
Apto: A MDD-based Generic Framework for Context-aware Deeply Adaptive

Service-based Processes

Zakwan Jaroucheh, Xiaodong Liu, Sally Smith

School of Computing,

Edinburgh Napier University, UK

{z.jaroucheh, x.liu, s.smith}@napier.ac.uk

Abstract—Context-awareness and adaptability are important

and desirable properties of service-based processes designed to

provide personalized services. Most of the existing approaches

focus on the adaptation at the process instance level [1] which

involves extending the standard Business Process Execution

Language (BPEL) and its engine or creating their own process

languages (e.g. [2]). However, the approach proposed here

aims to apply an adaptation to processes modeled or developed

without any adaptation possibility in mind and independently

of specific usage contexts. In addition, most of the existing

approaches tackle the adaptation on the process instance or

definition levels by explicitly specifying some form of variation

points. This, however, leads to a contradiction between how the

architect logically views and interprets differences in the

process family and the actual modeling constructs through

which the logical differences must be expressed. We introduce

the notion of an evolution fragment and evolution primitive to

capture the variability in a more logical and independent way.

Finally, the proposed approach intends to support the

viewpoint of context-aware adaptation as a crosscutting

concern with respect to the core “business logic” of the process.

In this way, the design of the process core can be decoupled

from the design of the adaptation logic. To this end, we

leverage ideas from the domain of model-driven development

(MDD) and generative programming.

Keywords-Context-awareness; MDD; adaptive service-based

processes; BPEL.

I. INTRODUCTION

Context-awareness refers to the capability of an
application or a service being aware of its physical
environment or situation (e.g. context) and to respond
proactively and intelligently based on this awareness [11].
We define the context-aware process adaptation as the action
that modifies the process in a way that causes process
behavior to evolve according to the evolution of business and
users’ requirements, and the context considered relevant to
that process.

Many different solutions have been proposed by
researchers to the problem of context-aware adaptation
during process development and provision. However, three
main issues could be identified in the existing approaches.
Firstly, in many cases the context management and
adaptation logic are handled at the code level by enriching
the core logic of the service with code fragments responsible
for context manipulation or adaptation rules. Significant

examples of such approaches are Context Oriented
Programming [9], context-aware aspects [10], and VxBPEL
[8] which incorporates the variation points and variants
inline in the process definition itself (i.e. BPEL code).
However, as the service engineering process passes through
the stages of analysis and design prior to the actual code
development, the context and adaptation should be
considered also in these stages.

Secondly, although the structure and behavior of the user
centric process can be adapted to contextual information, the
overall goal of the process core logic is indifferent to context
change. Under this perspective, the adaptation to different
contexts can be considered as an almost orthogonal task with
respect to the core process logic. The separation of concerns
is a promising approach in the design of such context-aware
adaptive processes (CAAPs) where the core logic is designed
and implemented separately from the context handling and
adaptation logics.

Thirdly, process modeling must be flexible enough to
deal with constant changes – both at the business level (e.g.
evolving business rules) and the technical level (e.g.
contextual information and platform upgrades). The
flexibility could be provided or addressed by incorporating
variabilities into a system [8]. Most of the approaches tackle
process adaptation on the process instance or definition level
by explicitly specifying some form of variation points. To
date, a variety of different adaptation approaches have been
proposed for capturing variabilities (e.g. [12]). Common to
all these approaches is that they capture the process variant
as a monolithic structure containing variation points to
differentiate between process family members. By making
appropriate choices to resolve the variation points, either at
design time or at runtime, a single process variant could be
constructed. The problem is that, for example, each task in
the process is modeled as a variation point in and of itself,
each governed by its own clause to determine inclusion or
exclusion. This is in contradiction with how the developer or
architect logically views the process variant i.e. in terms of
the features that determine the difference between process
variants in each usage context. Moreover, managing and
understanding the process variants becomes more difficult
when the number of variabilities and their relationships
increase.

