
Adversarial Large-scale Root Gap Inpainting

Hao Chen

University of Edinburgh

s1786991@ed.ac.uk

Mario Valerio Giuffrida

University of Edinburgh

v.giuffrida@ed.ac.uk

Peter Doerner

University of Edinburgh

Peter.Doerner@ed.ac.uk

Sotirios A. Tsaftaris

University of Edinburgh

The Alan Turing Institute

S.Tsaftaris@ed.ac.uk

Abstract

Root imaging of a growing plant in a non-invasive, af-

fordable, and effective way remains challenging. One ap-

proach is to image roots by growing them in a rhizobox, a

soil-filled transparent container, imaging them with digital

cameras, and segmenting root from soil background. How-

ever, due to soil occlusion and the fact that digital imag-

ing is a 2D projection of a 3D object, gaps are present on

the segmentation masks, which may hinder the extraction of

finely grained root system architecture (RSA) traits. Herein,

we develop an image inpainting technique to recover gaps

from disconnected root segments. We train a patch-based

deep fully convolutional network using a supervised loss but

also use adversarial mechanisms at patch and whole root

level. We use Policy Gradient method, to endow the model

with large-scale whole root view during training. We train

our model using synthetic root data. In our experiments,

we show that using adversarial mechanisms at local and

whole-root level we obtain a 72% improvement in perfor-

mance on recovering gaps of real chickpea data when using

only patch-level supervision.

1. Introduction

The analysis of the root system architecture (RSA) of a

plant is an important area of plant phenotyping (and breed-

ing) research, as plant roots are responsible for acquiring

water and nutrients from the soil (or surrounding environ-

ment). However, root phenotyping requires apparatuses for

plant root visualization, which remains challenging due to

soil opacity. Destructive root phenotyping (shovelomics),

performed by digging out the roots from the soil, requires

significant human resources and does not offer long-term

observations of the same plant. Non-destructive root visual-

ization methods, such as MRI imaging [35] or X-ray tomog-

(a) (b) (c)

Figure 1. (a) A digital image of a root in rhizobox; (b) segmenta-

tion mask of root; (c) our inpainting result. Orange box empha-

sizes the gaps present on the root due to occlusion of soil.

raphy [24] are expensive and require specialized equipment.

Growing roots in visible, soil-based containers, such as rhi-

zoboxes [4], and imaging them in greenhouses using digi-

tal cameras (refer to Figure 1(a)), is a more affordable and

robust method. RSA parameters could be estimated and an-

alyzed on segmentation masks of root images, where roots

are separated from the background (as in Figure 1(b)).

However, in rhizoboxes the full RSA is not visible: root

segments may contain discontinuities, which are present in

the segmentation mask of a root, as shown in Figure 1(a)

and (b). The presence of such gaps restricts the extraction

of finely-grained RSA parameters, e.g. tip counts and num-

ber of secondary roots. Therefore, resolving gaps on seg-

mentation masks is of significant value to extract more de-

tailed information from the RSA. Human annotation would

not be efficient enough, as it is tedious and error-prone. It

is difficult for humans to decide which segments should be

connected together, as a root may have thousands of tips

and branches, and due to occlusion by soil. We argue that

the problem of filling the gaps in root system architecture

can be solved with the use of machine learning.

Plant phenotyping tasks have been recently approached

with machine learning: e.g. plant segmentation [22], leaf

segmentation [34, 39, 42] and counting [7, 10]. In several

tasks, the performance with deep learning has been consid-
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erable [38]. Herein, we propose a solution for root gap fill-

ing problem using deep convolutional neural networks.

The problem of recovering gaps in the RSA can be ad-

dressed with image inpainting. Image inpainting is a tech-

nique of a long history and has numerous applications,

e.g. damaged paintings restoration and objects removal,

which refers to modifying an image in an undetectable way.

Study of inpainting algorithms started in [3] and became

prosperous from [2] where inpainting of low computation

by matching the corrupted image with nearest-neighbour

patches within training data was proposed. More recently,

deep learning based inpainting has been delivering both re-

alistic and natural inpainting results [13, 27, 40].

