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Abstract—There can be performance and vulnerability con-
cerns with block ciphers, thus stream ciphers can used as an alter-
native. Although many symmetric key stream ciphers are fairly
resistant to side-channel attacks, cryptographic artefacts may
exist in memory. This paper identifies a significant vulnerability
within OpenSSH and OpenSSL and which involves the discovery
of cryptographic artefacts used within the ChaCha20 cipher. This
can allow for the cracking of tunneled data using a single targeted
memory extraction. With this, law enforcement agencies and/or
malicious agents could use the vulnerability to take copies of
the encryption keys used for each tunnelled connection. The
user of a virtual machine would not be alerted to the capturing
of the encryption key, as the method runs from an extraction
of the running memory. Methods of mitigation include making
cryptographic artefacts difficult to discover and limiting memory
access.

Index Terms—network traffic; decryption; memory analysis;
Virtual machine introspection; Secure Shell; Transport Layer
Security; stream ciphers; ChaCha20

I. INTRODUCTION

There is an increasing challenge between the rights of
citizens to privacy and the rights of society to protect itself
from adversaries [1][2]. The breaking of encryption tunnels
is thus one of the major debating points, and where law
enforcement agencies often aim to gather tools and methods
which break these tunnels, or where we fix vulnerabilities in
tools in order to avoid these tunnels from being broken. In
most cases we now perform a key negotiation phase – typically
with ECDH (Elliptic Curve Diffie-Hellman) – and then use a
symmetric key method to encrypt the traffic within the tunnel.

The cracking of the key exchange process and of the
symmetric key used in the tunnel are, in most cases, too
costly to crack. Unfortunately, the key exchange process can
leave behind trails of evidence in memory which can provide
significant clues to the symmetric key being used. While
this has been demonstrated for block ciphers, such as for
the Advanced Encryption Standard (AES) [3][4], this paper
outlines how well-used applications such as OpenSSH and
OpenSSL allow for every generated key in the ChaCha20
stream cipher to be revealed within a fairly fast discovery time.
As virtualized environments enable access to virtual machine
resources from more privileged levels such as hypervisors or
hypervisor consoles, applications operating at that level can
extract live virtual machine memory. Extraction is most effec-
tive when a virtual machine is paused but it is not necessary.
So, virtualized environments present an opportunity to find

keys without impacting the target and for target applications
to be unaware of extraction.

The rest of the paper is structured as follows. Section II
discusses related research including side-channel studies and
background on stream ciphers and ChaCha20 cipher imple-
mentations is presented in Section III. Section IV provides
relevant details of the framework and its implementation is
given in Section V. The results are presented and discussed in
Section VI and conclusions drawn in Section VII.

II. RELATED WORK

This paper focuses on the decrypting network traffic en-
crypted with ChaCha20-Poly1305 cipher. Prior studies have
investigated potential vulnerabilities in cipher design and in
cipher implementation. Researchers have found no vulnera-
bilities in ChaCha20 design. For example, differential attacks
using techniques such as identifying significant key bits only
succeeded with reduced cipher rounds and significant vol-
umes of plaintext-ciphertext pairs [5][6]. Combined linear and
differential analysis improves performance, but is similarly
restricted [7].

ChaCha20 implementations may be vulnerable to side-
channel attacks. While the cipher design may prevent timing
attacks [8], correlating power electromagnetic radiation when
specific cryptographic activities are performed may leak key
stream information [9][10]. Engendering instruction skips, for
example by using a laser or electromagnetic pulse, could
potentially produce the key stream but timing the activity
would be challenging [11]. Furthermore, these approaches may
be impractical in real-world scenarios.

Cryptographic artefacts have been found in device memory.
For instance, RSA keys may be discovered in virtual machine
images [12] [13]. Studies have also discovered DES and AES
cipher keys in cold-boot attacks [3], Skipjack and Twofish key
blocks in virtual memory [4], and AES session keys in virtual
memory [14]. Although these approaches use entropy mea-
sures to determine possible keys, they do not decrypt cipher-
text encrypted with ciphers such as AES in Counter mode and
ChaCha20 which require nonces/initialization vectors. This
study builds on the TLSkex [14] and MemDecrypt studies [15]
which used privileged monitors to extract identified virtual
machine process memory to identify TLS 1.2 AES keys,
and SSH AES keys and initialization vectors, respectively.
Instead, this study uses a different algorithm to find ChaCha20
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cipher keys and nonces in device memory enabling SSH and
TLS sessions to be decrypted in a non-invasive manner. The
approach may enable decryption of Adiantum encrypts [16],
the Google disk-encryption algorithm based on XChaCha20,
an extension to ChaCha20 and Salsa20 with a longer nonce
[17].