Motivated by these problems and directives in mind, we
propose an MDD-based framework called Apto (the Latin
word for adapt) that introduces the evolution fragment and

evolution primitive constructs to capture the variability in a
more logical and independent form. In addition, it aims to
tackle context-aware adaptation without interfering with the
core functionality of the process. The proposed approach
contributes to a solution to automatically generating a
customized process based on the context. Another feature is
that Apto supplies a set of automated tools for generating and
deploying executable process definitions e.g. WS-BPEL
(OASIS, 2007) which in turn significantly reduces the
development cost.

The rest of the paper is structured as follows: Section II
describes the proposed conceptual model for context-aware
adaptation. Section III and IV describe the configuration and
deployment of CAAP. In section V we present the proof-of-
concept prototype; and in section VI we illustrate the Apto
approach by giving a simple example of an airline booking
process. The related work and concluding remarks end the
paper.

II. A CONCEPTUAL MODEL FOR CONTEXT-AWARE

ADAPTATION

Apto adopts MDD methodology whose primary
objectives are: portability, interoperability and reusability.
Therefore, software systems abstraction can be specified in
platform independent models (PIMs), which are then
(semi)automatically transformed into platform specific
models (PSMs) using some transformation tool and possibly
with some additional information that guides the
transformation process.

The traditional process life cycle, as depicted in Fig. 1,
consists of three phases, namely the design and modeling of
the process, the selection or configuration of a particular
process variant, and the deployment of this variant in the
runtime environment. As the process may evolve over time
there should be a feedback loop during which a process is

continuously optimized. In the following subsections we
explain the proposed approach in the light of these phases.

The proposed conceptual model is structured in four
main sections that address, respectively, the modeling of the
service-based process, context, evolution, and linkage
between evolution and context models (see Fig. 2).

A. Basic Process Model

In Apto we denote the original process as a basic process.
This can be either an existing process model or a newly
created one. The basic process could be defined for the most
frequently executed variant of a process family, but this is
not a requirement. We use a UML process definition model.
For illustration purposes, Fig. 2 depicts some of the main
meta-classes representing the key elements of BPEL process
model, and their relationships.

B. Context Model

As in previous work [14] the main construct for
representing context knowledge is the ContextPrimitive
which represents the base context constructs (primitives):
entity classes, entity attributes and entities associations.

• Entity class: represents a group of entities (e.g. users,

places, devices, etc) sharing some properties.

• Attribute class: represents an entity’s attributes e.g.

preference, position, temperature, etc.

Figure 1. Process life cycle

Figure 2. The conceptual model for context-aware adaptation

• Association class: represents a relationship between one

entity and either another entity or an attribute.
Further optional modeling constructs are additional facts

about the entities and attributes. These are: specialization and
equivalence relationships that may be specified between two
entity classes, two attribute classes, or two association
classes. In addition, we introduce the context-dependent
constraint concept which allows us to specify conditions that
must hold to introduce some kind of context-aware
adaptation by specifying the evolution fragments that should
be applied to the process as described in the next sections.

The OCL language -an implementation of the Object
Constraint Language (OCL) OMG standard for Eclipse
Modeling Framework based models- is leveraged to express
the constraint expression. We distinguish between two types
of expressions:

 Plain Expressions which are OCL-based expressions
that can be directly evaluated e.g. the expression of

the RainyWeather context constraint (cf. Section
VI).

 Parameterized Expressions that contain one or more
variables whose values must be determined before

evaluating them e.g. ClientIsBrandConscious
constraint (cf. Section VI).

C. Evolution Model

The adaptation in a process usually involves adding,
dropping and replacing tasks in the process. In this respect,
and in order to achieve deep change ability, we propose to

add for each class X in the BPEL metamodel three classes:

AddedX, DeletedX, and ChangedX describing the
difference between the basic process model and the
respective variant model (See Fig. 3). Other change types
can be mapped to variations and combinations of these ones.
For instance, moving an activity is achieved by dropping the
activity and inserting it at a later position of the process.