Relating inpainting techniques with root phenotyping,

the authors in [5] proposed a deep learning method to au-

tomatically fill in the gaps in chickpea root segmentation

masks, which were obtained from imaging system. The

model was trained on a synthetic dataset, as no ground truth

labels exist for chickpea roots. Although promising results

were shown in filling gaps on chickpea root, three main lim-

itations still exist. Firstly, the employed Mean Absolute Er-

ror (MAE) reconstruction loss produces blurry results, es-

pecially when dealing with complex patterns. Secondly,

domain mismatch between synthetic root and chickpea root

results in poor performance of the model on chickpea full

images, as synthetic root differs from chickpea root in terms

of scale, texture, and gap patterns. Thirdly, due to the rela-

tively large dimension of synthetic root images which can-

not be fitted in GPU memory during back-propagation, the

authors used root patches to train their model. This in-

troduced bias of semantic understanding about the root as

the model does not have a global view of the RSA, which

should contain only one fully connected component. Yet in

root patches, several root segments caused by cropping may

exist (see Figure 3(c) ground truth for example).

In this paper, we propose a model (Figure 2) to address

these limitations. We cast the root inpainting task as a clas-

sification problem, where Cross Entropy loss is optimized

and a categorical distribution is imposed on the model. We

improve the capability of our model to inpaint complex gap

patterns and produce sharper results by adding a discrimina-

tor that looks at local patches [11, 14]. To circumvent limi-

tations due to GPU memory and endow the model with the

ability to obtain feedback from local (patch-based) choices

based on performance on the whole root (global-based), we

adopt an additional global discriminator that interacts with

our inpainting generator through Policy Gradient [36]. Fi-

nally, to bridge the domain mismatch between synthetic

root and chickpea root data, we randomly augment syn-

thetic root during training to make them more visually sim-

ilar to chickpea roots. We evaluate our model using image

fidelity scores (Mean Square Error) and proxy metrics. All

the results show that our model has better generalisation ca-

pacity and could produce higher quality inpainting results.

Our contributions are summarized as follows:

• We use adversarial learning to train the network to re-

cover missing root segments, including one local dis-

criminator and one global discriminator.

• We adopt Policy Gradient method in reinforcement

learning to include a global view of the whole root dur-

ing training, avoiding memory issues due to large im-

age dimensions and allowing non-differentiable pro-

cess to be used during training.

• We demonstrate our model could perform better in in-

painting chickpea root segmentation masks without ac-

tually training on real data.

The rest of the paper is organized as follows. Sec-

tion 2 discusses related work; Section 3 details our proposed

method and Section 4 shows our experimental results. Fi-

nally, Section 5 concludes the manuscript.

2. Related Works

2.1. Generative Adversarial Networks

Generative Adversarial Networks (GANs) proposed in

[11] and its variants show a great breakthrough in captur-

ing multi-modal data distributions and they have been em-

ployed to solve a multitude of computer visions tasks, such

as image generation [28, 29], image super-resolution [16],

and image inpainting [13, 27].

The general framework of GANs consists of a generator

network G and a discriminator network D competing in a

minimax game [11]. G is a generative network that opti-

mizes Jensen-Shannon divergence between empirical data

distribution pdata and generated data distribution pG. The

generator tries to produce realistic-looking images w.r.t. a

latent distribution pz , while the discriminator aims to clas-

sify (and detect) between real and generated data.

Although GANs have achieved outstanding results, they

can be unstable during training and suffer from mode col-

lapse [11, 32]. To overcome these problems, several vari-

ants of GANs have been proposed, optimizing other objec-

tives, such as Pearson χ2 divergence in LSGAN [37], and

Wasserstein distance in WGAN [1]. More general, any f -

divergence could be used to optimize GANs [25]. We adopt

least square loss [37] to train our model as it produces im-

ages of high quality and is more stable during training. To

further stabilise training of our discriminator we use Spec-

tral Normalization (SN) [23] on each convolutional layer,

which regularizes the weights.