III. STREAM CIPHERS

Secure protocols use encryption to provide confidentiality
for secure communications between parties. While asymmetric
encryption ciphers are used in secure protocol set-up stages,
for performance symmetric ciphers encrypt the confidential
information. Symmetric ciphers are commonly classified as
being stream ciphers, where plaintext is encrypted bit-by-bit
or byte-by-byte or block ciphers, where blocks of a specific
size are encrypted. This paper focuses on stream ciphers.

Stream ciphers generate a random key stream from an
evolving state [18]. The key stream is then typically XOR-
ed with the plaintext to generate ciphertext [18]. Software
implementations for stream cipher have been found to be
faster than block ciphers although possibly more difficult
to implement [19]. Stream ciphers have typically been used
in embedded technologies such as Internet of Things (IoT)
devices and smartphones [20]. Stream ciphers, as well as block
ciphers, have been supported by secure protocols. However,
with vulnerabilities leading to the planned deprecation of the
RC4 stream cipher for protocols such as Secure Shell (SSH)
[21] and Transport Layer Security (TLS) [22], alternative
stream ciphers have been under consideration. In particular, the
ChaCha20 stream cipher with the Poly1305 authenticator [23]
has been adopted in secure protocol implementations such as
OpenSSH [24], and OpenSSL [25], as well for Google Chrome
on smartphones [26]. The discovery of the key stream or inputs
to key stream generation may be an unacceptable vulnerability
for stream ciphers including ChaCha20-Poly1305.

Stream cipher cryptographic artefacts are memory-resident
at points in time. Furthermore, these artefacts, as well as the
key stream are on a program stack, in the heap or in shared
memory. If timely acquisition of target device memory is
obtained, the stream or artefacts may be discovered. With the
growth of forensic technologies that enable memory access
to targets such as desktops, servers, smartphones, and IoT
devices, an opportunity exists to discover these artefacts. Al-
though researchers have investigated ChaCha20 side-channel
attacks with intermediate state leakage [9] and without [10],
no studies analyze memory so this paper presents a new
approach to decrypting secure communications encrypted with
the ChaCha20 cipher. A single memory extract suffices to find
the cryptographic artefacts for decryption. Furthermore, the
approach is faster and less invasive than methods that use side-
channel techniques.

OpenSSH and PuTTY implement chacha20-
poly1305@openssh.com while OpenSSL [26] versions
above 1.1 implement variations where the asymmetric cipher
used in key exchange vary, e.g. ECDHE-RSA-CHACHA20-
POLY1305 [27]. Both implementations adhere to the RFC

ChaCha20 and Poly1305 for IETF Protocols [23] which
is based on Bernstein’s ChaCha20 cipher proposal [28], a
variation of the earlier Salsa20 cipher [8].

A. ChaCha20 ciphering process

The ChaCha20 cipher generates key streams of 64-bytes.
Inputs to key stream generation are independent of plaintext or
ciphertext similar to other eSTREAM proposals [29] but unlike
stream ciphers such as Helix [8]. This enables parallel cipher-
text generation with consequent performance improvement. 20
rounds of mathematical calculations using XOR, addition and
rotation using as inputs four 4-byte constants, a random 32-
byte key, a 4-byte counter, and a 12-byte nonce (Bernstein
originally specified the nonce and counter lengths to be eight).
However, this is not a material difference in the investiga-
tions). The 4-byte constants are 0x61707865, 0x3320646e,
0x79622d32, and 0x6b206574 or in ASCII ‘apxe’, ‘3 dn’, ‘yb-
2’, and ‘k et’. In ChaCha20 these strings are concatenated. The
counter, which typically starts at 0 or 1 increments for each
64-byte plaintext block [23].

In the chacha20-poly1305@openssh.com implementation,
memory is allocated to hold a structure comprising key stream
input fields, the 64-byte key stream itself, and an index
pointer. The packet lengths are encrypted separately from the
remainder of the payload so four structures are required: two
for encrypting outgoing lengths and payloads, and the same
again for incoming encrypted data. The memory contents of
the concatenated constant string are expand 32-byte k. The
nonce is a sequence number and counters for the encrypted
packet lengths and payloads are zero and unity, respectively.