The evolution metamodel (Fig. 2) consists of an

EvolutionStrategy class that contains one or more

EvolutionFragments. The EvolutionFragment in turn
consolidates related Evolution Primitives (a set of elements

of type ChangeableElement) into a single conceptual
variation. Our approach promotes evolution fragments (EFs)
to be first-class entities consisting of closely-related
additions, deletions and changes performed on the basic
process model.

The evolution metamodel could be automatically
generated from the BPEL model. One possible approach is to
use the ATL transformation language [15] as in the script of
Fig. 4. Fig. 2 shows only one example of the three generated

classes from the Flow class (AddedFlow, DeletedFlow and

ChangedFlow).

D. Linkage Model

Because in the MDD world everything should be a
model, the mapping between the context constraints and the
EFs will be represented by the linkage model. This mapping
will be used as information for driving the model
transformation. Moreover, the linkage model is used to

represent the dependencies between the EFs which we prefer
to keep it separate from the evolution model itself.
Dependencies are used to describe relations between EFs in
order to constrain their use. Each dependency has at least one
source EF and exactly one target EF. The relations supported
in Apto are as follows: dependency (Require), compatibility
(Exclude), execution order constraint (Follow), and hierarchy
(SubSet). Require arises when elements introduced by one
EF depends on elements introduced by another. The Exclude
relationship dictates which EFs are incompatible with each
another, based on conceptual design knowledge of the

Figure 3. Generating evolution metamodel

Figure 4. Evolution metamodel generation script

create OUT : EvolutionMM from IN1 : BPELMM, IN2 :

MinimalEvolutionMM;

helper def: changeableElement: MinimalEvolutionMM!EClass =

MinimalEvolutionMM!EClass.allInstances()->select(i | i.name =

'ChangeableElement');

rule copyMinimalEvolutionMM {

 from s : MinimalEvolutionMM!EClass

 to t: EvolutionMM!EClass (

 name <- s.name,

 interface <- s.interface,

 eSuperTypes <- s.eSuperTypes,

 eStructuralFeatures <- Sequence

{s.eStructuralFeatures}

 ...

)

}

rule generateEvolutionMMElements {

 from s : BPELMM!EClass (s.name <> 'Process' and not

s.abstract)

 to t: EvolutionMM!EClass (

 name <- s.name,

 interface <- s.interface,

 eSuperTypes <- s.eSuperTypes,

 eStructuralFeatures <- Sequence

{s.eStructuralFeatures}

 ...

),

 added_element: EvolutionMM!EClass (

 name <- 'Added' + s.name,

 eSuperTypes <- Sequence {t,

thisModule.changeableElement}

),

 changed_element: EvolutionMM!EClass (

 name <- 'Changed' + s.name,

 eSuperTypes <- Sequence {t,

thisModule.changeableElement}

),

 deleted_element: EvolutionMM!EClass (

 name <- 'Deleted' + s.name,

 eSuperTypes <- thisModule.changeableElement

)

}

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL

architect. SubSet denotes composition relationship which
means that when choosing the child EF the parent EF must
be applied first. As one EF might insert an activity whose
attributes are changed by a second one, the execution order
of these EFs becomes crucial. Therefore, the Follow
relationship enables the order in which EFs are applied to the
basic process to be specified.

III. PROCESS INSTANTIATION/CONFIGURATION

The selection of a process variant in a particular context
should be done automatically. Therefore the process context
in which this selection takes place has to be considered. To
this end, the basic process model, the defined EFs, the
context and the linkage models are used to configure the
models of the different variants. A single process variant is
created by applying a number of EFs and their related
evolution primitives to the basic process.

Step 1. Select EFs: the EFs that are relevant to
configuring a particular variant are selected based on the
current values of the context model; i.e., an EF will be
selected if all context constraints associated with it –via the
linkage model– evaluate to “true”.

Step 2. Check EFs relations: EFs relations are considered
to ensure process consistency. The selected EFs have to be
extended if dependent EFs are missing. Also, it could happen
that some of these EFs are mutually exclusive; in this case
the process variant cannot be generated. In addition, the EFs
are sorted by the order in which they should be applied to the
basic process.

