
International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

DOI : 10.5121/ijcsit.2010.2502 12

ONTOLOGY-BASED QUALITY ATTRIBUTES

PREDICTION IN COMPONENT-BASED

DEVELOPMENT

Chengpu Li
1
, Rob Pooley

2
 and Xiaodong Liu

1

1
School of Computing, Edinburgh Napier University, Edinburgh, UK

{c.li, x.liu}@napier.ac.uk
2
School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh,

UK
r.j.pooley@hw.ac.uk

ABSTRACT

Despite the success that Component-Based Development (CBD) has achieved so far, component

mismatch remains as a big obstacle for wider and smoother component reuse. Mismatch refers that the

selected component does not satisfy the functional requirements, or that it fails the user’s expectation in

terms of the Quality Attributes (QAs) of the component-based system. This allows us the potential to

predict the quality attributes of a software system by analysing the result of component retrieval. In this

paper, applicable quality attributes for prediction are selected by investigating existing software quality

attributes. A novel ontology-based approach was proposed to achieve precise component retrieval and

quality attribute prediction. The approach contains three steps: the first is to develop a Quality Attributes

Oriented Component Specification ontology model (QAOCS), where applicable QAs related knowledge of

application domains were integrated into the ontology. The second is to establish an ontology-based QAs

oriented component retrieval method to retrieve components according to the reuse requirements. The

third is to predict the quality attributes of component-based system on the basis of the matching

information. Based on these three steps, a prototype tool with an example component repository was built

to verify and scale up the approach.

KEYWORDS

System Quality Attributes, Quality Attributes Prediction, Component-based Development, ontology.

1. INTRODUCTION

Component-Based Development (CBD) is an approach to developing a software system by

assembling and composing already built software components. Numerous advantages of

component-based development have been identified such as shortened development life cycle

[7], reduced time-to-market [17][21], and reduced development costs [7][21]. However,

component-based development has still not reached its full potential due to a few major hurdles.

One of the problems is that CBD focused on the functional aspects of software and omitted the

specification and evaluation of Quality Attributes (QA). Attention to quality attributes are

usually exercised until the time of integration or testing phases. This results in enormous

redesign efforts to fine-tune the software or hardware to meet the quality requirements.

Till now, there have been several approaches available to support reasoning about system

quality attributes from component properties [18][8]. They can be employed to support the

prediction by building or extending a component model. However, it is not viable in practice if

an approach requires huge investment of human and financial resources to accomplish the

necessary technical support. Further more, there is no widely accepted method to verify the

measurement of the result of prediction. In fact, when the capacity of a component repository is

large enough, there will be many functionally similar components available for selection to

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

13

satisfy the requirements (functional and non-functional) of an application. Meanwhile, these

functionally similar components have their individual varieties of QAs. There is one proven

theory: “the better the found components match the users requirements, the higher quality of

system composed by these components can be achieved” [9][10]. From this point of view, by

analyzing the retrieval of these components, we can source out the most suitable components for

CBD, which may satisfy the user’s requirements not only in functions but also in QAs. That is,

we can predict the quality attributes of a software system by analyzing the result of component

retrieval.

To achieve the above objectives, the following four research questions should be considered:

1. In accordance with system quality attributes prediction, which classification of QAs is more

accurate? With the classification being defined, which system quality attributes are more likely

to be predicted from the component quality attributes?

2. For the most suitable QAs, which factors could be used to determine their levels? And how to

use the related factors?

3. Which methods can improve the search precision of the component retrieval, in order to

support the system QAs prediction?

4. If a prediction is achieved, how can we verify its validity?

To answer the first question, this paper will compare the existing methods of QA classification,

so as to establish a viable method of QA prediction, with which the suitable QAs will be

selected according to the four criteria. The details are presented in Section 2.

To answer the second question, a Quality Attribute Oriented Component Specification ontology

model is developed to describe the determined factors of QAs. And this ontology will be used to

decide the level of the QAs in the proposed ontology-based component retrieval method. As a

possible answer, Section 3 proposes a framework to define the process in general. And the

Chapter 4 introduces the QAOCS ontology and its construction method.

To answer the third question, Section 5 presents the quality attributes oriented component

retrieval method and how this method supports the system QA prediction.

For the last question, a case study is given to illustrate how the prediction of QAs is achieved.

And then a questionnaire and an empirical method are used for the validation. The details are

shown in Section 6 and 7.

With the foregoing questions answered, conclusion and further work are mentioned in Section 8.

2. ANALYSIS OF QUALITY ATTRIBUTES

A system has quality attributes that emerge from the combination of its parts. The qualities are

properties or characteristics of the system that its stakeholders care about and hence will affect

their degree of satisfaction with the system [1][2][26]. The quality of a software system can be

assessed by a number of quality attributes. Many of these QAs are considered to be systemic,

i.e., they are applicable to the entire software system or they are spanning across parts of it.