The OpenSSL implementation of ChaCha20-Poly1305 dif-
fers in a number of respects as required by IETF RFC
ChaCha20-Poly1305 Cipher Suites for Transport Layer Secu-
rity (TLS) [27]. As encrypting packet length is not required in
TLS two memory structures are used for encrypting outgoing
messages and decrypting incoming messages. Memory used
for ChaCha20 inputs is temporary as the encryption structure
is assembled from other sources. Also, the nonce is an XOR
of the sequence number and the vector generated during the
initial handshake when the cipher keys are obtained.

ChaCha20 takes a 256-bit key and a 32-bit nonce (and
which includes a counter). This creates a key stream which is
then XOR-ed with the plaintext stream as illustrated in Figure
1. In software-only implementations, it is often more than three
times faster than AES [27], and is well suited to lower-powered
devices and in real-time communications. ChaCha20 operates
on 32-bit words at a time with a key of 256 bits (K=(k0, k1,
k2, k3, k4, k5, k6, k7). This outputs blocks of 512 bits for
the key stream (Z), and which is XOR-ed with the plaintext
stream. The state of the encryption is stored within 16x32-bit
word values and arranged as a 4x4 matrix:

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 (1)



Fig. 1. ChaCha Encryption/Decryption Flow

The initial state contains 16x32-bit values with constant
values (0x61707865, 0x3320646e, 0x79622d32, 0x6b206574)
the key (k0, k1, k2, k3, k4, k5, k6, k7), the counter (c0) and
the nonce (n0,n1,n2,n3):

0x61707865 0x3320646e 0x79622d32b 0x6b206574

k0 k1 k2 k3
k4 k5 k6 k7
c0 n0 n1 n2

 (2)

The counter thus has 32-bits (1 x 32 bits), and the nonce has
96-bits (3 x 32 bits). ChaCha20 then defines a quarter round
as shown in Algorithm 1.

Result: QR(a,b,c,d)
a = a+ b;
d = d⊕ a;
d = (d) << 16;
c = c+ d;
b = b⊕ c;
b = (b) << 12;
a = a+ b;
d = d⊕ a;
d = (d) << 8;
c = c+ d;
b = b⊕ c;
b = (b) << 7;

Algorithm 1: Quarter round

There are then 20 rounds (10 for column rounds and 10 for
diagonal rounds) as shown by Algorithm 2.

IV. DECRYPTION FRAMEWORK

The decryption framework is comprised of data capture,
analysis, and decrypt components. Each component is modi-
fiable or replaceable so that different devices, target operating
systems, ciphers, and protocols can be addressed. Details of
the component design for ChaCha20 are presented in the
following paragraphs.

Data Collection. Target device network packets and volatile
memory are extracted. Complete SSH and TLS sessions orig-
inating from the target device are captured for later exami-
nation. The indicator for extraction of target volatile is the
client transmission of a protocol message indicating that the
initialization phase is complete. These messages are New Keys

Data: X is created with K, c and n
Result: Z is the resultant key stream.
y ←− X;
for i = 0 to 9 do

(x0, x4, x8, x12)←− QR(x0, x4, x8, x12);
(x5, x9, x13, x1)←− QR(x5, x9, x13, x1);
(x10, x14, x2, x6)←− QR(x10, x14, x2, x6);
(x15, x3, x7, x11)←− QR(x15, x3, x7, x11);
(x0, x5, x10, x15)←− QR(x0, x5, x10, x15);
(x1, x6, x11, x12)←− QR(x1, x6, x11, x12);
(x2, x7, x8, x13)←− QR(x2, x7, x8, x13);
(x3, x4, x9, x14)←− QR(x3, x4, x9, x14);

end
Z ←− X + y

Algorithm 2: Keystream

and Client Finished for SSH and TLS Version 1.2 respectively.
Cryptographic artefacts have then been generated and are
likely to be memory-resident and memory can be extracted
for any outgoing message in the network session.

Memory Analysis. Candidate cryptographic artefacts are
discovered in memory extracts. Initially, the component
searches for the constant string expand 32-byte k to discover
candidate ChaCha20 data structures. Although unlikely for
the string to be present in non-base structures, a second step
assesses whether the 32-byte block after the constant string in
a candidate base structure’s might be a key. Encryption keys
must be unpredictable, i.e. random. Key randomness can be
evaluated using the Shannon entropy definition [30]:

H = −
n∑

i=1

p(i) log2 p(i) (3)

where pi is the normalized frequency of the ith byte in the
message i.e. p(i) = f(i)/n. So, where the entropy of the 32-
byte block exceeds a threshold, a candidate base structure is
identified and the key, nonce and counter are retained.