Step 3. Apply the EFs: After defining and evaluating the
relevant set of EFs, the related evolution primitives are
applied to the model of the basic process.

Step 4. Check for consistency: Although the EFs are
validated, applying these EFs in combination with each other
may result in a deadlock or data inconsistency in the

resultant process variant. Therefore, a consistency check is
necessary and it is considered for our future work.

We can distinguish here between “instance level
changes” that should be made on a user request basis and the
“permanent changes” that are due to changes of the
regulation or the business rules. In the latter case, Apto is
flexible enough to accommodate this type of evolution by
assigning it to a context constraint always evaluated to true.
One of the advantages of this approach is that the evolution
in the process definition can be easily documented.

Further, the evolution fragment concept is used to specify
the process adaptation during runtime namely the adaptation
strategy. But, what about the evolution of the adaptation

Figure 6. Ticket booking process

Figure 5. Apto Architecture

strategy? This is the role of the evolution strategy concept.
An example of strategy evolution is that the business owner
may choose to apply a different adaptation strategy during
the Christmas days which require them to eliminate, add or
change some activities and later to return to the basic
strategy. To this end, the evolution strategy could also be
linked to a specific context constraint.

IV. DEPLOYMENT AND EXECUTION

After the configuration and instantiation phase, the
resultant variant process model has to be translated into an
executable artifact e.g. specified by WS-BPEL. As the
context as well as the user and business requirements is in
constant change, we retain the evolution and context models
in the runtime as well. This gives the ability to switch
between variants during runtime.

V. APTO ARCHITECTURE

As a proof-of-concept we implemented an Eclipse-based
prototype for the process variant generation. The Eclipse
Modeling Framework (EMF) was used to model the
aforementioned models. Having specified these models, the
Apto framework is able to deliver CAAP on a basis of user
request as follows (See Fig. 5). The user request for the
process service is intercepted by the Process Proxy service
which in turn triggers the Context Analysis module. The
Context Analysis module evaluates all context constraints of
the context model. Using the constraints elements evaluated
to “true” and the linkage model we are able to determine the
relevant EFs and the order in which they should be applied to
the basic process model. We consider that the context model
is managed by the Context Manager but due to space
limitation we omit further details here.

These relevant EFs are used by the Model Composer
module which supports context-aware process configuration;
i.e., it allows for the configuration of a process variant by
applying only those EFs relevant in the process context. The
result is the CAAP Model. This model is automatically
transformed, using a set of transformation rules, to generate
the executable specification of the target platform. At this
time, the proxy service creates a new virtual end point which
will be bound to the resulting deployed process. Then it
invokes the service deployment of the corresponding
execution engine (ODE [18] in our prototype) to deploy the
generated process. The client request is then transferred to
the new end point; and the client will be provided with a
personalized process that takes into account her context and
preferences.

For the proxy service, we employed the Apache Synapse
[19] which is designed to be a simple, lightweight and high
performance Enterprise Service Bus (ESB). One of the key
features of Synapse is that it is easily extended via a custom
Java class (mediator); therefore the Synapse engine is
configured with a simple XML format to use our proxy
service as the mediator. This mediator is responsible for
coordinating and running all the above-mentioned
framework modules. The Context Analysis and Model
Composer modules are implemented via a Java application.
The engine used to run the process is ODE [18] which is an

engine for executing processes described using the WS-
BPEL 2.0 standard. One possible deployment option that is
used in the prototype is to deploy ODE as a simple service in
Axis 2 (the Apache Web Services/ SOAP/WSDL engine)
which is invoked using plain SOAP/HTTP and deployed in
the Tomcat application server [20].

In Apto, we use the model-to-code transformation that
takes as input the CAAP model and generates code in an
executable language (e.g. BPEL). In the literature there are
numerous code generation techniques such as
templates+filtering, template+metamodel, inline generation,
code weaving, etc. [13]. In our prototype, we used the
template+metamodel technique – which is realized in the
openArchitectureWare framework (oAW) [16] to implement
the model transformations. But any of above-mentioned
techniques can be utilized in our framework with reasonable
modifications.