What constitutes the importance of quality attributes is dependent on the stakeholder set

perspective. For instance, while an end-user may desire performance and usability, the

development management may want a high degree of maintainability and reusability.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

14

A great number of quality attributes are encountered in software engineering. They are

classified in many different ways, frequently in a non-orthogonal manner. The first example of

classification [15] is related to the system lifecycle: run-time properties (visible and measurable

during the program execution) and lifecycle properties (those that characterize different phases

in a development and maintenance process). The second example is the quality model defined in

ISO/EIC 9126-1 “Software engineering product quality” standard [16], which classifies quality

attributes as external and internal. Quality attributes that refer to the internal quality are

typically applied to intermediate deliverables at certain development stages (e.g. attributes of a

design specification, source code, etc.). Internal therefore has the connotation of “development

internal view”. The relation between internal and external quality attributes is not unambiguous

though; an internal quality attribute may have impact on different external quality attributes and

of course an external quality attribute is a result of combination of internal attributes. The third

one [6] is related to composability. The attributes are classified according to the principles

applied in deriving the system attributes from the attributes of the components involved. They

distinguish the following types of attributes: i) Directly composable attributes, which is a

function of, and only of, the same type of attribute of the components involved; ii) Architecture-

related attributes, which is a function of the same type of attribute of the components and of the

software architecture; iii) Derived attributes, which depends on several different attributes of the

components; iv) Usage-depended attributes, which is determined by its usage profile; v) System

environment context attributes, which is determined by other attributes and by the state of the

system environment.

The above existing quality attributes classifications are not helpful for the quality attributes

prediction on the basis of users satisfactions of the component retrieval results. The satisfactions

here are decided by the searching precision between of users’ QA requirements and the result

components. So we proposed a classification method base on functional and non-functional

requirements [2][9]. This classification helps identify whether a requirement will affect the

functionality of the system (functional) or whether it will constrain the system (non-functional).

It is probably the most beneficial in that it helps define what system functions are being

considered. It is known that the definition of quality attributes is put forward as in [2]: the

quality attributes are often called properties or non-functional or extra-functional attributes

because they describe something about the quality of the component and not explicitly about the

component functionality.

It means that functionality cannot be identified as a quality attributes. Nevertheless, we consider

functionality as one special sort of QAs in this paper and refer it as the Functional Attributes.

Other QAs are thus referred to as Non-functional Attributes. Such arrangement is necessary due

to the fact that the systems QAs are predicted in the proposed approach via analyzing the results

of component retrieval. While the functional requirements are at the core of the user’s

requirements, it would not be valid to satisfy the non-functional requirements only without due

consideration to the functional requirements in the search.

Functional attributes describe all kinds of functions performed by a component-based system.

They are related to functional requirements provided by the user. The functional attribute refers

to functionality, which is the capability of the software product to provide functions which meet

stated and implied needs when the software is used under specified conditions.

Non-functional attributes are affected by the non-functional users requirements. It is usually

some form of constraint or restriction that must be considered when designing the component-

based system. The non-functional attributes of systems have several sub attributes including

security, availability, portability, maintainability, integratability, performance, reliability,

usability and cost. The definition of each attributes is as follows [15][16]:

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

15

Availability

Definition: the measure of time that the system is up and running correctly; the length of time

between failures and the length of time needed to resume operation after a failure.

Portability

Definition: the ability of a system to run under different computing environments. The

environment types can be either hardware or software, but is usually a combination of the two.

Maintainability

Definition: the capability of the software product to be modified. Modifications may include

corrections, improvements or adaptations of the software to changes in the environment and in

the requirements and functional specifications (the effort needed to be modified)

Integratability

Definition: the ability to make the separately developed components of the system work

correctly together.

Performance

Definition: the response time, utilization, and throughput behaviour of the system. Not to be

confused with human performance or system delivery time.

Reliability

Definition: the continuity for correct service.

Usability

Definition: the ease of use and of training the end users of the system.

Some of above quality attributes can not be predicted during the component retrieval process in

accordance with the following reasons [18]: Some quality attributes could not be derived

directly from the component properties and might require a complex model, related to the

component model and the system architecture; Some quality attributes do not exist at the

component level and might be the result of a complex combination of the system interaction

with its environment, system architecture and component model. In our research, we focus on

functionality, availability, portability, maintainability and integratability, which comply with the

above criteria.

