
Mapping Features to Context Information: Supporting Context Variability for

Context-aware Pervasive Applications

Zakwan Jaroucheh, Xiaodong Liu, Sally Smith

School of Computing

Edinburgh Napier University, UK

{z.jaroucheh, x.liu, s.smith}@napier.ac.uk

Abstract—Context-aware computing is widely accepted as a

promising paradigm to enable seamless computing. Several

middlewares and ontology-based models for describing context

information have been developed in order to support context-

aware applications. However, the context variability, which

refers to the possibility to infer or interpret different context

information from different perspectives, has been neglected in

the existing context modeling approaches. This paper presents

an approach for context-aware software development based on

a flexible product line based context model which significantly

enhances reusability of context information by providing

context variability constructs to satisfy different application

needs.

Keywords-context-awareness; context variability; feature

model; software product line; pervasive applications.

I. INTRODUCTION

In the emerging (and challenging) pervasive
environments, the context management systems are expected
to administer a large volume of dynamically changing
context information. Ontologies are a very promising
instrument for modeling contextual information due to their
high and formal expressiveness and the possibilities for
applying ontology reasoning techniques [1]. Thus, we focus
on context management employing ontologies as the
underlying technology. In pervasive applications, we usually
adopt semantic Web technologies which possess pervasive
context-aware ability to achieve knowledge sharing, context
reasoning and interoperability [2][3]. Common to most of the
existing approaches the usage of ontologies (e.g. using
OWL) to describe the concepts and properties defining
context information in the relevant domain. Obviously the
reasoning capabilities of the ontology are of crucial
importance to context-aware applications for context
knowledge representation and reasoning. However, these
approaches suffer from some limitations:

Firstly, in a pervasive environment, as the context
manger is expected to administer a large volume of context
information represented by RDF triples in the context
repository, applying the reasoning capability to infer new
context knowledge may have a severe impact on the overall
performance of the system.

Secondly, applications use context queries to retrieve the
set of context information that adhere to some conditions.
Some context queries are too complex to be defined using
only general-purpose querying mechanisms (e.g., SPARQL).
In addition, the application developer may not have enough
knowledge about context semantics, in order to describe
queries correctly.

Thirdly, in order of the middleware to serve different
types of applications, it should provide context-specific
programming abstraction or constructs that model the
context variability. Indeed, different context knowledge
could be extracted from the context repository by focusing
on different views of the context information. For example,
in the smart meeting room, a seat may be equipped with light
and temperature sensors to reason about its occupation. The
seat could be either free or occupied. Two occupation
variants may be identified: occupied by object and occupied
by a person. These variants represent two facets to the same
fact. To the author’s best knowledge, the existing approaches
do not provide application developers with software
constructs through which a view-based customization of the
context knowledge could be expressed.

Motivated with these problems and directives in mind,
we propose a product line based context modeling approach.
Commonality and variability management techniques (e.g.,
feature model) from software product line can be applied to
handle context variabilities for per-application
customization.

The paper is organized as follows: in Section 2, we
describe the rationale behind the proposed approach. In
Section 3 we describe the proposed framework for context
management that is illustrated in a simple case study in
Section 4. The discussion and concluding remarks end the
paper.

II. RATIONALE OF THE PROPOSED APPROACH

This paper does not intend to discuss the requirements of
context modeling which have been already discussed in an
earlier paper [4]. Conversely, in this paper we focus on
dealing with context variability from the application
requirement perspective. The aim is to represent the context
information from the requirement perspective. The rationale
behind this approach is as follows.

Firstly, in terms of modeling philosophy, in ontology
modeling a concept is described by adding its details and
implicitly defining in a bottom-up fashion the scope of the
concept through the details. Whereas, in feature modeling, a
concept is described by first setting its scope and
hierarchically adding its details in a top-down fashion [5].
This feature is quite interesting as it allows the context
modeler to devise, in a top-down fashion, generic and
reusable context features which can be shared among all
applications that need to use this context. The relationships
between context features express the context variability from
the application point of view.

Secondly, according to the context working definition
previously presented in [4], we consider that the context
knowledge is composed of a set of small contextual
knowledge pieces namely context primitives which include
context entities, attributes, associations, and rules. Each
context feature corresponds to a specific set of context
primitives. Obviously, considering only the relevant context
primitives will improve the reasoning performance and
reduce response time which is a vital issue in a pervasive
environment.

Thirdly, as developers usually do not have full
understanding of the context internal semantic, “promoting”
the context information using the feature model will enable
the contextual knowledge visibility from different views in a
top-down fashion. Another advantage is that these context
features might be shared between applications which
significantly enhances the reusability of context information
and reduces application complexity.