Decrypt Analysis. Cryptographic artefacts output by the
memory analysis component are input parameters in decrypt
analysis. In each instance, the candidate key and nonce group
is decrypted and verified according to the protocol used. For
SSH, the groups are used to decrypt incoming and outgoing
packet lengths and payloads. The packet length groups are



identified if the decrypted packet length meets Equation (2)
for short packets, typically in the authentication and channel
set-up phases. For larger packets, the decrypted packet length
supports SSH packet reassembly. Decrypts with the remaining
cryptographic groups are analyzed to establish compliance
with SSH protocol specifications. For TLS, decrypts are an-
alyzed to establish compliance with TLS. protocol specifica-
tions.

packet data length =

decrypted packet length +

size(packet lengthfield) +

size(MACfield)

(4)

V. IMPLEMENTATION

The framework is implemented in a virtualized environment
as illustrated in Figure 2 . Implementations on other tech-
nologies which facilitate packet capture and target memory
access should be possible. The Xen hypervisor [31] offers
benefits over alternatives including the presence of LibVMI
[32] and PyVMI [33] libraries providing access to the volatile
memory of live virtual machines. Because of its small trusted
computing base, Xen is managed by a privileged virtual
machine, which runs or initiates the framework components.
The privileged virtual machine also provides the unprivileged
guests with network and disk access.

The data collection component inspects virtual machine
network traffic. Each packet is redirected to a local queue using
an iptables rule and NetFilterQueue 0.8.1 [34], and protocol
fields to determine whether SSH or TLS sessions have been
initiated. Each SSH and TLS packet is written to file. Memory
extraction uses PyVMI, LibVMI, and Volatility libraries [35].

Memory analysis obtains candidate ChaCha20 crypto-
graphic artefacts. Each memory extract file is searched for
the constant string. Although false positives are unlikely,
additionally the entropy of the following 32-byte block is com-
pared with a threshold, experimentally found to be 4.5. If the
threshold is exceeded, a base structure has been identified and
the key, nonce, and counter fields are retained for decryption
as groups.

The decrypt analysis component iterates through the key
and nonce groupings. For SSH, the first four encrypted bytes
in packets are decrypted using the Chacha20poly1305 package
with counter value 0 [36]. For a valid group the first four
bytes represent the packet length and Equation (2) holds. For
ChaCha20, the decrypts with other groups are validated. If the
decrypted padding length obeys Equation (3) as specified in
SSH Transport Layer Protocol [37] the following blocks are
decrypted to evaluate compliance with the SSH authentication
and channel set-up specifications [38][39]. For TLS, the entire
data block is decrypted with cryptographic artefact groups.
Although TLS supports other higher-level protocols such as
SMTP, HTTP-over-TLS is perhaps the most commonly use
and so compliance of the decrypt with the HTTP 1.1 speci-
fication [40] is assessed. Valid decrypts are retained for user

Data: Extracts folder, entropy threshold
Result: Z = candidate artefacts
for extract in folder do

i = 0;
while not extract EOF do

i := locate ‘expand 32-byte k’ in extract;
if i > 0 then

if entropy extract[i+16:i+48] > threshold
then

Z += key, nonce, and counter;
i += 64;

else
i += 16;

end
end

end
end

Algorithm 3: Memory Analysis

inspection.

4 ≤ padding length ≤ 255 (5)

The physical environment for experimentation is a Core 2
Duo Dell personal computer with 40 GB of disk storage and
3 GB of RAM. This hosts the hypervisor, the privileged virtual
machine, an unprivileged Windows virtual machine, and an
unprivileged Ubuntu virtual machine. The hypervisor is Xen
Project 4.4.1 and the hypervisor console is Debian release
3.16.0-4-amd64 Version 1. Tests run on untrusted Windows
client and Linux server virtual machines. The Windows clients
runs the Windows 10 (10.0.16299) operating system with 2 GB
of memory and 40 GB of disk. A Linux virtual machine runs
an Ubuntu 14.04 build (“Trusty”) with 512 MB of allocated
memory and 4 GB of disk storage. The PuTTY suite [41]
is used for SSH client application testing with SSH server
functionality provided by openssh-server. OpenSSL 1.1.0h
provides TLS client and server functionality.