3. PROJECT FRAMEWORK

After identifying the suitable quality attributes, a Quality Attribute Oriented Component

Specification ontology model (QAOCS) is built first to describe the factors, which affect the

value of QAs. The QAOCS supports quality attributes prediction by improving the precision of

component retrieval. And then an algorithm is set up to calculate the precision between the users

QA requirements (functional and non functional) and search result. The precision will be further

used as the basic data to predict the component-based system quality attributes. To address the

whole approach, a project framework is established as shown in figure 1. The framework

consists of four key parts, namely query requirement collection, component ontology

construction, component retrieval and system quality attribute prediction.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

16

Figure 1. A framework for ontology-based component specification and selection

3.1 Query Requirement Collection

To retrieve a component with the ontology-based approach for the prediction, the first step is to

collect the QAs requirement correctly and then to represent it with the ontology semantics. This

task can be accomplished in two steps: initial query generation and QAs oriented query

refinement.

Initial Query Generation:

The user specifies the requirements for the necessary components in a natural language which

employs imperative or nominal sentences. A heuristic-based approach [5] will be used to

identify keywords and concepts expressed by the user and to generate an initial query.

Subsequently related terms (synonyms) of the keywords and concepts are also identified for

query expansion.

QAs oriented Query Refinement:

The keywords and concepts identified in the previous step are mapped against the QAOCS

ontology model to ensure that correct terms (keywords and concepts) for each QAs are used in

the query. And then all the terms involved will be expressed in OWL, which is favoured here in

terms of its capacity in the description of semantics. In this query refinement step, query

requirements in natural languages are translated into OWL format without misunderstanding

finally.

3.2 Ontology Model Construction

The Quality Attribute Oriented Component Specification ontology model (QAOCS) has a key

role in the approach. It is the computer-recognisable ontological representation of the semantics

of component specification. The QAOCS is developed on the basis of CBSE knowledge and

application domain knowledge. It is managed by the ontology evolution mechanism.

A component repository will be built based on the QAOCS. Available components were

specified according to QAOCS and populate the repository. The QAOCS and component

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

17

specification were defined in an extended version of OWL. A component specification creation

mechanism has been developed to facilitate the specification process.

3.3 Component Retrieval

Having the above two phases in place, the component retrieval is thus regarded as the matching

between the user QAs oriented query and the ontological component specification. Both of

these two parts are described in the OWL. The matching was identified automatically. The

retrieval engine returns detailed search results, including not only the matching components but

also their precision. The precision gauges the level of relevance of the found components with a

precision calculation algorithm which is described in following section.

3.4 System Quality Attributes Prediction

The precision obtained in the component retrieval part will be used as basic data to predict the

system quality attributes. As we mentioned in section 2, the quality attributes we refer to are

functionality, availability, portability, maintainability and integratability. In this part, the search

result components and their precision will be transformed to the degree of every quality attribute

by the quality attributes prediction algorithm.

Query requirement collection, ontology model construction, component retrieval and system

quality attributes prediction are four main parts of this project. The query requirement collection

part is based on the Natural Language Processing and Artificial Intelligence areas, so it is not

the focus of this project. In this research, we paid more attentions to QAOCS, precision

calculation algorithm and quality attribute prediction algorithm. The details of these three parts

will be introduced in the following sections.

4. QUALITY ATTRIBUTE ORIENTED COMPONENT SPECIFICATION

ONTOLOGY MODEL

The Quality Attribute Oriented Component Specification ontology model (QAOCS) is a

component specification ontology, which is used to represent the component specification

related to system quality attributes functionality, availability, portability, maintainability and

integratability. It is built especially for component retrieval and quality attributes prediction.

The QAOCS is the core of this approach, and is developed on the basis of CBSE knowledge and

application domain knowledge. The range of its classes is depending on the content of

components located in the repository. The QAOCS is the foundation of ontology-based

component retrieval and the subsequently quality attribute prediction.

QAOCS has tree type architecture of the following three aspects, the function aspect, the basic

specification aspect and the environment aspect. Each of them can be seen as a sub-ontology to

describe one aspect of the component specification. The function aspect corresponds to quality

attributes functionality, the basic specification aspect refers to availability and integratability,

and the environment aspect refers to attributes portability. Among these three aspects, some

adaptive information is covered, which is used to predict the attributes maintainability. The

three sub ontologies are built following the Component Description Schema. In the following

sections, we introduce the Component Description Schema first, and then we talk about how to

build each aspect of QAOCS on the basis of the component specification taxonomy schema.

4.1 Component Specification Taxonomy Schema

Here we present the common content of a component specification in the format of three

schemas, as shown in Figure 2. Each schema is related to one quality attribute. The schema

illustrates the abstraction hierarchy of component specifications which affects the attribute.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

18

Clearly the schema is not an ontology and the semantics of its content are not recognisable by a

computer. However it shows what information a component specification should cover; hence it

provides input to the development of the more advanced QAOCS.

The functionality taxonomy includes the function of the component and its application domain.

It can be further classified into specific component functions as shown in figure 2 a). It can

serve as an effective way of searching for an appropriate component. The classification of a

component may include graph, communication, mathematics, database, UI, system, driver,

adapter, container, business logic, agent procedure, collaborate, and word process, etc.

