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ABSTRACT Underwater images play a key role in ocean exploration but often suffer from severe quality
degradation due to light absorption and scattering inwatermedium.Althoughmajor breakthroughs have been
made recently in the general area of image enhancement and restoration, the applicability of newmethods for
improving the quality of underwater images has not specifically been captured. In this paper, we review the
image enhancement and restoration methods that tackle typical underwater image impairments, including
some extreme degradations and distortions. First, we introduce the key causes of quality reduction in
underwater images, in terms of the underwater image formation model (IFM). Then, we review underwater
restoration methods, considering both the IFM-free and the IFM-based approaches. Next, we present
an experimental-based comparative evaluation of the state-of-the-art IFM-free and IFM-based methods,
considering also the prior-based parameter estimation algorithms of the IFM-based methods, using both sub-
jective and objective analyses (the used code is freely available at https://github.com/wangyanckxx/Single-
Underwater-Image-Enhancement-and-Color-Restoration). Starting from this paper, we pinpoint the key
shortcomings of existing methods, drawing recommendations for future research in this area. Our review
of underwater image enhancement and restoration provides researchers with the necessary background to
appreciate challenges and opportunities in this important field.

INDEX TERMS Underwater image formation model, single underwater image enhancement, single
underwater image restoration, background light estimation, transmission map estimation.

I. INTRODUCTION
The oceans contain unknown creatures and vast energy
resources, playing an important role in the continuation
of life on earth [1]. Since the middle of the 20th cen-
tury, marine exploration worldwide has actively engaged
in high-tech activities [2]. Vision technology has attracted
great attention, for its ability to carry high information den-
sity [3]. Researchers strive to capture high-quality underwater
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images for a variety of underwater applications, including
robotics [4], rescue missions, man-made structures inspec-
tion, ecological monitoring, sea organisms tracking [5] and
real-time navigation [6], [7].

However, the quality of underwater images is severely
affected by the particular physical and chemical character-
istics of underwater conditions, raising issues that are more
easily overcome in terrestrial imaging.

Underwater images always show color cast, e.g., green-
bluish color, which is caused by different attenuation ratios
of red, green and blue lights. Also, the particles that are
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FIGURE 1. Diagram of underwater optical imaging.

suspended underwater absorb the majority of light energy and
change the direction of light before the light reflected from
underwater scene reaches the camera, which leads to images
having low-contrast, blur and haze [8].

In order to increase the range of underwater imaging,
artificial light sources are often used. Yet, artificial light too
is affected by absorption and scattering [9]. At the same
time, non-uniform illumination is introduced, resulting in
bright spots at the center of the underwater image, with
insufficient illumination towards the boards [10]. Other qual-
ity degradation phenomena include, for instance shadowing.
Thus, extracting valuable information for underwater scenes
requires effective methods to correct color, improve clarity
and address blurring and background scattering, which is the
aim of image enhancement and restoration algorithms. These
are particularly challenging due to the complex underwater
environment, where images are degraded by the influence of
water turbidity, light absorption and scattering, which may
change broadly.

Understanding the underwater optical imaging model
could help us better design and propose robust and effective
enhancement strategies. Fig. 1 shows the underwater opti-
cal imaging process and the selective attenuation of light,
which is drawn and modified based on the model proposed
by Huang et al. [11]. The selective attenuation characteris-
tics is shown on the right side of Fig. 1. When travelling
through water, the red light – having a longer wavelength – is
absorbed faster than green and blue wavelengths (which are
shorter). That is why underwater images often appear to have
green-bluish tones.

Figure 1, shows the interaction between light, transmission
medium, camera and scene. The camera receives three types
of light energy in line of sight (LOS): the direct transmission
light energy reflected from the scene captured (direct trans-
mission); the light from the scene that is scattered by small
particles but still reaches the camera (forward scattering);
and the light coming from atmospheric light and reflected by
the suspended particles (background scattering) [12]. In the
real-world underwater scene, the use of artificial light sources
tends to aggravate the adverse effect of background scatter-
ing. The particles suspended underwater generated unwanted
noise and aggravate the visibility of dimming images. The
imaging process of underwater images can also be repre-
sented as the linear superposition of the above three compo-
nents [13], [14] and shown as follows:

ET (x, y) = Ed (x, y)+ Ef (x, y)+ Eb(x, y) (1)

whereby (x, y) represents the coordinates of individual image
pixels; ET (x, y), Ed (x, y), Ef (x, y), and Eb(x, y) represent
the total signal energy captured by the camera, the direct
transmission component, the forward scattering component,
and the background scattering component, respectively. Since
the distance between the underwater scene and the camera
is relatively close, the forward scattering component can be
ignored and only the direct transmission and background
scattering components [15]–[19] are considered.

If we define J as the underwater scene, t as the resid-
ual energy ratio after J was captured by the camera, B as
the homogenous background light, then the scene captured
by the camera I can be represented as in Eq.(2), which
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is considered as the simplified underwater image imaging
model (IFM).

I c (x) = J c (x) tc (x)+ Bc
(
1− tc (x)

)
(2)

whereby x represents one particular point (i, j) of the scene
image, c is one of the red, green and blue (RGB) channels, and
J c (x) tc (x) and Bc (1− tc (x)) represent the direct transmis-
sion and background scattering component, respectively.

The visibility of underwater images can be improved using
hardware [20]–[25] and software solutions [18], [26]–[29].

The specialized hardware platforms and cameras can be
expensive and power-consuming. What is more, they are
not adaptive to different underwater environments. Thus,
many algorithmic methods have been developed for under-
water image quality improvement by image enhancement or
restoration.

Although some reviews of underwater image enhancement
and restoration have been published, these tend to only con-
centrate on certain aspects of underwater processing. For
example, Kaeli et al. [30] focused on algorithms for underwa-
ter image color correction; Sahu et al. [31] introduced limited
underwater image enhancement methods. Lu et al. [32] and
Han et al. [33] reviewed more aspects of underwater optical
processing, including underwater image de-scattering, under-
water image restoration, underwater image quality assess-
ments, and future trends and challenges in designing and
processing underwater images.

Nonetheless, several issues are not fully addressed in pre-
vious reviews: 1) the existing classifications are incomplete,
and miss the very latest developments based (for instance)
on deep learning; 2) it remains unclear the extent by which
specific methods lead to improving image quality and how.

In this paper, we address the above problems, providing
a broader review, an experimental-based comparison of key
methods, and providing an up-to-date snapshot of challenges
and future directions.

It should be noted that we focus specifically on quality
improvement algorithms for single underwater image. Our
contributions to the study of quality improvement of under-
water images are multi-fold:
(1) We categorize the quality improvement methods of

underwater images into two broad classes: IFM-free
image enhancement methods and IFM-based image
restoration methods, from the perspective that these
improve image quality either through the optical imag-
ing physical model or not. The categories of the
reviewed methods are shown in Fig 2, which will help
better understanding which models are suited best for
which problem domain.

(2) We carry out experimental-based comparisons of
some representative algorithms from both IFM-free
and IFM-based categories, providing an evaluation
based on different quality metrics. For the sake of
replicability, we have made all the code available at
https://github.com/wangyanckxx/Single-Underwater-
Image-Enhancement-and-Color-Restoration.

