additional security tokens on a per case basis.

Table III gives a summary of DACAR’s policy syntax.

IV. IMPLEMENTATION & EVALUATION

Currently, a prototype of the DACAR platform has been im-
plemented using C# and .Net 4.0. The SPoC is implemented as
a self-hosting WCF service running in Windows Server 2008.
A Windows Active Directory domain server is employed as the
identity provider that authenticates users using the Kerberos
protocol. Data Bucket, Access Control, Identity Mapping and
Audit Trail services are all implemented as WCF services,
which are hosted by IIS 7 web server. The back end of the
Data Bucket is supported by SQL Server 2008, and the front
end of the Access Control service is developed using WPF
XAML, which can be run on Windows-based PCs and mobile
devices. The policy engine is implemented in Java, and both
information requests and rules are written in XML.

Furthermore, a proof-of-concept application, namely the
Early Warning Score (EWS), has been implemented on top of
the DACAR platform. EWS is a medical practice widely used
in UK hospitals. The traditional EWS requires medical staff to
record and enter six vital signs of a patient on a paper-based
observation chart periodically, and to calculate a risk score
according to predefined equations. In the case that a patient is
evaluated to be “at risk”, the medical staff should make contact
with appropriate clinicians. The traditional EWS is prone to
mistakes, as the measurement, recording and calculation work
all need to be done manually. The new EWS application



Policy Elements Service Authorisation Service Subscription Specific Consent General Consent Investigation
Permission permit or deny permit or deny permit or deny permit or deny permit or deny
Requester user pseudonym or role service pseudonym user pseudonym or role n/a n/a
Operations read create or read create or read read read
Attributes n/a attribute pseudonyms attribute pseudonyms attribute pseudonyms attribute pseudonyms

Object service pseudonym object pseudonym object pseudonym object pseudonym object pseudonym
Context n/a n/a n/a domain & service level n/a
Owner domain pseudonym domain pseudonym domain pseudonym domain pseudonym domain pseudonym

Multiplicity n/a n/a number of records number of records n/a
Time Window period of validity period of validity period of validity period of validity period of validity

Compliance n/a sanitisation instructions sanitisation instructions sanitisation instructions security token

TABLE III
SUMMARY OF DACAR’S INFORMATION SHARING POLICY SYNTAX

fully automates this process by capturing vital signs using
RFID sensors, transmitting the values to data buckets using
smart handheld devices, monitoring patient status constantly
in real time, and notifying clinicians by calling or sending
messages to their mobile phones. A similar application has
been proposed in [9].

Currently, medical evaluation of EWS is under development
at the Chelsea & Westminster Hospital in London. In the mean
time, a private Cloud infrastructure has been set up at the Ed-
inburgh Napier University to obtain preliminary experimental
results. This Cloud consists of three physical machines, i.e.
one Cloud controller running OpenNebular2 and two worker
nodes running Xen hypervisor on Ubuntu [34]. The hardware
specifications of the machines are given in Table IV. Such
a configuration is sufficient to host four virtual machine
instances for a SPoC server, a Data Bucket server, and two
web servers for system and application services respectively.
Software has been developed to simulate a number of virtual
patients, uploading their vital signs to the data buckets.

Figure 4 shows the end-to-end latency distribution of 1000
application messages. 97.8% of the values were below 100ms,
and the rest were between 100ms and 200ms. These results
suggest that the DACAR platform imposes only a small delay
on application-level messages, and thus is efficient enough
to support the development and integration of time critical
eHealth services. Although the latency in a real medical set-
up might be higher than the simulated result, it should be
within the millisecond level, which is still acceptable.

V. RELATED WORK

Zhang et. al. have identified a set of security requirements
for eHealth application Clouds and proposed a novel security
model in [8]. This model is mainly designed for the sharing of
Electronic Health Records (EHR), while the DACAR platform
aims to support the development, integration and large scale
deployment of a wider range of eHealh services.

Kilic et. al. have proposed to share EHRs among multiple
eHealth communities over a peer-to-peer network [35]. A
super-peer is used to represent an eHealth community, which is
responsible for routing messages and adapting different meta
data vocabularies used by different communities. This super-
peer design is similar to a SPoC of the DACAR platform, yet
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a SPoC provides more authorisation functionalities.
For a patient-centric eHealth platform it is crucial to obtain

various patients’ consent in an electronic way. Coiera et. al.
have identified four levels of e-consent, including general
consent, general consent with specific exclusions, general de-
nial and general denial with specific consents [36]. DACAR’s
policy syntax is able to express all of the above, as well as
service authorisation, service subscription and investigation.
Furthermore, Pruski has identified the requirements for an
e-consent language to capture specific grantees, operations,
purposes and period of validity, and proposed a novel language
called e-CRL [37]. DACAR’s policy syntax is as competent
as e-CRL, and has been successfully applied to other domains
besides health care, such as police and social care [38], [39].

Currently, DACAR does not support legacy medical records
that are not based on atomic attributes. Amato et. al. have
proposed a semantic based methodology to extract and classify
atomic units of information from legacy “monolithic” medical
documents [40]. It provides a useful complement to address
this limitation of the DACAR platform.

VI. CONCLUSION & FUTURE WORK

This paper presents a novel eHealth services platform de-
signed by the Data Capture and Auto Identification Reference
(DACAR) project. Firstly, the DACAR platform facilitates the
development of eHealth applications by addressing the most
typical requirements, including authentication, authorisation,



secure data transmission, persistence, integrity, confidentiality
and audit trail. Secondly, it provides a suite of hardware
and software solutions to integrate the capture, storage and
consumption of sensitive medical data. Thirdly, it supports
large-scale deployment and delivery of eHealth services using
a scalable and cost-effective Cloud infrastructure.

Key components of the DACAR platform include the Single
Point of Contact (SPoC), the Information Sharing Policy, and
the Data Buckets. This paper outlines the design and imple-
mentation of these components, as well as preliminary evalua-
tion results obtained using a demonstration application called
the Early Warning Score. The experimental results suggest that
the DACAR platform imposes small communication latency
on application-level messages, and hence it is sufficiently
efficient to support the development and integration of time
critical eHealth applications.

In future work, a comprehensive evaluation of the DACAR
platform will be carried out in a real medical environment,
and the design and implementation of the platform will be
improved continuously. Another avenue of future work is to
build bridges between DACAR and other commercial eHealth
services platforms, such as Microsoft’s Health Vault [41]. The
goal is to enable secure sharing of health care information on a
larger scale, and ultimately, to support expert-guided proactive
patient-centric health care.
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