Availability refers to the only attribute component evaluation. The component evaluation is

provided by the component vender, from the company test and previous user feedback.

Portability is affected in connection with the software implementation environment. It could be

further classified into more specific categories such as operating system, compiler, database,

and others (figure 2 b)).

Maintainability is related to component adaptation information. Component adaptation is a

popular means to alter the functionality and quality features of selected components [3][4].

Some components, whose function and QoS may vary via the application of adaptation. So the

information of adaptation assets can be used to judged the maintainability of composed system.

Integratability refers to the information of the component type and component model.

Component type contains deployed form and builds technology, as shown in figure 2 c).

Deployed form is also an important attribute of a reusable component. It could be used to

represent the deployed form of a component. The forms are listed as follows: DLL, EXE, source

code, graph and so on. Build technology refers to the technology, such as COM/DCOM,

ActiveX, .NET, VCL/CLX, Java bean, EJB, CORBA, etc., which is used to build the

component.

4.2 The Translation of Component Specification Schema to QAOCS

This translation has two steps: First, we put the top level attributes related to the five quality

attributes as classes, and then their sub-attributes, sub-sub-attributes, and so forth. Second step,

for these classes and their sub classes, we connect classes with isA relationships.

In order to support the search engine to search the more suitable components, some basic

information of component specifications should to add into QAOCS, such as component name,

component version, component vender and hardware and software requirements. However, if

we build a large ontology to cover all relevant information, it has drawbacks, since it is

monolithic, which incurs too many complications in the ontological component specification

and makes it difficult to understand and use. It is also very difficult to update and manage. We

therefore divide this comprehensive component ontology into three aspects.

4.3 QAOCS Sub-aspects

QAOCS is a component specification ontology for the quality attributes prediction. Its primary

action is to describe all the attributes of a component which are related with selected system

quality attributes. In addition, other component specifications which are useful for the

component search are also covered. It has three aspect including basic specification aspect,

environment aspect and function aspect.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

19

Figure 2: Component Specification Schema

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

20

4.3.1 Basic Specification Aspect

Basic specification aspect describes the basic information of a component and its related

adaptation information, such as its name, version, vender, type and so on. The classes of this

model are shown in figure 3 a). The classes, its subclasses, sub-subclasses and so forth as

viewed are edited in the ontology tool Protégé. The basic specification aspect is used to predict

the attribute availability, integratability and parts of maintainability.

4.3.2 Environment Aspect

Environment aspect is used to represent the reuse context information of the components and its

related adaptation information, including but not limited to the application environment,

hardware and software platform, required resources and dependency on other components, if

any. Figure 3 b) shows the top level classes of this model, its subclasses, sub-subclasses and so

forth, again using the ontology tool Protégé. The information included in the environment

aspect is applied to attribute portability, integratability and parts of maintainability.

4.3.3 Function Aspect

Function aspect refers to the functionality and its related adaptation information. It presents

component function technology and relevant information. The classes of this model are shown

in c) of figure 3. We should note that the class Function AppDomain is used to connect the other

domain ontology to QAOCS.

 a) b) c)

Figure 3: Sub levels classes of the three aspects in QAOCS

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

21

4.4 OWL Format

As mentioned above, we use OWL [12] to record all ontology information for ontology-based

component search, and protégé is used to edit QAOCS. Protégé is being developed at Stanford

University in collaboration with the University of Manchester. It is a free, open source ontology

editor and a knowledge acquisition system. Like Eclipse, Protégé is a framework for which

various other projects suggest plugins. This application is written in Java and heavily uses

Swing to create the rather complex user interface. Protégé recently has over 100,000 registered

users.

Our specification in three sub-aspects of QAOCS is translated to OWL, and the QAOCS

information is stored as OWL documents. The following section is an example to show one part

of component type attributes, their subclasses and instances in OWL format.

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns="http://www.owl-ontologies.com/Ontology1230334782.owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1230334782.owl">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="Java">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="ByType"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Component"/>

 <owl:Class rdf:ID="JavaClass">

 <rdfs:subClassOf rdf:resource="#Java"/>

 </owl:Class>

 <owl:Class rdf:about="#ByType">

 <rdfs:subClassOf rdf:resource="#Component"/>

 </owl:Class>

 <JavaClass rdf:ID="CryptoXpress_SDK"/>

 <JavaClass rdf:ID="pinUpload"/>

 <JavaClass rdf:ID="DEXTUploadJ"/>

 <JavaClass rdf:ID="CryptoXpress_CF"/>

 <JavaClass rdf:ID="CryptoXpress_LT"/>

</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.3.1, Build 430) http://protege.stanford.edu -->

5. QUALITY ATTRIBUTES PREDICTION METHOD

The prediction method estimates the QAs of composed system by analyzing the matching result

of factors that impact on the component QAs. Different from the exiting system QAs prediction

methods, our approach can improve the composed system QAs by selecting the more suitable

components. From this point of the view, the QAs of the composed system can be mapped by

calculating the precision between QAs oriented requirements and result components.

