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Abstract. Clonal selection is the keystone of mainstream immunology
and computational systems based on immunological principles. For the
latter, clonal selection is often interpreted as an asexual variant of natu-
ral selection, and thus, tend to be variations on evolutionary strategies.
Retro-fitting immunological sophistication and theoretical rigour onto
such systems has proved to be unwieldy. In this paper we assert the
primacy of competitive exclusion over selection and mutation; providing
theoretical analysis and empirical results that support our position.
We show our algorithm to be highly competitive with well-established ap-
proximation and learning techniques; notably for large, high-dimensional
problems. We further argue that it provides concise, operational abstrac-
tions of some influential theoretical immunology.

1 Introduction

Burnet’s Clonal Selection principle is the keystone of both mainstream theoret-
ical immunology and immune-inspired computational systems. Briefly, antigen
select their responding lymphocyte clones through a cyclic process of receptor-
ligand binding, proliferation, mutation and competitive exclusion. Thus, ran-
domly generated lymphocytes, with receptors proven “fit” in the pathogenic
environment of the host, persist and improve.

To date, the computational perspective on clonal selection has, overwhelm-
ingly, been based on the genetic algorithm without crossover model proposed
almost 20 years ago by Forrest et al. [16]. This work was not itself motivated
by solutions to computational problems, but proved to be seminal in inspiring
research in that direction (e.g. [10, 4]). Despite subtle differences in implementa-
tions, these algorithms all have the same basic features: a cloning operator that
reproduces solutions and a hypermutation operator that performs mutation. Al-
though such algorithms differ from classical evolutionary algorithms in their lack
of a crossover operator and in the use of operators that are a function of solution
fitness, the underlying computational model remains essentially the same [30].

A second sizable branch of computational work with clonal selection has
been directed at producing unsupervised learning algorithms [11, 41]. Much of
the seminal research here also built upon the work of Forrest et al. – focusing first
on the pattern-matching nature of receptor-ligand binding, then developing these
ideas into clustering and classification in RN . The resulting algorithms tend to
share commonalities with Self-Organising Maps, Learning Vector Quantization



or instance-based methods from statistical learning [21]. Stibor and Timmis [35]
were the first to provide a negative result in this area, showing why the aiNet
algorithm is incapable of achieving its stated goal of data compression. McEwan
and Hart more recently elaborated several other flaws that potentially undermine
the basic principles underlying this family of algorithms [27].

In contrast to the above, much of the seminal work that preceded the for-
mation of artificial immune systems as a recognised field (e.g. [2, 15]) very much
focused on applying and exploring computational properties of biologically plau-
sible dynamical systems; rather than re-contextualising the immunology into
existing algorithmic approaches. It is our position that this was, and still is, a
better way to produce artificial immune systems. In this paper, we demonstrate
how such methods (and a little hindsight) improve not only biological plausibil-
ity, but theoretical approachability and computational effectiveness.

The paper develops as follows: in the next section we motivate and introduce
our dynamical system perspective of clonal selection as competitive exclusion.
In Sect. 3 we theoretically analyse the approximatory capacity of our model and
empirically demonstrate its effectiveness in the domain of sparse approximation.
In Sect. 4 we extend this approximatory behaviour to decision making, cast in
a statistical learning framework; and again, provide empirical support of our
position. In Sect. 5 we briefly discuss the biological plausibility of our model,
before concluding in Sect. 6.

2 Clonal Selection is Competitive Exclusion

To date, the emphasis on clonal selection as algorithm has been on the generate-
and-filter approach typified by Darwinian selection. This emphasis has been
almost exclusively placed on the generate aspect, with much attention given to
receptor (cf. genotype) representation and mutation strategies. The and-filter
aspect has received very little attention and any attention it has received tends
to also be imported from evolutionary computing through selection and reten-
tion operators such as elitism, tournament selection and so on. Although the
generation of novel and diverse components is a critical aspect of clonal (and
natural) selection, here we will we concentrate on filtering. In the particular case
of the learning domain, poorly realised interaction mechanisms lie behind several
of the negative results already discussed.