VI. CASE STUDY

To demonstrate the realization of these concepts, we
introduce a simple but realistic case study, namely, a travel
agency running an Airline Ticket Booking (ATB) process
(see Fig. 6). The BPEL syntax is adopted to model the
Booking process, and the graphical notations are borrowed
from the Eclipse BPEL Designer environment [17]. We
consider a generic service application that travelers can
access through a wireless connection using their own
portable devices. The application displays a GUI through

Figure 7. Ticket booking process model

which travelers may use ATB services for ticket purchase.
Fig. 6 depicts a part of the static structure of this process.
The booking process is initiated when the process’s customer
issues an airline ticket offer request. The request is received
by the “Receive Request” activity. The process then invokes
three services to get three offers for different companies. The
airline service only needs some necessary information such

as the OriginFrom, DestinationTo, DepartureDate

and ReturnDate. The process performs a preparation step
that extracts this information from the user request. Finally,
the booking offers are prepared and sent back to the

customer during the last step, SendOffers. After that, the
booking process successfully finishes.

The agency manager might want to customize this
process by adding some context-aware enhancement to the
process. For example, the ATB process could be enhanced

by automatically filling in the ClientType parameter, using
for this purpose information provided by an existing User
Profile service. Being a brand conscious customer means that
the customer is not interested in getting several offers from
different companies. Therefore there is a need to change the
process structure so that the activities that invoke, for

example, the FrenchAirline and ItalinaAirline are
deleted. Moreover, should the weather be rainy and
depending on the time left before plane departure, a new
pickup to the airport activity may be added after booking the
tickets.

In the next paragraphs, we describe the simple process
life cycle as follows. Firstly, the models of the ATB process,
the context, the evolution strategy, and the linkage models
are designed based on the proposed meta-models (See Fig.
2). Secondly, the relevant EFs are applied to the process
model. And finally, the newly created CAAP model is used
to generate executable code in BPEL that can be deployed
into any BPEL engine. Fig. 7 depicts the graphical
representation of the ATB process model.

Fig. 8 shows a simple example of the context model that
contains three entities: two customers; Alice and Bob; and
the Weather entity. The association elements assign the
attributes to the entities so that Alice has an attribute

ClientType whose value is PriceConsious whereas

Bob’s ClientType is BrandConscious. The context

constraint named RainyWeather is an example of the
constraints having plain expressions. Whereas, the

constraint ClientIsPriceConsious uses a parameterized

expression. It contains a variable named $UserName. The
value of the parameter is extracted either from the user
request information or from any other data source. In either
case the above-mentioned proxy service is responsible for
assigning the variables’ values.

For the sake of simplicity, the linkage model example
contains one link element that links between the context

constraint named ClientIsBrandConscious and the EF
named “ef1”.

Being a brand conscious customer means that the
sequence activities responsible for invoking the French and
Italian airlines should be deleted. This means deleting the
Copy activities that copy the company offers to the resulting

offer list. Therefore, two elements of type

DeletedSequence are added. In addition, the variable

TravelResponse which is initialized to have a three-
element list should now be initialized to contain just one

element. Therefore, an element of type ChangedCopy is

Figure 8. The context model

<ctxt:ContextModel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:ctxt="http://napier.ac.uk/context">