FIGURE 2. Categories of quality improvement of single underwater image.

(3) We provide a critical evaluation of image restoration
methods based on prior-knowledge, which reveals the
issues that these raise in estimating the parameters of
underwater image restoration.

(4) We share our lessons-learnt from working in this
area, revealing latent difficulties and problems faced in
underwater image quality improvement.

The rest of the paper is organized as follows. Section II,
provides a review of IFM-free image enhancement methods,
followed by an overview of IFM-based image restoration
methods in Section III. The experimental-based comparisons
of different methods for underwater image improvement is
presented in Section IV. Finally, discussion and future work
directions are stated in section V.

II. IFM-FREE IMAGE ENHANCEMENT
IFM-free underwater image enhancement methods improve
the contrast and color of images mainly based on pixel
intensity re-distribution, without considering the particular
underwater imaging principles. Early studies of underwater
image enhancement often apply outdoor image enhancement
methods directly to underwater images. Later methods are
specially designed according to the characteristics of the
underwater image, e.g., hazing, color cast, and low contrast.
These methods change the pixels values in either the spatial
domain or a transformed domain. Recently, deep learning
models, especially Convolutional Neural Networks (CNN),
have been used for image enhancement, based on the idea
that hidden features may be learned for quality enhancement.
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In this review, we separate the IFM-free methods in three
subclasses: spatial-domain image enhancement [34]–[40];
transform-domain image enhancement [41]–[45]; and
CNN-based image enhancement [46]–[48].

A. SPATIAL-DOMAIN IMAGE ENHANCEMENT
The histograms of underwater images show a relatively
more concentrated distribution of pixel values than in natu-
ral images. Therefore, expanding the dynamic range of the
image histogram provides a way for enhancing the visibil-
ity of underwater images. Spatial-domain image enhance-
ment methods complete an intensity histogram redistribu-
tion by expanding gray levels based on the gray mapping
theory [49]. This can be done in different color models.
Common colormodels include Red-Green-Blue (RBG), Hue-
Saturation-Intensity (HSI), Hue-Saturation-Value (HSV) and
CIE-Lab. Based on whether single a color model (SCM) or
multiple colormodel (MCM) is used in the histogram redistri-
bution process, we can divide spatial-domain image enhance-
ment methods into SCM-based and MCM-based image
enhancement.

1) SCM-BASED IMAGE ENHANCEMENT
Many methods work in the RGB color model. Histogram
Equalization (HE) [50], Contrast Limited Adaptive His-
togram Equalization (CLAHE) [51], Gamma Correction, and
Generalized Unsharp Masking (GUM) [52] are regarded as
the typical contrast enhancement methods to improve the
global visibility of low-light images. Gray-World Assump-
tion (GWA),White Balancing (WB) andGray-EdgeAssump-
tion (GEA) are seen as traditional color correction methods
to modify the color and saturation of the images. Due to
the low energy of RGB components of underwater images
(lacking of illumination in the underwater environments), it is
frequent to introduce serious artifacts and halos, amplify the
internal noise of the image and even cause color distortion
when HE, GWA, WH and their variations are directly used
for underwater image enhancement. Since the contrast of
underwater images is low and the edge features are hazed,
GEA often fails to enhance underwater images.

Fusion is an effective strategy of underwater image
enhancement in single colormodel. In 2012, Ancuti et al. [53]
proposed a fusion-based method. Firstly, two fusion images
are generated from the input image: the first image is color
corrected by white balance, and the second image is contrast
enhanced by local adaptive histogram equalization. Then,
four fusion weights are determined according to the contrast,
salient features and exposure of the two fused images. Finally,
the two fused images and the definedweights are combined to
produce the enhanced images with better global contrast and
detail information by using the multi-scale fusion strategy.
In 2017, Ancuti et al. [35] introduced a new method for color
balance and fusion for underwater image enhancement. Con-
sidering the underwater optical imaging theory, the proposed
underwater white balancing aiming at compensating color
cast caused by the light with selective attenuation is gamma

corrected and sharpened to generate two fusion images and
associated weight maps, which are merged based on the stan-
dard multi-scale fusion strategy. Their proposed enhanced
images and videos are characterized by better exposedness
of the dark regions, improved global contrast and edges
sharpness.

In 2017, Liu et al. [54] proposed a method called Deep
Sparse Non-negative Matrix Factorisation (DSNMF) to esti-
mate the illumination of underwater images. First, the
observed images were segmented into small blocks, each
channel of the local block was reconstructed into a [R, G, B]
matrix, and the depth of each input matrix was decomposed
into multiple layers by the sparsity constraint of the DSNMF
method. The last layer of the factorization matrix is used
as the illumination for the patch, and the image is adjusted
with sparse constraints. After factorization, the local block
illumination of the original image is estimated to obtain the
enhanced image.

2) MCM-BASED IMAGE ENHANCEMENT
In 2005, Torres-Méndez and Dudek [55] used Markov Ran-
dom Field (MRF) to describe the correlation between under-
water images before and after distortion, and enhanced the
color of images based on the maximum a posteriori. When
calculating the dissimilarity of image patches, the image
is transformed to CIE-Lab color space to represent equal
perceived differences. The experimental data obtained from
different underwater scenes verified the feasibility and effec-
tiveness of this method.

In 2007, Iqbal et al. [56] proposed an underwater image
enhancement algorithm based on an Integrated Color Model
(ICM). Firstly, the heavily attenuated GB channels in the
RGB color model are stretched through the entire range [0,
255]. Then the image is converted to the HSI color model;
and the S and I components are finally stretched with sliding
histogram stretching to improve the saturation and brightness
of the output image.

In 2010, Iqbal et al. [36] proposed an unsupervised Color
correction method based on Von Kries hypothesis (VKH)
and contrast optimization of selective histogram stretch-
ing. UCM can effectively remove blue-greenish cast and
improve brightness of low components. In 2015, Ghani and
Isa [37], [39], [57] adopted the Rayleigh distribution func-
tion to redistribute the input image in combination with the
variation of ICM and UCM, improving image contrast and
reducing over-enhancement, over-saturation region and noise
introduction.

In 2017, Ghani and Isa [40] put forward Recursive Adap-
tive Histogram Modification (RAHIM), which can increase
the natural performance of image color by modifying satu-
ration and brightness of the image in the HSV color model
through Rayleigh distribution and the human visual system
and finally the enhanced image is converted to RGB color
model.

The Retinex theory simulates the mechanism of the human
vision system as it perceives the world. The term of Retinex
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is created by the combination of the ‘‘retina’’ and ‘‘cor-
tex’’. It attempts to achieve the color constancy when the
scene is dominated by a certain illumination, which has a
similar situation in the underwater environment. In 2014,
Fu et al. [58] firstly proposed a simple RGB color cast cor-
rection algorithm for underwater images. Then, based on the
theory of retina cortex, a new frame was proposed to separate
direct light from reflected light in CIE-Lab color model.
Finally, different strategies were used to highlight the sepa-
rated light components to enhance the contrast of underwater
images. In 2017, Zhang et al. [59] improve the abovemethods
and extend the Retinex framework for underwater image
enhancement. The brightness L and color a, b components
are filtered by bilateral filter and trilateral filter to remove
the luminance in Lab color model and suppress the halo
artifacts.