As mentioned in the section 3, the QAOCS model supports both the QAs oriented requirements

refinement and component registration. It builds a bridge between the user requirements and the

components in the repository. Based on QAOCS, a search precision calculation method is

developed by counting the search paths of the result components. Subsequently the search

precision will be further decomposed as the value of each QA.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

22

As the foundation of the search precision calculation method, in each aspect of QAOCS, we

give every class a weight on the basis of component-based software engineering knowledge and

user feedback. The class weight assignment algorithm are defined in our foregoing ontology-

based component search project [19][20]. The rules of weight assignment are:

(1) In one aspect, the lower the layer is, the heavier the class weight;

(2) In different aspects, the same layer function aspect class is heavier than basic specification

aspect class and then environment aspect class.

To summarise, Let N represent the occurring times of the keywords in a facet, the subscript f, b,

e indicate which facet is related, namely function, basic Specification and environment. the

weight assignment rules are defined with the following formulae:

Weight of function aspect class (Wfc):

Wfc= (1+
f

f b e

N

N N N+ +

)n (n is the level of the layer in which the class is located)

Weight of basic specification aspect class (Wbc):

Wbc= (1+ b

f b e

N

N N N+ +

)
n
 (n is the level of the layer in which the class is located)

Weight of environment aspect class (Wec):

Wec= (1+ e

f b e

N

N N N+ +

)
n
 (n is the level of the layer in which the class is located)

When a user inputs requirements by groups of keywords, the keywords are searched one by one

in the QAOCS model. Meanwhile, the search path of each keyword is recorded from result class

to top class. And then the weight of the search path is calculated by summing up every class

weight in this path. The component related to the result class will be indentified as the result

component. If a result component has n paths connect to QAs requirements, the precision will

be total weight of the n paths.

The search precision of each result component is further decomposed to the values of five QAs,

including functionality, availability, portability, maintainability and integratability. The

prediction rate of functionality is the sum of precision of the search paths which are obtained by

matching with the functionality related classes in the function aspect. The method to calculate

prediction rate of portability, integratability and maintainability are the same as the way to

functionality. The only difference is portability and integratability related class are located in the

different aspects, and maintainability is determined by the classes “adaptation information” all

over the three aspects. The method to predict rate of availability is different from other QAs. It

is calculated on the basis of the class “component evaluation” in the basic specification aspect.

All the components populated in the repository have a specification which contains the

component evaluation. The component evaluation is provided by the component vender, from

the company test and previous user feedback. The component evaluation is a specific value

which indicates the predicted rate of the availability directly.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

23

6. CASE STUDY

A quality attributes oriented component search prototype tool with an example component

repository has been developed, as a means of automating the proposed approach. To evaluate

both the approach and the prototype tool, a case study of quality attributes prediction has been

done with a number of use scenarios of component search.

6.1 The Prototype Tool

In QAOCS prototype tool, the QAOCS ontology model is translated into OWL format. The

information of the functional aspect, the basic specification aspect and the environment aspect

was stored in three different files. And each class from top to bottom in these three aspects is

given a weight for calculating search precision. Two hundred components (actually component

specifications) are selected from open source component libraries, e.g., Componentsources,

Componentplanet and Allfreeware, and are used to populate a corresponding repository.

The prototype tool has a sample user interface as shown in figure 4. On the top left, it’s a text

area for the user to fill in search keywords. On the bottom left, these is a column of option

buttons, it lists the available five quality attributes, which can be predicted during the search. If

user would like one or more QAs to predict, just selects the appropriate option before the search.

Otherwise the tool will reason about all the QAs for each result component. On the right hand

side of the UI is a black panel for showing the search results.

Figure 4: UI of the prototype tool

6.2 Case study

To facilitate users exemplify the prototype tool, several search scenarios with corresponding

search results are offered. Here we take a scenario of developing an encrypted file transfer

systems with user-friendly interface to illustrate how the tool works for predicting and

comparing the QAs of result component.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

24

Table 1 Keywords of the search

Keywords Type: Keywords:

Function File Transfer, encryption

Component Platform Windows XP, Windows Vista

Component Container Visual Basic2005 , JBuilder

After the user query refinement, the scenario is specified as requirements in table 1. User fills in

the keywords into the text area and leave the quality attributes option button blank for receiving

all the QAs information. The components relevant to the matched classes are identified as the

result components for the search, and the precision for each result component is calculated on

the basis of their searched paths. And then the precision are separated into the values of each

quality attributes. Take functionality as an example, two functionality related search path are

obtained by searching the keywords “File Transfer” and “Encryption”. Meanwhile, five

components are found from the repository (as shown in figure 4). For the component

“DEXTUploadJ” and “pinUpload”, they match with all the functionality related keywords, their

prediction value of functionality is the sum of path weight “File Transfer” and “Encryption”.