In contrast to selection operators, biologists have very simple and elegant
models of inter-species competitive exclusion [31]. The one we will focus on
is paradigmatic, originally formulated by Alfred Lotka and Vito Volterra [24,
40], and later developed by many others, notably Levins [23], Roberts [34] and
Nowack [32]. This generalised Lotka-Volterra model is as follows: we posit each
species has a carrying capacity that the environment can support; each species
population grows towards that capacity under the classic sigmoid-shaped logistic
equation; reaching this capacity is further hindered by interactions from other
species competing for the same resources.



More formally, let ρi and ki represent the population and carrying capacity
of the i’th species, respectively. The so-called “community matrix” K represents
the competitive effects of species i on species j, that is Kij ≥ 0 and Kii = 1.
The population dynamics evolve as follows

dρi
dt

=
(
ki − σi
ki

)
ρi (1)

where σi =
∑
j Kijρj . It is apparent that when ki = σi the capacity is equal

to the competitive effects and that species reaches equilibrium. If ki < σi then
the species is out-competed and declines. If ki > σi the species grows smoothly
towards its, now reduced, capacity. It is straight-forward to add additional factors
such as growth-decay rates, immigration-emigration terms and predator-prey
interactions, but they add little to the immediate exposition.

2.1 Adding Immunological Detail

When modelling clonal selection, our species will be lymphocyte clones differenti-
ated by receptor configuration. It is intuitive that the receptor configuration will
determine both capacity (antigen-receptor potential) and competition (receptor-
receptor redundancy) as binding-sites are a limited resource.

The common bit-string and geometric models of ligand binding have been
criticised on both biological and computational grounds [3, 17]. In contrast, we
will attempt a general definition, transparent to both biologists and computer
scientists, by modelling epitopes as abstract peptides localised on the surface of
the tertiary structure of proteins (see [28] for a deeper discussion). Let us assume
n such peptides. We then conceptualise receptors ϕi as n-dimensional vectors
with most components zero or negligible. Non-zero components indicate some
affinity to that particular peptide; but binding is a function of multiple pep-
tides being correlated on the protein surface. We model the surface of a protein
as a square-symmetric matrix P where Pij represents the surface correlation of
peptides i and j. Our measure of affinity, or binding strength, is then naturally
embodied in the product 〈ϕi|P |ϕi〉 which is the magnitude of ϕi in the subspace
of Rn defined by P . We will further assume that surfaces are additive, in which
case the entire antigenic environment of the immune system is concisely repre-
sented as the matrix Q =

∑
Pk, the aggregation of individual protein surfaces.

Thus, a clone’s capacity can now be defined as ki = 〈ϕi|Q|ϕi〉 =
∑
〈ϕi|Pk|ϕi〉.

That is, magnitude in the antigenic environment.
Competitive effects between clones are quite naturally embodied in receptor

redundancy, which we again represent abstractly as correlation 〈ϕi|ϕj〉 ∈ [0, 1].
Thus the competitive effect on clone i is an aggregate measure of redundancy
and competitor fitness σi =

∑
j〈ϕi|ϕj〉ρj , which includes a clones “competition”

with itself 〈ϕi|ϕi〉ρi. We collect these correlations in a matrix K that readily
satisfies the conditions for Eq. (1).



3 Competitive Exclusion for Approximation

Our first goal is to demonstrate the empirical and theoretical efficacy of our
simple model in a non-decision-making setting. Approximation is the perfect
domain for this: on the one hand, it can be a precursor to good decision making;
on the other, it is widely applicable in applied and theoretical science. This
further illustrates clearly how the proposed method deviates from the state of
the art in AIS applied to unsupervised learning.

The classical approximation problem formulation is to minimise the metric
distance between a given vector or function x and its approximation x̃ chosen
from some set of elements. Of particular interest here will be additive expansions
of basis functions ϕi ∈ Φ such that

x ≈ x̃ =
∑
i

αiϕi = Φα (2)

The classic metric of error is the `2 norm, leading to a least-squares problem

argmin
α
‖x− Φα‖22 (3)

which, if Φ is an orthonormal basis, has the particularly convenient solution
α = ΦTx, that is, αi = 〈ϕi|x〉. In this case the approximation is exact and easy
to compute. But this convenience comes with two undesirable conditions:

1. The constraint of pairwise orthogonality severely limits the form (and amount)
of components in the additive expansion [7]. This makes representing some
signals extremely convoluted (e.g. representing a sharp, temporally localised
wave with periodic functions). This is also a problem when the coefficients
of ϕi are to be interpreted (e.g. representing data as a sum of latent factors).
In both cases, it is desirable to expand the number and diversity of columns
of Φ, resulting in redundant, overcomplete representations [1].