III. CONTEXT AS A DYNAMIC PRODUCT LINE

We import the concepts of features from FODA (Feature
Oriented Domain Analysis) [6]. FODA appeals to us because
features are essential abstractions that both context consumer
and provider understand. Thus, the main concept in the
feature description language FODA is the feature itself. Here
a feature is a set of context primitives that is relevant to some
stakeholder from a specific “focus” point of view.

Indeed, both middlewares and context models are
strongly interdependent since the complexity of a context
model determines the complexity of context management by
a middleware. Coutaz et al. [7] presents this relationship as a

conceptual framework that interconnects an ontological
foundation for context modeling with the middleware
(runtime infrastructure).

A. Application-level Context Modeling

In order to identify which of the context information is
eligible for being modeled as feature, we have adopted a
simplified list of criteria:

- Identify the context information required by the
application adaptation e.g. user location. This should be
represented by a generic feature in the feature model.

- Identify the context model transformations or
interpretations of the currently available context information
in order to be shared by all application instances e.g. room-,
floor-, and building-resolution user location information.
These interpretations should be represented by different
feature variants.

- Regrouping the different identified context features into
a logical hierarchy of features in a top-down manner that
could be reused by different applications.

The context feature model will be published in a public
registry. When an application developer needs to use context
information, she reads the XML file representing the context
features the context manager is able to deliver to understand
the context semantics. Then she is able to configure the
feature model and use the middleware services to get the
necessary context information.

B. Annotated Context Model

An overview of the proposed approach is shown in Fig.
1. A context model family is represented by the context
feature model and the ontology-based context model (OCM).
The elements of OCM namely the context primitives may be
annotated using existence conditions (ECs) and meta-
statements (MSs). These annotations are defined in terms of
features and feature attributes from the feature model, and
can be evaluated with respect to a feature configuration. An
EC attached to a context primitive indicates whether the
primitive should exist in or should be removed from a
context product. MS is mainly used to modify or compute

Figure 1. Overview of the proposed approach

Figure 2. Example of context feature model

(a) Context Feature Model (b) Feature Model Configuration

the attributes of context model element. This is important for
managing context variants as we will see in the case study in
Section 4.

An instance of a context model family, which we call
context product (CP), can be specified by creating a feature
configuration based on the context feature model. Based on
the feature configuration, the corresponding context product
is generated automatically. The generation process, which is
model-to-model transformation, involves evaluating the ECs
and MSs with respect to the feature configuration, removing
context primitives whose ECs evaluate to false and, possibly
doing additional processing such as removing related context
primitives.

Obviously, a particularly interesting form of ECs is a
Boolean expression over a set of variables each of which
corresponds to a feature from the feature model. Given a
feature configuration, the value of a feature variable is true if
and only if the corresponding feature is included in the
feature configuration. In our prototype implementation we
use either Boolean expressions in Disjunctive Normal Form
(DNF), or more general XPath expressions which can access
feature attributes and use other XPath operations, as long as
the XPath expression evaluates to a Boolean value. The EC
is represented by one or more stereotypes. Further, the ECs
should be interpreted with respect to the OCM containment
hierarchy. In other words, if a context primitive container is
removed all the contained context primitives are removed.
For example, if entity x is a sub-entity of the entity y,
removing y requires removing x as well.

C. Implicit Existence Condition (IEC)

Context primitives that are not explicitly annotated will
have implicit EC. The IEC for a context primitive can be
provided based on the existence conditions of other context
primitives and on the syntax and semantics of the OCM. For
example, according to the ontology syntax, an object
property requires a class at each of its ends. Thus, a
reasonable choice of IEC for an object property would be the
conjunction of the ECs of both classes. This way, removing
any of the classes will also lead to the removal of the object
property. IECs reduce the necessary annotation effort of the
user.

D. Context Information Generation

A context information generation process involves
computing MSs and ECs, and removing elements whose ECs
are false. The complete context product instantiation
algorithm can be summarized as follows:

- Evaluation of MSs and explicit ECs: The evaluation is
done while traversing the OCM containment hierarchy in
depth-first order. Children of context primitives whose ECs
evaluate to false are not visited because they will be
removed.

- Removal Analysis: Removal analysis involves
computing IECs. The IECs can be computed in a single
additional pass after evaluating explicit ECs. In addition, in
this step all the individuals and statements whose subjects
are included in the elements to be removed are also marked
to be removed. For example, if the Room entity is known to
be removed, all its individuals and all triples whose subject is
of type Room should be marked to be removed.