In 2013, Hitam et al. [60] adjusted CLAHE and built
the mixture contrast limited adaptive histogram equaliza-
tion (Mix-CLAHE) to improve the visibility of underwater
images. The CLAHE was applied to the RGB color model
and the HSV color model to generate two images, which are
combined by the Euclidean norm. Experimental results show
thatMix-CLAHE can significantly improve the visual quality
of underwater images by enhancing contrast, reducing noise
and artifacts.

In 2018, Huang et al. [11] proposed relative global
histogram stretching (RGHS) in RGB and CIE-Lab color
models. The pre-processed image based on the theory of
Gray-World employed adaptive histogram stretching in the
RGB color model according to distribution characteristics of
RGB channels and selective attenuation of light propagating
under the water. Finally, the brightness L and color a, b com-
ponents in the CIE-Lab color space are operated as linear and
curve adaptive stretching optimization, respectively. RGHS
can improve the visual effect of the image and retain available
information by avoiding the blind enhancement on account of
underwater image characteristics.

B. TRANSFORM-DOMAIN IMAGE ENHANCEMNT
In the frequency domain, the high-frequency image com-
ponent usually corresponds to the edge region where the
pixel values have great changes; whereas, the low-frequency
component represents the flat background region in the
image [61]. The transform-domain image enhancementmeth-
ods commonly transform the spatial domain image into the
frequency domain (e.g., through the Fourier Transform) [62],
and improve the quality of underwater images by ampli-
fying the high-frequency component and suppressing the
low-frequency component, simultaneously [63]. The hazed
underwater images often have the problem that the differ-
ence between the high-frequency component of the edge
region and the low-frequency component of the background
region is small [64]. Therefore, underwater image quality
can also be improved by using transform-domain meth-
ods [65], such as homomorphic filter [66], high-boost filter,
wavelet-transform, etc.

In 2010, Prabhakar and Kumar [67] used a homomor-
phic filter and an anisotropic filter to correct non-uniform
illumination and smoothing the image. Finally, they applied
adaptive wavelet sub-band thresholding with a modified
BayesShrink function to implement de-noising.

Recently, underwater image enhancement methods based
on Wavelet transformation have been used more often.
In 2016, Amjad et al. [41] proposed a wavelet-based fusion
method to enhance the hazy underwater images by addressing
the low contrast and color alteration issues. Firstly, two fusion
images are generated from the original image, by stretching
the value component of the original image over the whole
range in HSV color model and enhanced by CLAHE. Then,
the wavelet-based fusion method consists of a sequence of
low-pass and high-pass filters to eliminate unwanted low
and high frequencies presented in the image, and acquire
details of approximation coefficients separately for making
the fusing process convenient.

In 2017, Vasamsetti et al. [43] proposed a framework of
wavelet-based perspective enhancement technique for under-
water images. Since changing the sign of a wavelet coeffi-
cient can result in undesirable modifications of an image,
they applied the discrete wavelet transform (DWT) on the
RGB channels to generate two decomposition levels, and
collect the approximation and detailed responses for these
parts to reconstruct the gray scale images for R-G-B channels.
Meanwhile, this method can be used as the pre-processing
of underwater detection and tracking techniques to boost the
accuracy of the high-level underwater computer vision tasks.

Although the transform-domain underwater image
enhancement methods can improve the visibility and contrast
of the hazed images, they tend to over-amplify noise and
cause color distortion.

C. CNN-BASED IMAGE ENHANCEMNT
In recent years, many studies have proved the effectiveness
of deep learning methods in different application fields [68],
such as image segmentation [69] and speech recognition [70].
Convolutional neural networks (CNN) are especially success-
ful in image-based tasks – in fact several advanced deep
learning models are based on CNN. There exist many results
using diverse CNNs on low-level vision tasks [71] including
image de-blurring [72]–[74], image de-raining [75], image
de-noising [76], low-light image enhancement [77]–[79] and
image dehazing [80]–[83]. Yet very fewmethods are effective
for underwater image enhancement [48].

In 2017, Perez et al. [84] proposed a CNN-based under-
water image enhancement method, which trains an end-to-
end transformation model between the hazed images and
the corresponding clear images using pairs of degraded and
recovered underwater images. Meanwhile, Wang et al. [47]
also proposed an end-to-end, CNN-based underwater image
enhancement framework, called UIE-net (Underwater Image
Enhancement-net) for color correction and haze removal.
The UIE-net adopts a pixel disrupting strategy to extract the
inherent features of local patches of the image, which greatly
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fastens model convergence and improves accuracy. In 2018,
Anwar et al. [85] used a database of synthetic underwater
images that were produced in indoor environment to train
a convolutional neural network (UWCNN), and used the
UWCNN to reconstruct the clear underwater latent image
directly. The generality of this model was verified with real
and synthetic underwater images in a variety of underwater
scenes.

Still, a large amount of training data is difficult to compile
in deep sea environments, thus researchers used generative
adversarial networks (GANs) [86] to generate realistic under-
water images in an unsupervised pipeline. Li et al. [46]
proposedWaterGAN to generate synthetic real-world images
from in-air image and depth maps, then both raw underwater
and true color in-air, as well as depth data were used to feed
a two-stage deep learning network for correcting color-cast
underwater images.

Similarly to waterGAN, Fabbri et al. [87] also adopted
GANs to enhance underwater image. Firstly, they used Cycle-
GAN to reconstruct distorted images based on the undistorted
images, then the pairs of underwater images were fed to
train a novel Underwater-GAN, which can transform hazed
underwater images to clear and high-resolution images.

To relax the need for paired underwater images for network
training and allow the use of unknown underwater images,
Li et al. [88] proposed a weakly supervised underwater
color correction model, which mainly consists of adversarial
networks and multi-term loss function including adversar-
ial loss, cycle consistency loss [89], and SSIM loss. This
method can maintain the content and structure of the input
underwater image but correct its color distortion. In 2019,
Yu et al. [90] proposed Wasserstein GAN with gradient
penalty term as the backbone network, designed the loss
function as the sum of the loss of generative adversarial
network and the perceptual loss and used a convolution
patchGAN classifier as the discriminator of Underwater-
GAN [87]. In 2019, Uplavikar et al. [91] proposed a domain-
Adversarial learning-based underwater image enhancement,
which can handle multiple types of underwater images and
generate clear images by learning domain agnostic features.

So far, the reality of the generated underwater images
has hardly been examined. To solve the difficulty in the
development of CNN-based underwater image enhancement,
in 2019, Li et al. [48] constructed a large-scale and real-
world underwater image enhancement benchmark dataset
(UIEBD), which was used to train a DUIENet that employs
a gated fusion network architecture to learn three confidence
maps.

III. IFM-BASED IMAGE RESTORATION
Underwater image restoration usually establishes an effec-
tive degradation model by analyzing the underwater imag-
ing mechanism and the basic physics of light propagation,
then deduces the key parameters of the constructed physical
model via some prior knowledge, and finally recovers the
restored image by reserving compensation processing [92].