For the others result components, they only match with one of them. So the prediction value of

functionality is the weight of the matched path. The way to calculate others QAs are same as the

functionality. Finally, the search results list on the black panel from the precision values high to

low as shown in figure 4. When a certain QA option button are selected, the result component

has the highest value of this QA will be list on the top.

7. VALIDATION

Two methods are used to test the validity of the approach, statistic testing and application

testing. The statistic testing is intended for more users to use prototype tool and traditional key

words search tool to search component in the process of CBD, respectively. Users can opt for

the scenarios either provided by us or established by their own for their testing, and compare the

result components to experience the facility of the QAs information made available in our new

approach in the later component composition. The application testing is intended to test its

functionality and practicability in the actual applications of software companies, on basis of

future cooperation with a few software companies.

7.1 Statistic Testing

The following testing procedures are recommended: i) to understand the component

specifications from its introduction; ii) to select a scenario from the given list or to set up a

scenario from scratch; iii) to search with the SQL database search tool (traditional approach)

and record the results (R1); iv) to search with the QAOCS prototype tool according to the same

requirements and return another set of results (R2), including their relevant five quality

attributes; v) Comparing R1with R2; vi) to fill in the given a questionnaire with comments.

The last two procedures are crucial for the testing. The comparison between R1 and R2 made it

clear that R1 is obtained through the matching of keywords and result components in syntax,

which results in low search precision and gives no consideration to the impact of the result

component on the QAs of composed system. Software developers can only make the selection

on basis of their experiences in the specifications of result components. When the samples of

result component become larger and larger, time used for selection will increase substantially as

well as the probability of error. On the contrary, R2 is achieved through the matching of

keywords and result components in semantics, which helps avoid the mismatch in the search

process and satisfy the QAs requirements. Software developer could easily identify the required

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

25

components in accordance with the sequential order of the QAs from high to low. A better

precision and high effectiveness are thus in place.

The questionnaire is also very important as it helps us gain further understanding of the users in

terms of their professional background, their satisfaction with the result components and the

attributes prediction rate provided by the QAOCS search tool, their opinion in whether our

precision index indicated the similarity between your query and the result components, their

satisfaction with the functionality, availability, portability, maintainability and integratability

provided by the QAOCS search tool, and their input in uncovered areas. All these will provide

more evidence on the validity of our approach and give the chance for further improvement.

So far, 30 users tested the tool in practice. The values of prediction for the five quality attributes

are shown in the figure 5. It can be seen that the maintainability achieved the best satisfaction,

because its accuracy is just related to one class adaptation information in the QAOCS, which is

normally clearly specified in the component specification. The functionality, portability, and

integratability also are considered as highly satisfactory, because they are related to more

classes in the ontology. While more information is available, more accurate the quality

attributes are predicted. The availability has the lowest satisfaction due to the least information

of the component evaluation.

The assessment of search performance had been done in the foregoing project [20], as shown in

figure 6. The results were assessed according the criteria of Recall (R) and Precision (P).

02040
6080100

functionality availability portability maintainability integratability

Figure 5. The degree of satisfaction of quality attributes prediction

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

26

0%20%40%60%80%100%
R P

Tr andi t i onalAppr oachesQAOCS basedAppr oach

Figure 6. The level of satisfaction of QAOCS prototype tool and traditional search tools

7.2 Application Testing

To test the approach in the application environment, we cooperated with UFIDA Software Co.,

Ltd [13] in its application of T6 Small and Medium Enterprises (SMEs) Management Software

for Opening clothing Co., Ltd [14]. UFIDA is a major provider of management software

solutions and e-business services and its T6 SMEs is developed in CBD. The main features of

T6 SMEs comprise Production Management (Production Data, Material Requirements Planning

Management, MRP, Manufacturing Orders and Progress Management), Supply Chain

Management (Sales Management, Purchasing Management, Outsourcing Management,

Inventory Management, Inventory Accounting, Financial Management) and Account

Management (Receivables Management, Payables Management, Cost Management).

In the process of integrating T6 with existing software of the clothing company, an incompatible

problem occurred due to different development platforms. As some components (PM java

edition and OM java edition) in the T6 are of low level portability and integratability, the

current integration and later update will require the recoding of relevant components. In fact,

there are some components with high portability and integratability available in the repository

of UFIDA, which can implement both in java platform and .NET platform. However without

due consideration the keyword search method did not identify the components of better

precision and more clear description, the high level QAs component PM+ and OM+ were not

selected. With our ontology-based QAs oriented approach, software developers can get access

to the components of higher portability and integratability with least efforts. This example

evidenced the viability and effectiveness of our approach in the application environment, though

it needs time to construct the QAOCS and to register components.