2. Any least-squares solution α will be dense, that is, every basis will contribute
to the approximation. In many domains, assuming sparsity in the coefficients
is either reasonable or highly desirable. For example, in statistics, one might
appeal to parsimony of the model (i.e. feature selection); in signal process-
ing, an appropriately chosen basis may induce the representation coefficients
to rapidly approach zero, allowing truncation with little perceptible loss in
reconstruction (i.e. lossy compression).

The ubiquity of these conditions leads to sparse approximation. Stated as an
optimisation objective, it is essentially a regularised variant of Eq. (3) that can
be used to finesse the over-determined nature of (1) and bias the solution of (2)
towards extremal coefficient values

argmin
α
‖α‖` s.t. ‖x− Φα‖22 < ε (4)

In principle, the sparsest solution to Eq. (4) can be quantified using the `0
pseudo-norm, which counts the non-zero coefficients in α. Unfortunately, the



function mp (x, Φ)
r = x
α = []
while ‖r‖2 > ε do

i = argmaxi〈ϕi|r〉
αi = 〈ϕi|r〉
r = r − αiϕi

end
return α

Algorithm 1: Matching Pursuit. Repeated subtraction of the most correlated
atom with the residual error. In the classification and regression setting, vari-
ations on this algorithm are Least Angle Regression and `2-Boosting.

combinatorial nature of this formulation makes it NP-Hard [29]. Briefly, there
have been two major thrusts at attacking this problem.

Donoho [12] was the first to show that the `0 and `1 solutions coincide when
‖α‖0 < 1+M−1

2 , where M is the “coherence” of Φ defined as maxi6=j〈ϕi, ϕj〉.
Using the `1 norm, it is (somewhat) straight-forward to relax this combinatorial
optimisation into a quadratic program with linear equality constraints (see e.g.
[38, 5]). In the signal processing literature, this method is known as Basis Pursuit
[6]; in statistical learning, it is called the Lasso [37]. Unfortunately, this rigorous
approach is prohibitive computationally and scales very poorly.

The second approach uses heuristic, greedy algorithms to construct a sparse
representation sequentially. Mallat and Zhang’s [25] Matching Pursuit algorithm
holds a special place in the literature. It is simple, intuitive, and has a rich
history within, and outside of, the field [33, 13, 20, 19]. We outline the procedure
in Alg. (1): the residual error r is repeatedly stripped of structure correlated with
bases until a stopping criteria is satisfied (e.g. number of chosen bases, norm
of the residual etc). In regression and classification problems, this approach is
known as Forward Stepwise Regression and `2-Boosting, respectively. A modern
variation on this idea, Least Angle Regression [14], avoids overly-greedy steps
based on 〈ϕi|rt〉, favouring instead to increase αi until ϕi is no longer the most
correlated with r; at which point a “competing” predictor is introduced to the
representation. It is this notion of competition amongst predictors, bases or
classifiers that we wish to develop here, albeit without myopic greediness.

3.1 Competition and Approximation

Returning to our dynamical system of Eq. (1) we now elaborate on the approx-
imatory capacity of the repertoire under our formulation as a basis. If Φ was
orthonormal, then by definition there are no competitive effects between clones.
The dynamics of ρ smoothly approaches equilibrium where ρi = ki = 〈ϕi|x〉,
as would be expected from any orthonormal system. For a redundant, over-
complete repertoire, there is a trade-off for clones: growth requires maximising
correlation with the antigenic environment (capacity) and minimising correla-



tion with other clones (competition). This makes sense in the approximation
setting: the former reduces reconstruction error; the latter promotes “almost or-
thogonality”, penalising representational redundancy and rewarding diversity. In
contrast to Donoho’s coherence (and similar measures) we need not expect our
basis to satisfy almost orthogonality a priori ; rather the competition dynamics
promote satisfaction in the context of individual signal decompositions.