The simplified image formation model (IFM), given by equa-
tion (2) – Section I – is regarded as an effective and typical
underwater image model for restoring underwater images.
IFM-based restorationmethods need to estimate two key opti-
cal parameters [93]: background light (BL) and transmission
map (TM). In this section, we will introduce the prior-based
and CNN-based image restorations, and explain how these
recover natural colors of underwater images by estimating
BLs and TMs.

A. PRIOR-BASED IMAGE RESTORATION
Light absorption and scattering and suspended particles are
the main causes of the underwater image degradation. With
regards to the optical properties (e.g., selective light atten-
uation) or its representation (e.g., hazy effect), different
prior-based methods were used or deducted for underwater
image restoration. These include: dark channel prior (DCP)
[16], [94]; underwater dark channel prior (UDCP) [95], [96];
maximum intensity prior (MIP) [97]; red channel prior (RCP)
[98]; blurriness prior (BP); underwater light attenuation prior
(ULAP) [99]; and others. According to these priors, the BL
and TM (or depth map) can be derived and then be used into
the IFM model for image restoration.

A summary of some mainstream prior-based underwater
image restoration methods in the order of publishing year is
given in Table 1. The table shows the BL estimation formula
(Column 3), the TM estimation formula (Column 4), and
their corresponding prior knowledge (Column 5, where the
left and right sides of the slash represent the prior knowledge
used in BL estimation and TM estimation, respectively). All
parameters in Table 1 are simplified as follows.

Pc = miny∈�(x),c∈{r,g,b}
(
I c (y)

)
,

Pc
′

= miny∈�(x),c′∈{g,b}

(
I c
′

(y)
)
, and

MIPc = maxy∈�(x)
(
I r (y)

)
−maxy∈�(x), c′∈{g,b}

(
I c
′

(y)
)
,

(3)

where c ∈ {r, g, b} , c
′

∈ {g, b}, Bc, tc and Bc
′

, tc
′

rep-
resents BL and TMs of RGB channels and GB channels,
respectively, Br ,Bg,Bb and tr , tg, tb represent BL and TM of
R-G-B channels. In the literature relating to MIP, c

′

can be
{g}, {b} , or {g, b}.
The following subsections describe the different types of

priors used for underwater image restoration.

1) DCP-BASED IMAGE RESTORATION
DCP, proposed by He et al. [16], is widely used for image
dehazing. Due to the similarities between a hazed outdoor
image and an underwater image, the DCP-based dehazing
method is widely applied to underwater image enhancement.

The dark channel prior was based on the observation that
clear day images contain some pixels which have very low
intensities (close to zero) in at least one color channel. When
directly using DCP for underwater image dehazing [100],
the BL can be estimated in two steps: simply select the top

140238 VOLUME 7, 2019



Y. Wang et al.: Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging

TABLE 1. Formulas for estimation of BL and TM, and corresponding priors in underwater image restoration methods.

0.1% brightest pixels in the dark channel, and then among
these pixels, select the pixels with the highest intensity in
the input image. By minimizing both sides of the IFM model
(Eq.(2)), the transmission map can be estimated.

In 2010, Chao and Wang [17] directly used the DCP to
recover the underwater images and remove the scattering
of underwater images, respectively. But the restored images
show a limited improvement and even suffer from additional
color distortion compared with the original images. In 2011,
Yang et al. [100] proposed a DCP-based fast underwater
image restoration method to reduce the complexity of com-
putation execution. They mainly replaced soft matting with
median filtering to estimate the depth information of images
and finally used a color correction to improve the contrast and
brightness of restored images. This is only suitable for the
underwater images that have rich colors, and cannot recover
underwater images with color cast or dim scene.

Some studies aimed to refine the DCP-based parameter
estimations. In 2012, Chiang and Chen [19] proposed wave-
length compensation and image dehazing (WCID) to remove
the artificial light, compensate three channels with different
attenuation characteristics, and eliminate the effect of the
haze combined with the classical DCP algorithm. In 2014,
Serikawa and Lu [106] combined the DCP with fast joint

trigonometric filtering (JTF) to compensate the attenuation
discrepancy along the propagation path. The JTF can improve
the TM estimated by the traditional DCP to ease the scattering
and color cast and improve image contrast and edge infor-
mation. In 2015, Zhao et al. [102] derived IFM-based under-
water inherent optical properties from the background color
of underwater images. They revealed the attenuation coeffi-
cients of RGB channels based on the relationship between
BL and inherent optical properties. The traditional DCP was
used to estimate the TM of R channel, and then the TMs of
GB channels were derived from R channel by considering the
exponential relationship between the attenuation coefficients.
In 2015, Peng et al. [103] picked up the top 0.1% brightest
pixels in dark channel and then selected the average value
of the corresponding intensities in the input image as final
background light.

The dark channel prior is easily affected by the selec-
tive light attenuation in underwater environments, thus many
underwater-specific DCP were developed.

2) UNDERWATER DCP-BASED IMAGE RESTORATION
As the red light attenuates much faster than the green and
blue lights when it propagates in water, the red channel
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of an underwater image will dominate in the dark channel.
To eliminate the influence of red, underwater dark channel
prior (UDCP) [95], proposed by Drews et al. in 2013, only
considers GB channels to produce underwater DCP. In the
meantime, Wen et al. [101] proposed a new underwater
optical model similar to the UDCP and used it to estimate
the scattering rate. Although the proposed UDCP can obtain
more accurate TM than DCP, the restored images are still
not satisfactory because these methods ignore the imaging
characteristics of the R and GB channels, and may not work
well in turbid water.

In 2015, Lu et al. [107] found that the lowest pixel value of
the RGB channels in turbid water is not always the red chan-
nel, but is occasionally the blue channel, and the blue channel
is absorbed the least. Hence, they used a dual dark chan-
nel (red and blue) to estimate coarse TM and reduced the
halo and mosaic effects of the course TM by a weighted
median filter. In 2017, Lu et al. [108] proposed underwater
image super-resolution by obtaining high resolution (HR)
image of scattered and descattered images and applying a
convex fusion rule for recovering the final HR image. In 2016,
Li et al. [104] proposed single underwater image restoration
by UDCP-based GB channels dehazing and R channel color
correction based on theGray-World hypothesis, and then took
adaptive exposure map to balance the overall color of the
restored images. In 2015, Galdran et al. [98] proposed an
automatic red channel underwater image restoration based on
red channel prior (RCP), which exacts the dark channel from
reversed red channel and blue-green channels. Meanwhile
saturation information of hazed images was introduced to
adjust TM to effectively enhance the artificial light region
and improve the overall color fidelity of images. However,
the colors of some restored images present visually incorrect
and unreal.

3) MIP-BASED IMAGE RESTORATION
By discovering the strong difference in attenuation between
the R and the GB channels of underwater images,
Carlevaris-Bianco et al. [97] proposed a novel prior knowl-
edge for scene depth estimation, so-calledmaximum intensity
prior (MIP). The MIP method defined TM by the difference
between the maximum R channel intensity and the maximum
of the G and B channels, and a shift from the closest point in
the foreground represented by the largest difference between
color channels. Experimental results showed that MIP could
describe coarse depth maps of images.