Figure 3. Feature model configuration

<configuration model="Context Feature Model">

 <feature id="RoomResolution">

 <value>1</value>

 </feature>

 <feature id="HavingJournalPublications">

 <minimumJournalRank>350</minimumJournalRank>

 <value>1</value>

 </feature>

 ...

</configuration>

Figure 4. Example of available stereotypes

<stereotypes>

<stereotype name="RoomResolution" expression="$RoomResolution ||

$BuildingResolution"></stereotype>

<stereotype name="Paper" expression="$ConferencePapers || $JournalPapers ||

$Experts"></stereotype>

<stereotype name="ExpertHavingAwards" expression="$HavingAwards"/>

...

</stereotypes>

Figure 5. Example of annotated ontology

<owl:Class rdf:ID="Building">

 <rdfs:subClassOf rdf:resource="#CompoundPlace"/>

 <rdfs:label>BuildingResolution</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="Room">

 <rdfs:subClassOf rdf:resource="#AtomicPlace"/>

 <rdfs:label>RoomResolution</rdfs:label>

</owl:Class>

<owl:ObjectProperty rdf:ID="relatedToJournal">

 <rdfs:domain rdf:resource="#Artefact"/>

 <rdfs:range rdf:resource="#Journal"/>

 <rdfs:label>ExpertHavingJournalPublications</rdfs:label>

</owl:ObjectProperty>

...

Figure 6. Example of meta-statement

<metastatements>

 <metastatement name="MS1">

 <expression>

 PREFIX cxt:<http://www.napier.ac.uk/candel#>

 PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

 DELETE

 { cxt:FMConfiguration cxt:minimumJournalRank "100.0"
 ^^xsd:float }
 INSERT

 { cxt:FMConfiguration cxt:minimumJournalRank

 "$minimumJournalRankVariable" ^^xsd:float }
 </expression>

 <stereotype>ExpertHavingJournalPublications</stereotype>

 </metastatement>

<metastatements>

Figure 7. Example of meta-statement variable

<metastatementsVariables>

<metastatementVariable name="minimumJournalRankVariable"

expression="//feature[@id='HavingJournalPublications']/minimumJournalRank"></met

astatementVariable>

</metastatementsVariables>

Figure 8. Example of annotated SWRL rules

<swrlrules>

 <swrlrule name="Rule1">

 <expression> PaperPresentation(?p) ^ hasStartDateTime(?p, ?s) ^

hasEndDateTime(?p, ?e) ^ swrlb:currentDateTime(?c) ^ swrlb:beforeTime(?s, ?c) ^

swrlb:beforeTime(?c, ?e) -> PaperPresentationHappeningNow(?p) </expression>

 <stereotype>CurrentRole</stereotype>

 </swrlrule>

 <swrlrule name="Rule2">

 <expression>Researcher(?r) ^ authorOf(?r, ?p) ^ relatedToJournal(?p, ?j) ^

hasRank(?j, ?rank) ^ FMConf(?conf) ^ minimumJournalRank(?conf, ?minRank) ^

swrlb:greaterThan(?rank, ?minRank) -> ExpertResearcher(?r)

 </expression>

 <stereotype>ExpertHavingJournalPublications</stereotype>

 </swrlrule>

...

</swrlrules>

Figure 9. The retrieved context information

<ExpertResearcher rdf:ID="Alice">

 <rdf:type rdf:resource="#Researcher"/>

 <authorOf>

 <Paper rdf:ID="SecondPaper">

 <relatedToJournal>

 <Journal rdf:ID="Journal4">

 <hasRank

rdf:datatype="http://www.w3.org/2001/XMLSchema#float">462.0</hasRank>

 <hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>ACM TRANSACTIONS ON COMPUTER SYSTEMS</hasName>

 </Journal>

 </relatedToJournal>

 <biblioReference rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

> Product Line based Context Management </biblioReference>

 </Paper>

 </authorOf>

 <authorOf rdf:resource="#FirstPaper"/>

 <locatedInRoom rdf:resource="#C35"/>

</ExpertResearcher>

...

- Primitive Removal: In this step, primitives whose ECs
are false are removed.

- Applying Reasoning: In order to interpret the remaining
context information from the perspective specified by the
context feature configuration, it is necessary to apply the
corresponding remaining rules. The result of the reasoner
will be the context product.

In the implemented prototype we use rule-based
inference reasoners. Different rule-based systems provide
different logical inference support for context reasoning. To
reason about ontologies, a description logic reasoner, namely
Pellet is applied. We use the Semantic Web Rule Language
(SWRL) on top of OWL for interpreting context using
domain specific rules and producing new facts. However, the
approach could be extended to use other reasoner types.