We can clarify the approximatory behaviour of the repertoire by simplifying
capacity from ki = 〈ϕi|X|ϕi〉 to ki = 〈ϕi|x〉1. It then follows that all numerators
in Eq. (1) can be written simultaneously as

k −Kρ = Φ′x− Φ′Φρ (5)
= Φ′(x− x̃)

which clearly stabilises when x = x̃. Note that this is essentially a restatement of
the least-squares solution ρ = (Φ′Φ)−1Φ′x as (Φ′Φ)ρ = Φ′x. Rather than invert-
ing a matrix we are iterating Φ′Φρ . The logistic equation further introducing
non-linearity and “lag” into Eq. (1) and the stable configuration is not the least
squares solution. The above derivation also shows that the competition vector
σ = Φ′Φρ = Φ′x̃ is equivalent to receptor correlation with the implicit approxi-
mation x̃. Any clone more correlated with the approximation will decelerate and
decay, again, penalising redundancy in the representation.

Extending to the matrix setting ki = 〈ϕi|X|ϕi〉 carries several benefits. With
vectorial data, squaring the capacity promotes additional sparsity by penalising
unfit and boosting fit clones (demonstrated later). Further, when X is an aggre-
gated quantity the matrix representation more correctly represents the sum of
correlated “features”, particularly in sparse data environments. Further still, it
accommodates a richer matrix-based data representation, while degrading grace-
fully in the standard vectorial setting.

3.2 Competition and the Greedy/Global Trade-Off

We have shown that, under a suitable formulation, a repertoire of competing
receptors can collectively approximate the antigenic environment. We have also
highlighted the similar form to the traditional least squares solution and the
crucial sparsity inducing non-linearities. We will empirically validate these prop-
erties in the next section. Here we elaborate on where this method is positioned
in the spectrum of greedy heuristics and global optimisations.

To simply our analysis, we will again let ki = 〈ϕi|x〉 and retain Kij = 〈ϕi|ϕj〉.
Let max(·) return the index of the maximum component, rather than the value.
Now observe that in Alg. (1) the index i1 in the first iteration will be max(k),
simply because r0 = x. On the second iteration

1 In the traditional vectorial data-analysis setting this is reasonable. Using an outer-
product to represent our “surface” 〈ϕi||x〉〈x||ϕi〉 visibly reduces to 〈ϕi|x〉2. Thus we
are simply using the square root of the matrix representation in our current analysis.



i2 = max(Φ′r1)
= max(Φ′(x− 〈ϕi1 |x〉ϕi1))
= max(Φ′x− 〈ϕi1 |x〉Φ′ϕi1)
= max(k − 〈ϕi1 |x〉Ki1)

where Ki1 refers to the i1 column of K. In general, we have

it+1 = max(k −
t∑

j=1

〈ϕit |x〉Kit) (6)

= max(kt)

where kt = kt−1−〈ϕit |x〉Kit . What this derivation makes explicit is the implicit
role that inter-basis correlation plays in the evolution of the Alg. (1). When
a basis ϕit is selected, those correlated with it suffer a drop in their capacity
proportional to their correlation with the signal in the subspace of ϕit

kj(t+1) = kj(t) − 〈ϕj |ϕit〉〈ϕit |x〉 (7)

Crucially, notice that we are now dealing solely the same quantities used in
Eq. (1) – capacity and competition. If we expand Eq. (5) as

k −Kρ = k −
∑
j∈Φ

ρjKj (8)

then it becomes clear that while Alg. (1) greedily sums over the current selec-
tions, weighting by the maximal coefficient values (Eq. 6); in contrast, competi-
tive exclusion sums over all dictionary atoms, weighting by the current coefficient
values ρi. The rest of Eq. (1) simply provides an update rule to have ρi → ki,
subject to competitive effects. So, in contrast to the myopic selective process of
Matching Pursuit, Eq. (1) uses a more informed eliminatory process – evolving
coefficients, i.e. population sizes, in parallel as a dynamical system.