2.2. Inpainting with Deep Learning

In [27], the Context Encoder, an unsupervised adversar-

ial network for inpainting, was proposed: the encoder com-

presses the corrupted image into a compact representation,
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Figure 2. Model Architecture and Data Pipeline. (a) Augmentation is performed on a synthetic root. (b) Non-overlapping patches are

extracted from the augmented root. (c) Random gaps introduced into patches to make corrupted patches input. (d) Generator network G

that inpaints. (e) The prediction of the probability map obtained by G. (f) Local discriminator classifies inpainted patches and ground truth

patches. (g) Bernoulli sampling is conducted on probability maps from G to obtain binary inpainted results, which are put back to the

transformed root where they were extracted from to obtain an inpainted whole root. (h) Global discriminator computes the similarity score

over the complete whole root and inpainted whole root.

whereas the decoder reconstructs a complete version of it.

The network is optimized end-to-end with a Mean Square

Error (MSE) supervised loss in combination with an ad-

versarial loss to obtain sharper images. However, Context

Encoder assumed that the region to be inpainted is given,

which is not the case in our application. In [33], the authors

demonstrated that line drawings have enough structure to al-

low the model to automatically detect and inpaint the gaps

without the need for masks indicating the missing regions.

In [40], random masks of gaps of any shape and at any po-

sition were used for training. Combining with a patch dis-

criminator, their model could conduct free-form inpainting.

While a discriminator that improves local inpainting qual-

ity could be used, the authors in [13] include an additional

discriminator for global inpainting consistency.

Plant root has a similar thin-structure as line drawings;

thus, may have enough structure to be inpainted automat-

ically. Based on this, authors in [5] employed the fully

convolutional encoder-decoder model defined in [33] to re-

cover gaps from the RSA of chickpea plants. As ground

truth inpainting labels for chickpea roots were not available,

their model was trained using a synthetic root dataset [18].

Due to fully supervised training using Mean Absolute Error

(MAE) loss, the model tends to average all possible out-

comes together when making predictions, which results in

blurry inpaintings and poor performance of the model when

complex gaps are present. Inspired by [13], in this paper we

add two discriminators into our system, one for inpainting

quality and another one for global consistency of root, to

alleviate the problems brought by MAE.

2.3. Policy Gradient

Policy Gradient (PG) is an approach broadly used in re-

inforcement learning [36], where a policy π (e.g. a neural

network) predicts probabilities of action selection πθ(a|s),
given a representation of state s as input and its policy pa-

rameters (weights) θ. A value function Qπ(s, a) finds the

scalar reward r given the action a selected, and the weights

are optimized according to maximum expectation of the re-

ward. In this paper, we focus on REINFORCE, i.e. Monte-



Carlo Policy Gradient, for updating the weights [36]:

∇θLPG(θ) = ∇θE[Q
π(s, a)πθ(a|s)]

= ∇θE[r log πθ(a|s)]
(1)

One can see that the policy network can learn without the re-

quirement of the value function to be differentiable or back-

propagation through the value function. The gradients are

computed from logarithm of the policy output, which are

scaled by corresponding scalar reward. PG has been used

in many other fields other than reinforcement learning, es-

pecially in text generation [21, 30, 41], where directly opti-

mizing metrics on sentence level is highly desirable. How-

ever, the process of sampling words from their probability

vectors to form a sequence is non-differentiable. The au-

thors in [6] used REINFORCE to sidestep this problem in

adversarial training of image captioning, where a discrim-

inator is trained to compute the similarity between textual

descriptions generated from the generator and the given im-

ages. The similarity score was used as a reward when train-

ing the generator using PG.

Motivated by this work, we include an additional global

discriminator in our system, who calculates the similarity

score between inpainted whole root and complete whole

root and feedback reward with generator through PG.

3. Methodology

We develop our model using a U-net like [31] fully con-

volutional model that follows an encoder-decoder structure

as shown in Figure 2(d). We use Cross Entropy (CE) loss

with softmax activation for the last layer of our inpainting

network G to solve the root inpainting task as classification

problem, as root segmentation masks contain binary values

(either background or root), rather than a regression prob-

lem where continuous values are predicted.

As ground truth inpainting labels are not available in

chickpea root dataset, we train our model to inpaint a syn-

thetic root dataset [18]. We augment the synthetic root

dataset to make them more chickpea-like. Gaps of random

shape are introduced at random locations on the root to pro-

duce corrupted inputs and complete target training pairs.