IV. CASE STUDY

This section describes a case study of different
applications supporting a conference event. We use some
concepts of the SO4PC ontology [2] for expressing context
information associated with persons, time, and spaces; and
another ontology for describing the research related
concepts.

Fig. 2 (a) shows an example of a context feature model
that represents different features that could be shared among
different applications. For example, if the Location feature
has been selected, then two mutually-exclusive options are
available; either as a room resolution; or as a building
resolution. Fig. 2 (b) shows one possible context feature
configuration. Each feature may have several attributes. For
example, in Fig. 3 that shows a part of the feature model
configuration XML file, the HavingJournalPublications
feature has two attributes: value which indicates the
selection of the feature or not, and minimumJournalRank.
This feature allows the retrieval of researchers who have
been published in journals whose rank is superior to the
minimumJournalRank value.

As previously mentioned, in order to link the context
feature model to the context primitives, we use stereotypes to
annotate ontology elements as well as the SWRL rules. Fig.
4 shows a snippet of the XML files containing the available
stereotypes to use for annotation. Each stereotype expression
is expressed, as described above, in terms of the features’
values of the context feature model. Fig. 5 shows a sample of
the annotated ontology elements. We use the Label property
to specify the correspondent stereotypes of each element.
Further, as mentioned above, MSs can be expressed using
XPath. As an example, the MS represented in Fig. 6, uses the
SPQRL Update expression to update the datatype property
minimumJournalRank of the entity FMConfiguration by a
value retrieved from the variable
$minimumJournalRankVariable whose value is determined
by the XPath expression of the variable
minimumJournalRankVariable in Fig. 7. Fig. 8 shows a
sample set of annotated SWRL rules. For example, Rule1 is
used to reason about the paper presentations that are
currently taking place. To determine if the researcher is an
expert we have two options: by choosing the HavingAwards

or HavingJournalPublications features. The stereotype of
the rule is specified by the stereotype element. Fig. 9 shows
an example of the retrieved context information
corresponding to the feature model configuration (Fig. 2 (b)).

V. DISCUSSION

The proposed approach has several advantages. Firstly,
from the context modeler usability perspective, the proposed
approach is intuitive; it allows her to think about the context
information from different perspectives and use the feature
model available tools. Secondly, context feature model
allows the context modeler to devise context-specific
features that can be shared among all applications that need
to use this context. Moreover, retrieving context information
using general-purpose query mechanisms remains possible
by devising a special context feature.

Thirdly, unlike the reasoning on a one monolithic context
information, the proposed approach gives the possibility to
provide the context information on arbitrary levels of
abstraction thanks to the arbitrary composition of context
primitives e.g. inference rules. Fourthly, the use of context-
specific features may improve the overall performance of the
system, since it might decrease the number of network
interactions between an application and the context provider.

VI. CONCLUSION

This paper has presented an approach for supporting
context-aware applications based on a flexible product line
based context model. The proposed approach to model the
context information allows the context modeler to specify the
context information in a high-level and logical way that
regroups context variabilities; and provides application
developers with context-specific programming constructs to
express their needs. The result is a more intuitive way to
represent context and improve overall systems performance.
Further work includes extending the proposed approach to
the distributed context management architecture.

REFERENCES

[1] J. Euzenat, J. Pierson, and F. Ramparany, "Dynamic context
management for pervasive applications," The Knowledge
Engineering Review, vol. 23, 2008, pp. 21-49.

[2] J. Man, A. Yang, and X. Sun, "Shared Ontology for Pervasive
Computing," Lecture Notes in Computer Science, vol. 3818, 2005,
pp. 64 - 78.

[3] X.H. Wang, T. Gu, D.Q. Zhang, and H.K. Pung, "Ontology Based
Context Modeling and Reasoning using OWL," Proceedings of the
Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops, IEEE CS, 2004, pp. 18-22.

[4] Z. Jaroucheh, X. Liu, and S. Smith, "CANDEL: Product Line Based
Dynamic Context Management for Pervasive Applications,"
International Conference on Complex, Intelligent and Software
Intensive Systems (ARES/CISIS 2010), IEEE CS, 2010, pp. 209-216.

[5] K. Czarnecki, C. Hwan, and K.T. Kalleberg, "Feature Models are
Views on Ontologies," Proceedings of the 10th International on
Software Product Line Conference, IEEE Computer Society, 2006.

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, "Feature-
oriented domain analysis (FODA) feasibility study," Distribution,
1990.

[7] J. Coutaz, J.L. Crowley, S. Dobson, and D. Garlan, "Context is Key,"
Communications of the ACM, vol. 48, 2005, pp. 49-53.