 <associations name="weather_attributes"

entities="//@entities.2" attributes="//@attributes.0

//@attributes.1"/>

 <associations name="Alice_attributes"

entities="//@entities.0" attributes="//@attributes.2"/>

 <associations name="Bob_attributes"

entities="//@entities.1" attributes="//@attributes.3"/>

 <entities name="Alice"/>

 <entities name="Bob"/>

 <entities name="Weather"/>

 <attributes name="Temperature" value="20"/>

 <attributes name="RainLikelihood" value="90"/>

 <attributes name="ClientType" value="PriceConsious"/>

 <attributes name="ClientType" value="BrandConsious"/>

 <contextconstraints expression="associations->select(a |

a.entities->exists(e | e.name='Weather') and a.attributes-

>exists(a1 |a1.name = 'Temperature' and a1.value='5') and

a.attributes->exists(a1 |a1.name = 'RainLikelihood' and

a1.value='80'))" name="RainyWeather"/>

 <contextconstraints expression="associations->select(a |

a.entities->exists(e | e.name='$UserName') and a.attributes-

>exists(a1 |a1.name = 'ClientType' and

a1.value='PriceConsious'))" name="ClientIsPriceConscious"/>

 <contextconstraints expression="associations->select(a |

a.entities->exists(e | e.name='$UserName') and a.attributes-

>exists(a1 |a1.name = 'ClientType' and

a1.value='BrandConsious'))" name="ClientIsBrandConscious"/>

</ctxt:ContextModel>

Figure 9. The linkage model

<linkage:LinkageModel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:linkage="http://napier.ac.uk/linkage">

 <links name="l1"

contextConstraintName="ClientIsBrandConscious"

changeFragmentName="ef1"/>

</linkage:LinkageModel>

Figure 10. The evolution strategy model

<es:EvolutionStrategy xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:es="http://napier.ac.uk/es">

<evolutionFragments name="ef1">

 <children xsi:type="es:DeletedSequence"

updatedElement="Sequence_FA"/>

 <children xsi:type="es:DeletedSequence"

updatedElement="Sequence_IA"/>

 <children xsi:type="es:DeletedCopy"

updatedElement="FA_Offer"/>

 <children xsi:type="es:DeletedCopy"

updatedElement="IA_Offer"/>

 <children xsi:type="es:ChangedCopy"

updatedElement="TravelResponseInit">

 <to variable="..." part="offersData"/>

 <from literal="..."/>

 </children>

</evolutionFragments>

</es:EvolutionStrategy>

added which will replace the Copy activity named

TravelResponseInit. Each of these deletions and
changes is considered an evolution primitive element; and all
these elements should be regrouped into one evolution
fragment named “ef1” which should be applied when the
customer is brand conscious (Fig. 10). Obviously the
variables and partner links related to the irrelevant airline
invocation should also be removed; to make the example as
compact as possible we omit these evolution primitives from
the evolution model in Fig. 10. Finally, Fig. 11 shows the
result of running the prototype and the context-aware
processes delivered to Alice and Bob respectively.

VII. DISCUSSION

Apto may provide several benefits as follows: firstly,
besides the advantage of splitting a single process design
task into hopefully simpler subtasks, this approach may
provide the possibility of “plugging” more easily within the
same basic process different adaptation logic tailored for
different contexts. It can result in adaptive context-aware
processes developed independently of specific usage
contexts, where context information and adaptation rules are
efficiently handled outside the main process logic.

Secondly, the software reusability principle is respected
thanks to the reusable evolution fragments and the
inheritance relations between them.

Thirdly, in the context of the Software as a Service
(SaaS) [12], a new delivery model for software, the service
provider provides the same application or process for several
different customers. However, each individual customer has
different requirements for the same application logic. In
order to allow each customer to customize the process
application to their specific needs the application needs to
provide a set of architectural variants (i.e. evolution
fragments) that can be determined by customers by
specifying their preferences. Further, Apto could be easily
extended to perform the adaptation on any software system
as long as it has been modeled. That is because the
generation approach of the evolution metamodel is rather
generic.

On the other hand, in order to achieve the possibility of
making deep changes we intend in our future work to extend

the Apto idea to regroup different process views’ models.
Indeed, as the number of services or processes involved in a
process grows, the complexity of developing and
maintaining these processes also increases. One of the
successful approaches to managing this complexity is to
represent the process by different architectural views [5].
Examples of these views are collaboration view, information
view, orchestration view etc. The idea is to give the
developer the possibility of applying the necessary evolution
fragments in each view and then the automated tool verifies
the integrity of the changes and generates the adapted
process variant artifacts accordingly.