VI. EVALUATION

For SSH evaluation the PuTTY ‘pscp’ program is executed
from the Windows command line using requests of the form:

pscp -P nnnn ’filename’ @ipaddress:/home/name

where nnnn is the target port, ‘filename’ is the file
being transmitted, name is a user account on the target
Ubuntu server, ipaddress is the target server IP address
and /home/name is the Ubuntu server target folder for the
transmitted file. An Ubuntu service is started from the bash
command line to listen to client SSH messages with requests
of the form:

/usr/sbin/sshd -f /root/sshd_config -d -p nnnn



Fig. 2. Virtualized environment framework

where nnnn is the port number the service listens
on and sshd_config contains configuration details.
Here, sshd_config contains the string ‘ciphers chacha20-
poly1305@openssh.com’. Client and server tests execute
OpenSSL from the command line. The OpenSSL server
emulates a web server with:

openssl s_server -accept 443 -cert crt.pem -key key.pem
-WWW

where crt.pem and key.pem are certificate and key files.
The client connects to the OpenSSL server with:

openssl s_client [-cipher CIPHER] -connect a.b.c.d:443

where CIPHER identifies the encryption cipher, key ex-
change and authentication algorithms (here, ECDHE-RSA-
CHACHA20-POLY1305) and a.b.c.d the OpenSSL server IP
address. Client input simulates browser requests, e.g. ‘GET /
HTTP/1.1’, ‘Host: a.b.c.d.’, Accept-Encoding: gzip, deflate’,
Accept: */*.

ChaCha20 base structures were found in 100% of instances.
For the SSH chacha20-poly1305@openssh.com protocol four
base stuctures were discovered in Windows and Linux applica-
tion memory. For OpenSSL, one base structure was discovered
for ECDHE-RSA-CHACHA20-POLY1305 as shown in the
highlighted section of Figures 3 and 4 respectively. These
discoveries leads to key stream generation and the rapid
decryption of complete SSH sessions including server user
credentials, file names and uploaded file contents between
150 bytes and 1 MB as well as the decryption of outgoing
client TLS traffic. Differences between SSH and TLS relates to
their implementations. PuTTY/OpenSSH structures are heap-
resident so memory extracts for successful decryption may not
be linked to client SSH message transmission. By contrast,
OpenSSL structures are stack-resident and may therefore be
overwritten. This limitation prevents Linux server successful
searches for the constant string although high-entropy regions
identify candidate encryption keys. Consequently, full SSH
sessions are decryptable whereas only outgoing TLS sessions
are currently decryptable when applying the algorithms. A

SSH decrypt is illustrated in Figure 5 and example output
from the analysis stages is presented in Figure 6.

Memory and decrypt analysis components decrypt rapidly.
The memory analysis durations are less than 0.5 (SSH) and
0.1 (TLS) seconds as shown in Table I. As single extract
analysis requires a maximum 0.018 seconds, parallel process-
ing memory extract analysis offers significant performance
opportunities. Although memory analysis is independent of
file size, decrypt analysis durations are proportionate to the
volume of encrypted traffic.

TABLE I
MEMORY ANALYSIS DURATIONS

SSH TLS
Maximum 0.407 0.027
Minimum 0.007 0.011

Mean 0.144 0.021
Standard Deviation 0.153 0.006

VII. COUNTERMEASURES

Fortunately, countermeasures to discovering the ChaCha20
basic structures exist, and hiding the constant string makes
discovery more challenging. Possible measures are copying
the constant string segments to registers and assembling the
structure in the encryption routine, encrypting the constant
string, or randomly segmenting the constant string. Perhaps,
the most effective approach is assembling the base structure
on the stack, as for OpenSSL, and clearing stack contents
immediately after the encryption process. The cryptographic
artefacts can still be discovered by searching for high-entropy
measures but the process is comparatively slower with dura-
tions exceeding 4 minutes.

VIII. CONCLUSIONS

Implementations of ChaCha20-Poly1305 encryption using
commonly used applications and libraries for SSH and TLS
communications are vulnerable to decrypt analysis on a single
memory extract. As memory analysis identifies cryptographic
artefacts with 100% success, the artefacts could be retained
with network sessions for later decryption. This may ben-
efit entities, such as cloud vendors, to assist state agencies



Fig. 3. SSH Base Structures in Memory

Fig. 4. TLS Base Structure in Memory

Fig. 5. SSH Client Decrypt Example

in decrypting criminals’ communications, without conflicting
with local privacy laws. To achieve this aim, future work
should focus on performance improvements such as multi-
threading and pipe-lining, as well as investigating other pro-
tocols, encryption ciphers and modes, and technologies that
uses encrypted communications channels.
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