8. RELATED WORK

This chapter introduces selected related work to the QAOCS project. In the area of QAs

prediction in CBD, the research involves three main issues, which include available QAs

selection, prediction mechanism and validation method. In the existing projects, PECT and

Eskenazi are systematic, involving all the three issues. The PECT project was conducted by SEI,

which focus on investigating predictable assembly from certifiable components [18]. This

project first analyzes the possibility to develop component technologies that provide prediction

mechanisms for quality attributes of assemblies, given quality attributes of the components. And

then, a method was built that can be used to build prediction enabled component technologies

and its corresponding validation procedure. Difference with PECT, Eskenazi’s [8] project refers

to software architects, which can be utilized to estimate the certain QAs. Furthermore, it

provides software architects with practical and feasible approaches to be applied in an industrial

context.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

27

In addition, several representative work just focus on one or two above issues. Schmidt’s project

[22] analyzes the possibility of using component technologies to build or support prediction.

Shepard [25] proposes a model to provide software system QAs estimates from the QAs of

software components and their usage profiles. Wohlin [29] develops component models as well,

and his work further targets how the models certify software components. These projects test

functionality of models when building a certification framework for prediction theories or

prediction enabled component technologies.

Currently, most work focus on certain specific attributes prediction. Reliability is addressed in

[22][23][24], which use parameterized contractual specifications on the basis of state machines.

An e-commerce example is taken to verify the effect and an experiments report is used to record

the result. Other research of reliability prediction in CBD includes Stafford and McGregor’s

project [27]. This work targets on investigating how to use the software reliability theories to

component based software. Scalability and performance prediction for component-based

systems is addressed in [30], where several COTS middleware products are conducted as the

object by an empirical method. This research presents scalability metrics depending on the

performance of the system. The prediction of Memory consumption and the suitability are

presented by using the Koala component model [28]. The Koala is used to experiment with

prediction of the memory demand from component compositions. Static memory evaluation

techniques are used and a method is proposed that allows estimating the memory consumption.

9. CONCLUSIONS AND FURTHER DIRECTIONS

The objectives of the approach are to develop an ontology-based approach to predict quality

attributes for CBD by analyzing precision of component retrieval. At the same time, it

eliminates the component mismatch problem via ontology-based retrieval. The approach has its

unique contribution to the current art of state of quality attributes prediction in the following

parts: i) an ontology-based framework for QA oriented component specification and prediction

are proposed; ii) a Quality Attribute Oriented Component Specification Ontology Model

(QAOCS) are built for describing the factors that impact on the QAs; iii) a system quality

attributes prediction method was provided to calculate the value of the functionality, portability,

availability, maintainability and integratibility by composing the search precision. iv) an

empirical method is used for the approach validation.

As the discussions above, it is concluded that the approach has good effect on attributes

prediction and component search. The resulting tool implements the approach and is consistent

with the approach. Some possible extensions will be explored of the present work in the future:

1) on the basis of testing results and users feedback, the weight assignment will be refined to get

closer to practical applications and achieve wider accepted. ii) The retrieval algorithm will be

optimized to response the refinement both in QAOCS and precision calculate method. iii) An

intensive system quality attributes research and test will be carried out. More available and strict

quality attributes will be added to the approach.

ACKNOWLEDGEMENTS

I am heartily thankful to my supervisors, Prof. Rob Pooley and Dr. Xiaodong Liu, whose

encouragement, guidance and support enabled me to finish the project and write up this paper.

REFERENCES

[1] Alvaro, A., Almeida, S. and Meira, L. (2005) “Component Quality Information Provided by

Software Component Markets and a Brazilian Software Factory”, Submitted to the 5th International

Conference on Quality Software (QSIC).

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

28

[2] Bertoa, M and Vallecillo, A. (2002) “Quality Attributes for COTS Components”, In the Proceedings

of the 6th International ECOOP Workshop on Quantitative Approaches in Object-Oriented Software

Engineering (QAOOSE).

[3] Bosch, J. (1999) “Superimposition: A Component Adaptation Technique”, Information and

Software Technology, Vol.41 (5).

[4] Bracciali, A., Brogi, A. and Canal, C. (2005) “A formal approach to component adaptation”, Journal

of Systems and Software, Vol 74, Iss 1, pp(s): 45-54.

[5] Ceria, S., Nobili, P. and Sassano, A. (2005) “A Lagrangian-based heuristic for large-scale set

covering problems”, Mathematical Programming Vol 81, No 2.

[6] Crnkovic, I., larsson, M. and Preiss, O (2005) “Concerning Predictability in Dependable

Component-Based Systems: Classification of Quality attributes”, Architecting dependable systems

III, LNCS 3549, pp. 257-278.