VIII. RELATED WORK

Our work can be viewed from different perspectives e.g.
context-aware process adaptation, managing process
variants, dynamic process configuration, or customization of
SaaS process-based applications perspectives.

AO4BPEL [4], is an aspect-oriented extension to BPEL.
In AO4BPEL, the business logic is treated as the main
concern in workflows, while crosscutting concerns, such as
data validation and security, are specified using workflow
aspects in a modular way. By their nature, evolution
fragments are close to aspects in their compositional
capability. However, unlike Apto, there is a need to modify
the BPEL engine to support aspects before and after
executing each activity.

In the context of SaaS, [12] presents an approach that
allows the generation of customization processes out of
variability descriptors. Variability descriptors can be used to
mark variability by defining variability points in the process
layer and related artifacts of a SaaS application. The Apto
approach is different in the way it presents the variation
points and variants. It regroups the different variants into
more abstract and meaningful constructs to ease the
adjustments of the basic process.

Another interesting work that is similar to our work is the
Provop approach [6], which provides a flexible solution for
managing process variants following an operational
approach to configure the process variant out of a basic
process. This is achieved by applying a set of well-defined
change operations to it. However, Apto deviates from Provop
in that it uses the MDD approach and defines the evolution
fragments as evolution model elements not as change
operations.

Choi et al. [7] propose an adaptation approach in a
pervasive environment to support the modification of
workflow at runtime. Each service is modeled as a sub
workflow which can be inserted into the main workflow. If
the context conditions are satisfied, that service will be
executed. Like Apto, the adaptation takes place at the
workflow definition level and is reflected in the running
instance. However, their approach may not be sufficient to
derive workflow variant; that is because this may involve
rolling back executed tasks or adding new activities. They
consider only the activities that will be executed but not the
activities that have already been executed.

Muller et al. [3] propose “AgentWork”, an interesting
approach for workflow adaptation to customize the hospital

Figure 11. The result of invoking the CAAP

cancer treatment workflow to suit each patient’s medical
profile by adding and deleting tasks in the running workflow
instance according to the predefined extended ECA rules [3].
The adaptation in this approach provides dynamic and
automatic workflow adaptations and suggests and
implements a predictive adaptation strategy. Apto, on the
other hand, takes another approach so that adaptation can be
applied to processes modeled and developed without an
adaptation possibility in mind and independently of specific
usage contexts.

VxBPEL [8] is an adaptation language that is able to
capture variability in processes developed in the BPEL
language. VxBPEL provides the possibility to capture
variation points, variants and realization relations between
these variation points. Defining this variability information
allows capture of a family of processes within one process
definition and switching between these family members at
run-time. Unlike Apto, VxBPEL works on the code level and
the variants are mixed with the process business logic which
may add complexity to the process developer task. Further,
unlike the generative approach of Apto, VxBPEL is specific
to the BPEL language.

IX. CONCLUSION

Change is the only certainty in the software/service
development world due to the evolution in business or user
requirements. Therefore, there is a need to customize
processes by generating a process variant that corresponds to
the change in the business and user requirements. We have
described the Apto model-driven approach for managing and
generating process variants. One of the advantages of using
MDD is that the context management and adaptation logic
are included in models rather than directly implemented in
code. Based on logically-viewed well-defined evolution
fragments and evolution primitive constructs; on the ability
to group evolution fragments in reusable components; and on
the ability to regroup these components in a constrained way,
necessary adjustments of the basic process can be correctly
and easily realized when creating or configuring a process
variant.

We have adopted the viewpoint that this kind of
adaptation can often be considered as a crosscutting concern
with respect to the core application logic. Hence, one of our
main goals has been the decoupling of the design and
implementation of the adaptation logic from the design and
implementation of the main process logic. Finally, Apto
allows for the dynamic configuration of process variants
based on the given process context. Our future work involves
tackling the correct combination of evolution fragments
when creating a variant. Sophisticated techniques are needed
to prevent errors (e.g., deadlocks) or other consistency
problems.