The MIP was also used for BL estimation. In 2013,
Wen et al. [101] adopted andmodified theMIP to estimate the
BL of underwater images, with the assumption that the inten-
sity of the R channel was relatively lower than that of the GB
channels in the background area. In 2015, Zhao et al. [102]
estimated BL based on DCP and MIP. They firstly picked
up the top 0.1% brightest pixels in the dark channel, and
then selected the pixel with the maximum difference of
B-G channels or G-R channels among these pixels. In 2016,
Li et al. [104] determined the background light directly

selected from the pixels of the maximum difference. With
a mixing strategy in [109], [110], they firstly selected one
flat background region based on the quad-tree subdivision,
and then picked up the top 0.1% brightest pixels in the dark
channel from the candidate region, and finally chose one of
these pixels with the maximum difference of R- B channels
in the original image as the global background light.

4) OTHER PRIOR-BASED IMAGE RESTORATION METHODS
Besides the priorsmentioned above, there are some priors that
are not widely used but work effectively for underwater image
restoration.

In 2015, Peng et al. [103] proposed blurriness prior (BP)
based on the assumption that the deeper the scene depth was,
the more blurred the underwater object, and then used BP
to estimate scene depth and completed image restoration.
In 2017, Peng and Cosman [105] further improved the BP
and proposed image blurring and light absorption (IBLA)
to estimate more accurate background light and underwater
scene depth, and restored underwater images under various
types of complicated scenes.

In 2018, Peng et al. [111] proposed a generalized dark
channel prior (GDCP) based on the depth-dependent color by
calculating the difference between the observed intensity and
the background light, which can be used to estimate ambient
light and scene transmission map. To reduce information loss
when recovering the natural underwater images, in 2016,
Li et al. [109] represented the TM of the most degraded R
channel based on the minimum information loss principle
(MILP). Then, the histogram distribution prior, that is the
average histogram distributions of natural-scene images, was
used as the template to adjust the contrast and brightness
of underwater images. In 2017, considering the attenuation
effect of absorption and scattering strongly correlated with
imaging depth, Wang et al. [112] proposed maximum attenu-
ation identification (MAI) to derive the background light and
depth map from degraded underwater images.

In 2018, Song et al. [99] proposed a rapid and effective
scene depth estimation model based on underwater light
attenuation prior (ULAP), which assumed the difference
between the maximum value of G-B intensity and the value
of R intensity in one pixel of the underwater image strongly
related to the change of the scene depth. Based on the ULAP,
a linear model was established to rapidly obtain scene depth
map, which can be used to estimate the background light (BL)
and transmission maps (TMs) for R-G-B channels are easily
estimated to recover the true scene radiance under the water.

B. CNN-BASED IMAGE RESTORATION
IFM-based underwater image restoration methods estimate
the BLs and TMs with prior knowledge, condition assump-
tions and theory.With the rapid development of deep learning
in image restoration, researches have already seen a signifi-
cant change from parameter selection completely by artificial
optimization models to automatic training models, which use
instance data to extract some valuable feature vectors.
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In 2017, Ding et al. [113] first used a new white balance
algorithm to improve the overall quality of original underwa-
ter images, then adopted traditional CNN to estimate BL and
TM of underwater images after color correction, and finally
restored the underwater images based on IFM. Because
pre-processed underwater images through color correction
lose the imaging characteristics of underwater environments,
there will be over-saturated and over-enhanced areas in the
restored image. In 2018, referencing to the multi-scale deep
network put forward by Eigen et al. [114], Cao et al. [115]
stacked a coarse global CNN network and a refined network
to estimate the background light and predict scene depth map.
This method claimed a good recovered result, better than the
existing image restoration method based on the IFM.

In 2018, Barbosa et al. [116] considered that the existing
end-to-end framework may fail to enhance the visual quality
of underwater images in lack of ground truth of the scene
radiance. Hence they proposed a CNN-based method by
using a set of image quality metrics to guide the restoration
learning process without requiring ground truth data. Exper-
iments showed that Barbosa et al.’s method improved the
visual quality of underwater images, preserving their edges.
In Hou et al.’s work [117], the prior knowledge and data
information were aggregated to investigate the underlying
underwater image distribution to correct color, by means of
a data-driven residual architecture for transmission estima-
tion and a knowledge-driven scene residual formulation for
underwater illumination balance.

CNN-based image restorations estimate BLs or depthmaps
through feature learning. The performance of the methods
relies on both network architecture design and training data.
Due to the use of synthetic underwater images and potential
defect of deep-learning architecture, these trained network
models may only adapt to some limited types of underwater
images. Compared with physical model and non-physical
model, the deep learningmethod is time-consuming under the
same restoration environment.

IV. QUALITY IMPROVEMENT METHODS FOR
UNDERWATER IMAGES: EXPERIMENTAL COMPARISONS
To study current development of quality improvement meth-
ods for underwater images, we firstly introduce image quality
assessment metrics, and then take comprehensive compar-
isons on mainstream IFM-based underwater image restora-
tion methods and IFM-free underwater image enhancement
methods from both subjective and objective perspectives.
Since BL and TM estimation determine the robustness
and effectiveness of IFM-based methods, we also evaluate
prior-based BL estimation models and prior-based TM esti-
mation models, discussing the advantages and disadvantages
of BL and TM estimation models, and the effect of BL results
on TM estimation.

A. THE METHODS TO BE COMPARISED
The compared methods of IFM-free image enhance-
ment include: HE [50], CLAHE [51], integrated color

model (ICM) [56], unsupervised color correction method
(UCM) [36], Fusion-based underwater image enhancement
method (Fusion-based, FB) [53], underwater image enhance-
ment method based on Rayleigh distribution (RD) [118], and
relative global histogram stretching (RGHS) [11].

The compared IFM-based underwater image restoration
methods are: single image removal (SIR) based on dark
channel prior (DCP) [16], initial underwater image dehaz-
ing (IUID) based on maximum intensity prior (MIP) [97],
DCP-based rapid image restoration (RIR) [100], Underwater
Transmission Estimation of Underwater Image (TEoUI) [95],
underwater image restoration based on the new optical
model (NOM) [101], underwater image restoration based
red channel prior (RCP) [98], image blurriness and light
absorption (IBLA) [105], and underwater light attenuation
prior (ULAP) [99].

In order to ensure the fairness of each evaluation sys-
tem, all test underwater images are pre-processed at the size
of 400×600 pixels and processed by the compared meth-
ods with default parameters. All methods are implemented
on a Windows 7 PC with Intel(R) Core(TM) i7-4790U
CPU@3.60GHz, 8.00GB 1600MHzDDR3Memory, running
on Python3.6.3.

B. IMAGE EVALUATION METRICS
Image quality can usually be affected by the optical per-
formance of imaging equipment, instrument noise, imag-
ing conditions, image processing and other factors. Image
quality assessment (IQA) is often divided into subjec-
tive qualitative assessment (SQA) and objective quantitative
assessment (OQA).

SQA is mainly dependent on the human visual sys-
tem (HVS) to gain subjective impression of images. A proper
SQA needs repeating a number of experiments (varying the
factors that affect image quality) to generate a dataset, which
is then scored by human observers, striving for statistical
significance. Due to the low efficiency and complicated oper-
ation of SQA, in this paper we simply present the represen-
tative results from different image enhancement/restoration
methods as the basis of subjective analysis.