[7] Due, R. (2000) “The Economics of Component-Based Development”, Information Systems

Management, Vol. 17, No. 1, pp. 92-95.

[8] Eskenazi, E. and Fioukov, A. (2004) “Quantitative prediction of quality attributes for component

based software architectures”, doctoral thesis, Technische Universititeit Eindhoven.

[9] Goulao, M. and Brito, F. (2002) “The Quest for Software Components Quality”, In the Proceedings

of the 26th IEEE Annual International Computer Software and Applications Conference

(COMPSAC), England, pp. 313-318.

[10] Heineman, G. and Councill, W. (2001) “Component-Based Software Engineering”, Addison-Wesley.

[11] http://www.softwarearchitectures.com/go/Discipline/DesigningArchitecture/QualityAttributes/tabid

64/default.aspx. SoftwareArchitectures.com.

[12] http://en.wikipedia.org/wiki/Web Ontology Language

[13] http://www.ufida.com/

[14] http://www.ouwang.com/

[15] ISO 9126 http://en.wikipedia.org/wiki/ISO_9126

[16] ISO/IEC, “Software engineering – Product quality – Part 1: Quality model”,ISO/IEC, International

Standerd 9126-1:2001

[17] Kim, Y. and Stohr, E.A. (1998) “Software Reuse: Survey and Research Directions”, Journal of

Management Information Systems, Vol. 14, No. 4, pp. 113-147.

[18] Larsson, M. (2004) “Predicting Quality Attributes in Component-based Software Systems”, PhD

Thesis, Mälardalen University.

[19] Li, C., Liu, X.and Kennedy, J. (2010) “Achieve Semantic-based Precise Component Selection via an

Ontology Model Interlinking Application Domain and MVICS”, In Proceedings of the 22nd

International Conference on Software Engineering and Knowledge Engineering (SEKE'10).

[20] Li, C., Liu, X.and Kennedy, J. (2009) “A Multiple Viewed Interrelated Ontology Model for Holistic

Component Specification and Retrieval” In Springer-Verlag's LNCS, pp. 50-69.

[21] Patrizio, A. (2000) “The new developer portals”, Information week, No. 799, Aug 14, pp. 81-86.

[22] Reussner, R.H., Schmidt, H. and Poernomo, I. H. (2003) “Reliability Prediction for Component-

based Software Architectures”, In Journal of Systems & Software, Vol 66, Iss 3, pp. 241-252.

[23] Schmidt, H. (2003) “Trustworthy components: compositionality and prediction”, In Journal of

Systems & Software, Vol 65, Iss 3, pp. 215-225.

[24] Schmidt, H. and Reussner, R. H. (2001) “Parametrized Comtracts and Adapter Synthesis”, In

Proceedings of 5th ICSE workshop on CBSE.

[25] Shepard, T. and Dolbec, J. (1995) “A component based reliability model”, In Proceedings of

Conference of the centre for advanced studies on collaborative research (CASCON), ACM.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

29

[26] Simao, S. and Belchior, A. (2003) “Quality Characteristics for Software Components: Hierarchy and

Quality Guides”, Component-Based Software Quality: Methods and Techniques, Lecture Notes in

Computer Science (LNCS) Springer-Verlag, Vol. 2693, pp. 188-211.

[27] Stafford, J. and McGregor, J. (2002) “Issues in Predicting the Reliability of Composed

Components”, In Proceedings of 5th workshop on component based software engineering.

[28] Van Ommering, R., (1998) “The Koala Component Model", in Building Reliable Component-Based

Software Systems”, ISBN 1-58053-327-2, Artech House.6, pp. 53-59.

[29] Wohlin, C. and Runeson, P. (1994) “Certification of Software Components”, In IEEE Transaction

on Software Engineering, Vol 20, Iss 6, pp. 494-500.

[30] Yan, L., Gorton, I., Liu, A. and Chen, S. (2002) “Evaluating the scalability of enterprise javabeans

technology”, In Proceedings of 9th Asia-Pacific Software Engineering Conference, pp. 74-83.

Authors

Rob Pooley is a Professor of Computer Science at Heriot-Watt University,

Edinburgh. His research interests include Performance Engineering, Software

Engineering and ad hoc and pervasive networking. He is the author of some

one hundred papers in these and other areas, as well as two textbooks on UML

and Software Engineering.

Xiaodong Liu received his PhD in Computer Science from De Montfort

University, England. He is an academic member (Reader) of the School of

Computing, Edinburgh Napier University. As an active researcher, his current

research focuses on software reuse, software evolution, component-based

development and service-based systems. He has published over 50 referred

papers and book chapters, and led several externally funded projects.

Chengpu Li is a third year PhD researcher in centre for information and

software systems of Edinburgh Napier University. His research interests

include Software Reuse, Component-based Software Engineering and Service-

oriented Systems.