REFERENCES

[1] S. Smanchat, S. Ling, and M. Indrawan, "A survey on context-aware
workflow adaptations," Proceedings of the 6th International
Conference on Advances in Mobile Computing and Multimedia -
MoMM '08, 2008, p. 414.

[2] M. Adams, A.H. Hofstede, D. Edmond, and W.M. Aalst, "Worklets:
A Service-Oriented Implementation of Dynamic Flexibility in
Workflows," On the Move to Meaningful Internet Systems 2006:
CoopIS, DOA, GADA, and ODBASE, 2006, pp. 291-308.

[3] R. Muller, U. Greiner, and E. Rahm, "AW: a workflow system
supporting rule-based workflow adaptation," Data & Knowledge
Engineering, vol. 51, 2004, pp. 223-256.

[4] A. Charfi and M. Mezini, "AO4BPEL: An Aspect-oriented Extension
to BPEL," World Wide Web, vol. 10, 2007.

[5] H. Tran, U. Zdun, and S. Dustdar, "View-based and Model-driven
Approach for Reducing the Development Complexity in Process-
Driven SOA," Internaltional Working Conference on Business
Process and Services Computing (BPSC'07), 2007, pp. 105-124.

[6] M. Reichert, S. Rechtenbach, A. Hallerbach, and T. Bauer,
"Extending a Business Process Modeling Tool with Process
Configuration Facilities: The Provop Demonstrator," BPM'09
Demonstration Track, Business Process Management Conference,
Ulm, Germany, 2009.

[7] J. Choi, Y. Cho, K. Shin, and J. Choi, "A Context-Aware Workflow
System for Dynamic Service Adaptation," Computational Science and
Its Applications – ICCSA 2007, Kuala Lumpur, Malaysia: Springer
Berlin / Heidelberg, 2007, pp. 335-345.

[8] M. Koning, C. Sun, M. Sinnema, and P. Avgeriou, "VxBPEL:
Supporting variability for Web services in BPEL," Information and
Software Technology, vol. 51, 2009, pp. 258-269.

[9] R. Keays and A. Rakotonirainy, "Context-oriented programming,"
Proceedings of the 3rd ACM international workshop on Data
engineering for wireless and mobile access - MobiDe '03, 2003, p. 9.

[10] E. Tanter, K. Gybels, M. Denker, and A. Bergel, "Context-Aware
Aspects," 5th International Symposium on Software Composition,
Springer, 2006, pp. 227-242.

[11] M. Baldauf, S. Dustdar, and F. Rosenberg, "A survey on context-
aware systems," Int. J. Ad Hoc and Ubiquitous Computing, vol. 2,
2007.

[12] R. Mietzner and F. Leymann, "Generation of BPEL Customization
Processes for SaaS Applications from Variability Descriptors," 2008
IEEE International Conference on Services Computing, 2008, pp.
359-366.

[13] M. Volter and T. Stahl. Model-Driven Software Development:
Technology, Engineering, Management. Wiley, 2006.

[14] Z. Jaroucheh, X. Liu, and S. Smith, "CANDEL: Product Line Based
Dynamic Context Management for Pervasive Applications,"
International Conference on Complex, Intelligent and Software
Intensive Systems (ARES/CISIS 2010), IEEE Computer Society
Press, 2010.

[15] ATL Language http://www.eclipse.org/m2m/atl/

[16] http://www.openarchitectureware.org.

[17] Eclipse WS-BPEL Project. http://www.eclipse.org/bpel

[18] Apache ODE http://ode.apache.org/user-guide.html

[19] Apache Synapse (ESB), http://synapse.apache.org/

[20] Apache Tomcat, http://tomcat.apache.org/

http://www.eclipse.org/m2m/atl/
http://ode.apache.org/user-guide.html
http://synapse.apache.org/
http://tomcat.apache.org/