OQA establishes mathematical model based on the HSV
to calculate a quality index. Provided that accurate mod-
els are utilized, this method is significantly more efficient
than SQA, since a vaster dataset may be scrutinized auto-
matically. OQA methods are often divided into three kinds:
the full-reference (FR), the reduced-reference (RR) and the
non-reference (NR) methods. When evaluating the quality of
an image, FR and RR image quality metrics require or par-
tially require a high-quality reference image. Unfortunately,
the dehazed and natural reference image cannot be obtained
in complicated underwater environment, unless there are syn-
thetic images or when color boards in the terrestrial scene
are taken into the underwater scene. In addition, due to the
complicated underwater environment and optical imaging
mechanism, the evaluation metrics for underwater images are
limited. To fully understand the performance of the compared
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underwater image quality improvement methods, we choose
multiple NR metrics developed for both specific underwater
images and for general images, considering the aspects of
information richness, naturalness, sharpness, and the overall
index of contrast, chroma and saturation.

Entropy is interpreted as the average uncertainty of infor-
mation.When applied to images, entropy represents the abun-
dance of information observed from the image. When the
contrast of the image ismore uniform, the entropy is relatively
higher, the better the quality of image will be and the clearer
the image will be, otherwise the image with low contrast,
whose pixel values are distributed within a small range, has
smaller entropy and appears hazed.

Natural image quality evaluator (NIQE) [119] was estab-
lished according to human vision sensitivity to high-contrast
areas in images. It usesmultivariate gaussian (MVG) to estab-
lish the feature model of sensitive areas, where the larger the
values of these parameters are, the higher the image quality
will be. A smaller score of NIQE indicates better perceptual
quality.

Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [120]measures image naturalness based onmea-
sured deviations from a natural image model, which is based
on natural scene statistics. BRISQUE can represent the pos-
sible loss of image naturalness caused by distortion, whose
range is from 0 to 100, and the bigger value is, the worse the
image quality is.

In 2015, Yang and Sowmya [121] discovered the correla-
tion between sharpness and color of image and the subjective
image quality perception and proposed an image quality eval-
uation method specially for underwater images, the under-
water color image quality evaluation (UCIQE). UCIQE is a
linear model of contrast, chroma and saturation in CIE-Lab
color space, can be expressed as:

UCIQE = c1 × σc + c2 × conl + c3 × µs (4)

where σc, conl and µs represent the standard deviation of
image chromaticity, contrast of image brightness and average
of image saturation, c1, c2, c3 represent the weights of these
parameters. Similar as UCIQE, underwater image quality
measure (UIQM) [122] constructed the linear combination of
underwater image colorfulness measure (UICM), underwa-
ter image sharpness measure (UISM) and underwater image
contrast measure (UIConM). Thus, the larger the UCIQE
and UIQM are, the better the underwater color image quality
will be.

C. ASSESSMENT ON OPTICAL PARAMETERS of
IFM-BASED METHODS: BL & TM
1) COMPARISONS OF BL ESTIMATION MODELS
The BL estimation method for underwater images is often
ignored by researchers. It determines the color tone and visual
effect of restored images. Many estimation algorithms of
TM also depend on the result of BL estimation to a large
extent, which can be seen from Table 1. Thus, it is essential
for IFM-based underwater image restoration to carry out a

comparison of different BL estimation models. This section
evaluates the performance of different BL estimationmethods
through subjective and objective performance analysis.

In order to compare BL estimation methods based on
different priors, this review selects four typical images includ-
ing shallow-sea fishes under natural light source, cliff under
low-brightness scene and wrecked ships, and the swimming
batfish in the foreground area, as exemplified in Fig 3 (a).
The ground truth BLs of these test images in Fig 3(b), were
produced from 15 people’s manually annotation based on the
principle of selecting the farthest point from the camera and
the light used to illuminate the background area, as detailed
in our previous work [28].

Fig 3 (c-m) shows the BLs estimated by the methods with
different priors. Among them, Fig 3 (c-e) shows estimated
results of DCP-based methods, Fig 3 (f) based on DCP and
MIP, and Fig 3 (g-i) based on MIP only. Fig 3 (j) and Fig 3
(k) are UDCP-based and RCP-based BL estimation results,
respectively. Fig 3 (l) and Fig 3 (m) are Fusion-based and
ULAP-based BL results respectively.

By comparing Fig. 3 (c-e) with Fig. 3 (b), it can be seen
that DCP-based BL estimation methods that partially choose
the brightest pixel values in the whole image as final BLs, are
often wrong. Some studies [16], [17], [100] have shown that
DCP-based BL estimation methods can avoid blindly select-
ing the strongest pixel as the final BL, but DCP ignores the
optical imaging characteristics of underwater images where
significant difference between the R channel and the GB
channels exists, leading to the failure of the DCP-based BL
estimation method. Based on the maximum difference of R
channel and GB channels in the background area, MIP can
effectively avoid the interference of natural light source and
over-bright foreground. Therefore, most results in Fig. 3 (g-i)
are close to the ground truth BLs. But the method using MIP
upon DCP, whose results are in Fig. 3 (f), generates much
brighter BLs than the ground truth. This makes MIP useless
and fails the estimation eventually.

The results of UDC in Fig. 3(j) are similar to those of
the DCP-based BL estimation methods, because UDCP still
ignores the great attenuation in R channel. Since RCP con-
siders the dark region in the R channel as the BL candidate
region, the BLs estimation is correct except for the cliff image
in Fig. 3 (k). This is because the cliff image has very dark
regions where the R component is very low.

The fusion-based BL estimation model selects three com-
mon estimated BLs as candidate BLs and determines the final
BL based on selective weighted fusion. The results in Fig. 3(l)
are better than DCP and UDCP-based methods. ULAP con-
siders that the difference of R channel and GB channels is
strongly correlated with the scene depth, and chose the BLs
from the values of the farthest point of the original image. The
output shown in Fig.3 (m) are close to the ground truth.

To quantitatively assess the results of BL estimations based
on different prior knowledge DCP, MIP, UDCP, RCP, IBLA
and ULAP, we computed BLs of 300 underwater images
with these methods, and calculated the absolute differences
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FIGURE 3. Comparisons of BLs estimation methods based on different
priors.

between the estimated and the ground truth BLs with the
tolerance of R channel and GB channels set as 30 and 40,
respectively. That is to say, as long as the absolute difference

FIGURE 4. Comparisons of accuracy of BL estimation.

is within the tolerance, the estimation is considered as correct.
The BL accuracy is represented by the accumulated correct
ratio of all test image BLs. Fig 4 shows comparisons of
accuracy of BL estimation methods based on the different
priors.

According to Fig. 4, the accuracies of DCP-based and
UDCP-based BLs estimation are the lowest, indicating that
DCP and UDCP are not suitable for estimating various types
of underwater images. This conclusion is consistent with
those presented in Fig. 3. Although MIP can successfully
estimate BLs of the images in Fig. 4, its overall BL estimation
accuracy on various types of underwater images is relatively
lower. RCP-based, Fusion-based and ULAP-based BL esti-
mation methods show better estimation results in the test
dataset, but their accuracy across three R, G and B channels
is still lower than 80%.