Clearly, simulating the entire potential repertoire is impractical and implau-
sible. Preliminary results (not shown) suggest that redundancy ensures results
are not degraded by simulating a fixed-size repertoire with sampling from the
full Φ. Evolutionary search through Φ is an obvious next step in development.

3.3 Approximation Experiments

In the following experiments we follow a standard protocol. First we randomly
generate an arbitrary over-complete “basis”. From this basis we generate syn-
thetic signals, each a sparse linear combination of basis vectors, adding a small
amount of Gaussian noise. We then compare the approximations found by Match-
ing Pursuit (greedy), Basis Pursuit (global) and competitive exclusion.



For each algorithm, we record the summary statistics (max, min, quartiles,
mean and variance) averaged over 100 signals for

– Sparsity: number of non-zeros components ‖α‖0.
– CPU: time to produce a representation.
– Reconstruction Error: ‖x− Φα‖22
– Synthetic Error: ‖β − α‖22, described below.

Squared reconstruction error is the de facto metric in these types of exper-
iments. However, reconstruction error is only a proxy measure implying that
the algorithm has found a good representation. When using synthetic signals it
is possible to measure the actual error in representation, that is, the error in
selected coefficients and their magnitude. We refer to this as Synthetic Error :
‖β − α‖22 where β is the coefficients used to generate the synthetic datum. In
contrast to pure approximation, this metric can be important when the bases
have application-specific meaning and their coefficients are to be interpreted.
This is illustrated further in Fig. (1).

In Figure (2) we graph the performance of the algorithms in approximat-
ing 100-dimensional signals, each generated from 10 bases selected at random
from a 1000 elements basis. Each population starts with the same initial value
(see supplementary code for further details). We also plot two variants of our
algorithm to illustrate the trade-off discussed in Sect. 3.1: dp uses the regular
dot product as capacity; dp2 squares the dot product. In general, the former
is more accurate but slower and denser, the latter is faster and sparser. It is
apparent that competitive exclusion is, true to its name, very competitive across
metrics. Although simulating dynamics will obviously be computationally more
expensive than greedy approximation, the difference is not as large as one might
expect. Further it is significantly faster than performing optimisation by linear
programming – Basis Pursuit’s CPU time was over 200 seconds and is well out-
side the bounds of the graph. It is interesting to note that in all other respects
dp performs similarly to Basis Pursuit, at a fraction of the computational effort.
At the other extreme, we see that although Matching Pursuit achieves very low
reconstruction error, it does so at significant cost to synthetic error and sparsity.
Recall, each signal is a linear combination of 10 bases. Matching Pursuit, Ba-
sis Pursuit and our own algorithm without quadratic capacity all significantly
under-estimate the true sparsity, employing between 60 and 90 bases. In con-
trast, the quadratic capacity version of our algorithm, as suggested in Sect. 3.1,
is able to drive the sparsity down to around 20, with negligible effect of synthetic
error and a large improvement in time. The cost here is a notable increase in
reconstruction error.

4 Competitive Exclusion for Learning

Statistical learning is simply another application of approximation, so we do not
have to digress too much. The essential difference is that we are now approxi-
mating an unknown function of our signal y = f(x), rather than approximating
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x itself. However, we may still make use of the coefficients of ϕi in approximating
x to weigh its contribution to approximating the decision surface y.

In [28], the authors introduce a novel derivation of the linear classifier, with
immunological interpretation, based on the spectral decomposition of the data’s
feature correlation matrix. The reader is directed to the primary references for
the full mathematical and biological justification, here we simply recreate the
resultant decision function

ŷ = f(x̂) = 〈x̂|XX ′−1|Xy〉 =
∑
i

〈ϕi|x̂〉
〈ϕi|w̃〉
〈ϕi|G|ϕi〉

(9)

If ϕi were the eigenvectors of G = XX ′ =
∑
|x〉〈x| then this would be the

ubiquitous linear classifier. For the same reasons given in Sect. 3, we are inter-
ested in non-orthogonal, overcomplete bases. Technically, only the eigenvectors
are blessed with the property that G = ΦΛΦ′ and G−1 = ΦΛ−1Φ′ because Λ is
the diagonal matrix of eigenvalues Λii = 〈ϕi|G|ϕi〉. Using an argument similar
to that for justifying nearest-neighbour decisions, we assert that this technical
omission can be ignored if the benefits of expanding Φ overcome any costs in
inaccurately approximating G−1. For classification this is entirely plausible, as
approximation errors do not necessarily imply classification errors.

The relation to Eq. (1) lies in the denominator 〈ϕi|G|ϕi〉, which is just the
same “surface representation of the antigenic environment” used in Sect. 2.1.
Thus we see that the decision function involves two other quantities not present
in the purely approximatory setting; but both are still measures of approxima-
tory capacity, receptor correlation or affinity: 〈ϕi|x̂〉 is an intuitive measure of
correlation with the test datum and is thus not so different to what has come
before; 〈ϕi|w̃〉 is a measure of correlation with w̃ =

∑
yixi, the vector measuring

feature-label correlations; that is, the current bias individual features have to-
wards one decision or the other. The immunological interpretation of this vector
is discussed in Sect. 5, here we concentrate on the numerical details.

The leap from linear classifier to non-linear dynamical model of an immune
response now rests on one simple idea. With a slight abuse of notation, let 〈·〉
be upper-bounded by the dot product. That is, as before, this upper-bound is
the capacity ; the actual value 〈·〉 takes in Eq. (9) is the equilibrium popula-
tion emerging from inter-clonal competition dynamics. Thus, according to Eq.
(9), the immune response is the integration across the repertoire of three key
pieces of information about the fitness of each receptor in competing for (i.e.
approximating) different environmental resources: the target of the response x̂;
the antigenic environment of the host G; and what we will call the context of the
response w̃. Notice that G is in the denominator, thus large values are penalised.

4.1 Learning Experiments

It is important to note that we do not think it reasonable to expect Eq. (9)
to perform well in arbitrary classification tasks; it is designed to exploit the
properties of sparse, high-dimensional problems. To validate our algorithm we
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Fig. 3: Learning using competitive exclusion with randomly generated receptors.

use a subset of the UCI newsgroups dataset, producing a task of discriminating
comp.graphics from alt.atheism postings. The high dimensions, size, sparsity
and noise of text data can antagonise classical parametric and non-parametric
techniques. In [27], the immune-inspired algorithm AIRS was shown to perform
no better than random guessing on a similar dataset.

As before we record summary statistics for each algorithm, this time clas-
sification accuracy, testing and training CPU time. These are recorded over a
10-fold, unstratified partitioning of 1000 documents. We compare performance
of our algorithm against the 3-nearest neighbour classifier and the linear classi-
fier because, much like the comparison in Sect. 3.3, these algorithms represent
extremes between which our approach lies. Unlike before, we have no a pri-
ori determined basis to represent the repertoire. In place of more sophisticated
methods, we simply generate 10,000 basis vectors, each from a 3-step uniformly
random walk on G. Thus each basis has three non-zero components. Note that
10, 000 ≈ 5 × 10−7 of the receptor space and we perform no additional search-
ing. We also do not a priori assess receptors with respect to producing good
results. We stress that our goal here is demonstrating the efficacy of competitive
exclusion on randomly generated receptors, not optimising performance metrics.

We plot our results in Fig. (3). At one extreme, the linear classifier’s low
complexity is robust in high dimensions and its parametric model fast to com-
pute decisions. Numerically it is also most accurate, but at the significant cost
of inverting either XX ′ or X ′X, neither of which is small. Including the linear
classifier is the only reason why the dataset has been limited to 1000 documents.



At the other extreme, k-NN is obviously superior in training time (because there
is none) but test time suffers due to nearest neighbour calculations. The neg-
ative effects of many, noisy dimensions also outweigh any benefit in producing
non-linear decision boundaries. Our own algorithm performs comparably to the
k-nearest neighbour, albeit with notable variance caused by the simple-minded
receptor generation process. However, this variance is not enough to call into
question that learning is indeed taking place, even under such severe condi-
tions as uniformly random receptors. Although we generate 10,000 receptors,
only about 50-1500 survive the competitive exclusion process. It is perhaps re-
markable that so few, 3-dimensional random projections are capable of retaining
sufficient representation to compete at all. Notice that, in contrast to the other
algorithms, our scaling properties are insulated from data size and, to some ex-
tent, dimension; being dominated by the size of the repertoire (in time) and the
density of XX ′ (in space). Further, our approach directly tackles the curse of
dimensionality insomuch as the repertoire is not attempting to fill Rn and the
decision function is the aggregation of many low-dimensional decisions.