2) COMPARISONS OF TM ESTIMATION MODELS
When comparing the accuracy of transmission map (TM)
estimation models, this review analyzes the correctness
of TM estimation through subjective assessment due to
non-reference depth/transmission map. The closer an object
is to the camera, the higher its TM valuate is, and the whiter it
shows on the TM or depth map. On the contrary, the farther,
the darker. This principle is used to evaluate the performance
of TM estimation methods based on different priors.

Four challenging underwater images are selected from
the underwater image dataset as test images. As shown
in Fig. 5 (a) from left to right, the first image of cliff and
the third of coral have complex scenes but different color
tones; the second of a shoal is hazy and with many fishes to
distinguish; and the fourth has rocks with artificial light spot.
Fig. 5 (b-m) demonstrates the estimated R channel results
based on the TM estimation models with different priors.
In order to better represent the results of TM estimation
models, this review refines all the estimated TMs by guided
filter [123].

In Fig. 5 (b-e), DCP-based TM estimations perform poorly,
except a relatively reasonable result for the shoal image. They
are hardly distinct the depth of objects in a complex scene
(e.g., the cliff and coral images) and mistake the light spot as
the farthest when artificial light exists. The problem is mainly
due to the false BLs estimation. The DCP-based method will
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FIGURE 5. Comparisons of accuracy of TM estimation.

choose the whitest point as the far background area, which
can be either a white object or light spot. With this BL as the
referenced far area, the complete depth map will be wrong.
In general, DCP-based TM estimation methods are sensitive

to underwater images with different characteristics and have
a low applicability.

As can be seen from Fig. 5 (f), MIP proposed for underwa-
ter imaging characteristics can roughly estimate the TMs of
the four images, but the estimated values are large. This leads
to an overall white map and fuzzy image details.

Compared with Fig. 5 (h-i), Fig. 5 (g) shows the incorrect
TMs of the first three images and relatively correct TM of the
last image because the TM of R channel is estimated based on
the local maximum values of R channel, TMs of G-B chan-
nels are estimated based on the UDCP. However, the TMs
of R channel is estimated based on UDCP in Fig. 5 (h-i).
In Fig. 4 (j), RCP-based TM estimation method effectively
uses saturation information to avoid the influence of artificial
light on the TM estimation, but the estimated TMs is too large
to be used to restore the image. In Fig. 5 (j), the IBLA-based
TM estimation methods are applicable to the underwater
images with four typical features, and highlight the local
details and texture information of TMs of the underwater
image. In Fig. 5 (l), the ULAP-based TM estimation method
underestimates TM of shoal, but this linear model of TM
estimation can quickly estimate the TMs of the remaining
three images, especially the area where the artificial light
source exists.

To sum up, DCP-based TM estimation methods are appli-
cable to some underwater images, but are easy to cause TMs
of G-B channels much larger than actual values. MIP-based
TM estimationmethods can coarsely estimate the depth infor-
mation of the original images, but need to refine the details of
TMs. The UDCP-based TM estimation method can directly
avoid the influence of the R channel on TM estimation,
and improves the DCP-based TM estimation method to a
certain extent. The RCP-based TM estimation model can
obtain the approximate depth information, but the overall
estimation of TM is too large to work. The IBLA-based TM
estimation method, by considering both the light attenua-
tion and image blurriness of underwater images, gains more
accurate TM estimations, but its computing complexity is
high. The ULAP-based TM estimation is influenced by the
objects whose intensity difference between R channel andGB
channels are significant high, but is not affected by artificial
light source.

D. OVERALL PERFORMANCE OF UNDERWATER IMAGE
ENHANCEMENT AND IMAGE RESTORATION: EVALUATION
AND DISCUSSION
In this section, we evaluate the overall performance of
IFM-free and IFM-based underwater image improvement
methods, given in Section IV.A. As a benchmark, we have
adopted a dataset including four types of underwater images,
which is commonly used in the literature. This include
one relatively clear scene and three challenging underwater
images under the greenish, turbid and low-visibility scene
(Fig. 6(a)). Subjective and objective analysis are employed
on the enhanced images. For the IFM-based methods, the
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FIGURE 6. Comparisons on results of IFM-free image enhancement
methods.

estimated BLs and TMs are also demonstrated to aid the
discussion.

1) SUBJECTIVE ANALYSIS
Fig. 6 (b-h) shows the results of IFM-free image enhancement
methods. The images enhanced by HE method (Fig. 6 (b))
present an overwhelming red tone and amplify the noises of
the original image. Both CLAHE and RGHS are based on
adaptive parameters to avoid a global histogram stretching
or blind pixel redistribution to reduce sharpness. Thus their
results in Fig. 6 (c) and Fig. 6 (h) are not over-enhanced.

RGHS shows a better dehazing effect than CLAHE. ICM
and UCM redistribute the S and I components in HSI
color space, may lead to under- and over-saturated images,
as shown in Fig. 6 (d-e). RDmodified ICMandUCMby com-
bining with Rayleigh distribution in the HSV color model to
minimize under- and over-enhanced areas of output images.
But RD veils local detailed information of the enhanced
images. Although Fusion-based (FB) image enhancement
method can significantly improve contrast and chromaticity

of images, while the noise is also inevitably introduced to
the enhanced images. Overall, the IFM-free methods can
effectively improve contrast, visibility and luminance of the
underwater image, but bring unnatural chroma and enlarged
noises.

Fig. 7, shows the estimated BLs, TMs, and restored results
of IFM-based image restoration methods. SIR directly apply-
ing DCP to BL and TM estimation of underwater images, has
failed to estimate the parameters and results in the failure of
restoration, as shown in Fig. 7 (a). But this does not affect the
clear underwater image because the estimated TM falls flat.

Yet, in Fig. 7(b), RIR generates distorted images, espe-
cially appearing with a reddish tone, because it considers
that TMs of R-G-B channel are the same. In Fig. 7(c), IUID
based on MIP obtains correct BLs but cannot remove haze
nor correct color cast for the three challenging images. This
can be explained by its estimated TMs that cannot distinguish
the scene depth.

TEoUI based on UDCP obtains relatively reasonable TMs,
but the values of BLs are too big to make the clear underwater
image oversaturated. When producing TMs, NOM uses the
median filter to replace soft matting to improve the operation
efficiency. However, according to Fig. 7 (e), it over-enhances
the R component, under-enhances the G-B components,
and introduces a large amount of noise, and finally causes
distortion.

The best restoration images are produced by IBLA and
ULAP, as shown in Fig. 7 (f-g). IBLA and ULAP can adopt
characteristics of underwater light attenuation to obtain the
correct depth map or TMs of R-G-B channels by building the
optical imaging relationship of R-G-B channels.

To sum up, the current IFM-based underwater image
restoration methods can only complete basic dehazing work
but cannot effectively deal with color restoration for various
underwater images, but the color correction can be imported
as post-processing to improve the brightness, color and con-
trast of restored images. According to results of different
restoration methods, our review raises one question whether
this simplified imaging formation model is actually inappro-
priate for underwater image restoration.