5 Discussion on Immunological Interpretation

With some exceptions [9, 18, 22, 36] the ecology of lymphocytes has been given
little attention in the immunology literature. Our own path to the presented
model was driven by a desire to make operational some of the influential rhetoric
that has inspired artificial immune systems to date. We discuss this now.

Francisco Varela was the original proponent of the cognitive view of the im-
mune system [39]. He posited that the immune system constructs and asserts
an internal representation of the immunological self. Quite simply, constructing
representations requires building blocks, not prototypical instances, and this is
precisely what basis functions are. The approximatory capacity of receptors-as-
bases is our attempt to quantify these largely philosophical arguments. Similarly,
Irun Cohen has promoted cognitive analogies. The central idea behind his co-
respondence [8] – that coherent systemic decisions can emerge from the interac-
tions of randomly generated, contradictory and individually weak components –
is supported by our results in Sect. 4. Cohen is also a proponent of the blessings
of degeneracy and redundancy [42]. Our abstraction of receptors as bases makes
these these notions operational too. The benefits of redundant bases is what
motivated sparse approximation in Sect. 3. Degeneracy naturally follows from
our notion of affinity as magnitude in a projected subspace: all x will intersect
with several, but not all, subspaces of the ϕi (i.e. poly-clonality); and each ϕi
will intersect with several, but not all, x (i.e. poly-recognition). Degeneracy is
impossible when abstracting affinity as pointwise distance in metric shape-space.

Lastly, Polly Matzinger’s Danger theory [26] has been contentious in both
the immunological and computational literature. Based on our distinction be-
tween peptide-fragments and compound epitopes, the so-called context vector
w̃ in Eq. (9) may provide some insight here. In conjunction with epitope bind-
ing 〈ϕi|P |ϕi〉 inducing B-Cells to proliferate and mutate, the so-called second



signal that activates B-Cells is triggered, under Matzinger’s hypothesis, by the
pro- and anti-response feedback driven by T-Helper and Dendritic cells that,
respectively, recognise and sample peptide fragments and chemical indicators
of pathology from the tissues. Although we do not model the dynamics of this
process, it is easy to see that the feature-class correlations in vector w̃, which
the ϕi also compete over, fulfil much the same role as the second signal. Cer-
tainly, w̃ =

∑
xiyi is a gross simplification, but our model is indifferent to how

the w̃ vector is produced. Seen in the light of the decision function Eq. (9), the
Danger Theory seems, at least, a pragmatic alternative to more convoluted or
teleological explanations of the self-nonself distinction.

Of course, we are not immunologists. How well our abstractions may yield
to biological realism remains to be seen. But we are not aware of another model
that captures so many aspects of the immune response, so concisely.

6 Conclusion

We have reconsidered the foundational principle behind clonal selection, high-
lighting the primacy of competitive exclusion over selection and mutation. Theo-
retical and empirical analysis support that our model is computationally effective
and formally approachable. In addition, we have argued that it represents a step
towards a level of plausibility and sophistication that is lacking in the ad-hoc
hybridisation of evolutionary and instance-based algorithms.

To be clear, we do not wish to abandon the evolutionary aspect of clonal
selection. On the contrary, stochastic search still has a lot to offer in terms of
adapting the repertoire which, in both biology and computation, cannot typically
be realised whole and evolved in unison. But we think it better that this be an
additional feature of artificial immune systems, rather than the foundational
principle from which all else follows. In the future we hope to take this work
in two directions: integrating evolutionary search back into clonal selection; and
developing the dynamical system beyond the rudimentary model presented here.

Reproducible Research

All source code used to produce the results and figures in this paper is available
from http://www.dcs.napier.ac.uk/∼cs268/mcewan2010principles.tgz.
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