2) OBJECTIVE ANALYSIS
Underwater image restoration/enhancement is to improve the
visibility, color and saturation of images, and reveal

detailed information, for the purpose of feature extraction
and computer vision analysis. Due to the absence of reference
underwater images (ground truth), this review selects five
kinds of non-reference image quality metrics to quantify
information entropy, distortion and the balance of brightness,
contrast and color for underwater images. The fivemetrics are
ENTROPY, BRISQUE, NIQE, UIQM and UCIQE, as intro-
duced in Section IV.B above.

Table 2, shows the average values of the five quantitative
evaluations of the restored and enhanced images, highlighting
the best results in bold. Entropy values of the IFM-free results
are generally higher than those of the restored images by
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FIGURE 7. Comparisons on BLs, TMs and restored images of IFM-based
image restoration methods.

FIGURE 7. (Continued.) Comparisons on BLs, TMs and restored images of
IFM-based image restoration methods.

IFM-based methods. This suggests that image enhancement
algorithms can improve the information abundance con-
tained in the image. Yet, image enhancement algorithms
blindly amplify the useless information, especially the noises,
as per Fig 6 (b-h). Although the entropy values of the
enhanced images obtained by HE is the highest, it can be
seen that enhanced images appear unnatural according to
Fig 6 (b).

Both BRISQUE and NIQE models are built using out-
door images as evaluation criteria. TEoUI results in Fig 7
(d) are obviously unnatural, perceptually, but obtain the best
naturalness (the lowest BRISQUE score). By contrast, FB,
IBLA and ULAP obtain relatively higher BRISQUE score.
SIR gains the best assessment according to NIQE, but it gives
almost no improvement to the original underwater images.
Therefore, it is problematic to directly use the quality assess-
ment metrics based on outdoor images to evaluate underwater
images.

UCIQE and UIQM were developed to reflect the quality
of underwater color images. According to these two met-
rics, overall IFM-free methods perform significantly better
than IFM-based methods. But these underwater image qual-
ity assessment metrics favor the images with high contrast
and extreme chroma, such as the images produced by HE
and NOM (shown in Fig. 6(b) and Fig. 7(e), respectively).
Both UCIQE and UIQM metrics focus on the intensities of
low-level features such as contrast, chroma and saturation
but ignore higher semantic or prior knowledge from human
perception.
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TABLE 2. Quantitative analysis of restored and Enhanced results based on different methods.

V. CONCLUSION AND DISCUSSION
Quality improvement methods of single underwater images
based on image enhancement and color restoration are com-
prehensively reviewed to help researchers better explore this
unknown underwater world. In this review, we firstly intro-
duce the basic principles of underwater imaging model and
selective light absorption characteristics under the water.
Then, we summarize the quality improvement methods of
single underwater images into two categories: IFM-free
underwater image enhancement and IFM-based underwater
image restoration, thus describing existing methods and their
characteristics. Finally, we provide an experimental-based
comparison of the state-of-the-art quality improvement meth-
ods using multiple quality assessment metrics, which leads to
discussing the issues confronted by the current IFM-free and
IFM-based underwater image quality improvement methods.
All in all, we provide a comprehensive outline of the progress
and challenges of single underwater image quality improve-
ment, which can help researchers in the further development
of this area.

Although single underwater image enhancement and
restoration methods have made tremendous progress, still
today there is no algorithm that can be effectively applied
to enhance underwater images captured from diverse envi-
ronments, depths or scenes. The adaptability and robustness
of underwater image enhancement methods still need to be
improved.

In addition, traditional enhancement/restoration algo-
rithms have relatively high complexity, which poses consid-
erable limitations to our ability to scale up practical studies
and applications.

The future works should focus on the follow
aspects:

1) Improving the robustness and computational efficiency
of underwater image enhancement methods. The desired
image enhancementmethod should be able to adapt to various
underwater conditions and develop an applicable enhance-
ment strategy for different kinds of underwater applications.
Through this review, we can find that none of the compared
methods can improve the quality of all testing underwater
images. IFM-based methods can recover actual scene but
consume vast time to calculate two key optical parameters;
whereas IFM-free methods can quickly enhance images by
redistributing pixel values, but easily cause color distortion.
A potential strategy for the quality improvement algorithms
of underwater images is to wisely combine image restoration
and enhancement. Meanwhile, many single image quality
improvement methods without involving temporal coherence
between adjacent frames cannot be directly employed in
underwater video quality enhancement due to their excessive
complexity.

2) Constructing a sufficient underwater image benchmark
dataset. Until now, there is still a lack of publicly avail-
able underwater image datasets, including pairs of hazed
and clear underwater images, underwater image background
lights, and depth maps or transmission maps. IFM-based
underwater image restoration methods require BL and TMs
to recover real underwater scenes. The accuracy of BLs and
TMs estimated by different methods and the effectiveness
of these methods are compared and analyzed through sub-
jective assessment due to the lack of a benchmark dataset.
More deep learning techniques are applied in underwater
image enhancement, e.g. using Generative Adversarial Net-
works (GAN) to regulate the white balance, and Recurrent
Neural Networks (RNN) to de-noise and increase detail
information. However, learning-based underwater image
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enhancement methods strongly depend on datasets, which
requires a great number of the paired original and referenced
images. Although synthetic datasets are often used to train
deep models, there exists a big gap between the synthetic
images and the actual underwater images obtained from
complex underwater environments. Hence, it is important to
construct a public underwater image benchmark dataset with
various pairs of hazed and enhanced images.

3) Establishing an effective underwater image quality
assessment metric. A variety of image quality evaluation
metrics are proposed; yet only few are suited to underwater
images. In this review, the widely-used UCIQE and UIQM,
which are inspired by the property of human vision system
to quantify underwater color images, could not provide a fair
assessment to the underwater image quality. Their evaluation
favors the over-enhanced colorful images, which are against
subjective preference to naturalness. Further research should
be devoted to the smart combination of subjective and objec-
tive assessment and continuing to improve non-reference
evaluation models.

4) Building a close relation between low-level image
enhancement and high-level detection and classification.
Current underwater image enhancement methods focus on
improving the perceptual effect of images but ignore whether
the enhanced images can increase the accuracy of high-level
feature analysis such as target detection and classification.
Hazed underwater images have similar objects with scene
environment, which aggravates the difficulty of target recog-
nition and detection. Thus, improving the quality of underwa-
ter images can effectively release the pressure of high-level
underwater tasks. Therefore, in future studies, we can estab-
lish a high-level task, such as target detection under visibility
degradation, and use the task completion as the criteria to
evaluate an underwater image enhancement method.

5) Studying deep-sea image enhancement methods. Unlike
shallow-water environment, the natural light (from the sun)
propagating underwater will be fully absorbed under the sea
below 1000meters. Artificial light as the only light source has
a strong influence on imaging. Intensity and point projection
lighting limit vision range and cause uneven vignetting. The
existing underwater image enhancement or restoration meth-
ods are not able to recover deep-sea images. Therefore, a new
imaging model for deep-sea imaging environment is needed
to solve light attenuation, uneven illumination, scattering
interference and low brightness of deep-sea images, so as to
improve the sense of reality of images and reduce the halo
effect.
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