Two discriminators are included in our model, one lo-

cal discriminator DL and one global discriminator DG. DL

classifies real/fake at local patch level, i.e. 128 × 128, that

is, the local discriminator informs to the generator the good-

ness of the produced inpaintings, such that the generator can

improve the quality of the inpainted images. DG computes

a similarity score between the inpainted roots and ground

truth ones. When updating the weights of the generator,

DG is functioning on whole roots level and feeds the infor-

mation back to the generator through Policy Gradient [36].

The generator is thus encouraged to produce patch inpaint-

ing results that improve the completeness of the whole root.

Our pipeline is shown in Figure 2. In the following sec-

tions, we detail how we augment synthetic data for training,

the design of our model, and the objectives we used.

3.1. Dataset and Augmentation

Dataset. Obtaining labeled data from real RSA is diffi-

cult, error-prone, and time-consuming. Inspired by [19, 8],

we use publicly available synthetic root data that is artifi-

cially generated instead to train our model [18]. This syn-

thetic dataset contains dicot and monocot roots of large res-

olution (see Figure 2(a)). Since the original images are

saved in JPEG format, compression artifacts are removed

as described in [5]. Directly training on such large full

images would lead to GPU memory issues during back-

propagation. Therefore, instead of using full images for

training, we extract non-overlapping patches.

Augmentation. Although a model trained on this synthetic

root dataset has been illustrated that it could also inpaint

chickpea root images [5] , domain mismatch still exists be-

tween chickpea and synthetic root images in terms of root

scale, root texture and gap patterns. Chickpea roots are

characterized by high tortuosity, whereas synthetic roots

are smoother and more regular [5]. Furthermore, gaps on

chickpea root usually leave relatively random gap patterns

(edges). In [5], the authors train the model by introducing

structural square gaps, where the edges of gaps are mostly

vertical, leading to overfitting of the model by only recog-

nizing such edges. To bridge the domain mismatch, we aug-

ment the synthetic dataset. For a synthetic root image, we

first skeletonize it to obtain a structure of the root, and then

we randomly add noise onto the root skeleton edge to ob-

tain serpentine textures. Dilation of random iteration is then

applied to root skeleton to obtain various root thicknesses.

This process makes the synthetic root similar to the real

chickpea RSA. After the transformation, we extract patches

of different sizes, i.e. from 128× 128 to 384× 384, which

are re-scaled to 256 × 256 to capture the scale variability.

We then introduce gaps of random shapes at random loca-

tions on the root to obtain training pairs, where gap masks

are made according to the algorithms provided in [9, 40]

that leave more random gap patterns.

3.2. Inpainting Generator

The generator network G is a fully convolutional net-

work which has an encoder GE and decoder GD, with a

bottleneck in between. In the encoding path, a corrupted

root patch is downsampled using convolutional layers of

stride 2, where the relatively high-resolution root patch, i.e.

256 × 256, is mapped into a latent space of smaller di-

mension. In the decoding path, the generator reconstructs a

complete root patch using the latent code coming from the

bottleneck. We use skip connections [31] to allow the shar-

ing of features learned at shallow layers between encoder



and decoder to preserve information lost during down sam-

pling. These skip connections also provide better gradient

flow to the model. The last layer of the decoder is a convo-

lutional layer producing a feature map with 2 channels. A

softmax activation is then applied on the final feature map

to obtain a probability map. The loss is computed between

the probability map and training ground truth labels using

cross-entropy (CE) to maximize the likelihood of training

data distribution. The formulation of the CE objective is:

Lce = Ex̂∼px̂
[log(G(x̂))] + Ex̂∼px̂

[1− log(G(x̂))] (2)

where x̂ is sampled from corrupted data distribution px̂.

3.3. Local Discriminator

Mean Square Error (MSE) and Mean Absolute Error

(MAE) reconstruction losses tend to produce blurry results

in image generation problems [14, 27]. We argue that CE

loss suffers from the same problem as it also fits single-

modal distribution to the model, at which all possible out-

comes are averaged together. This results in poor perfor-

mance of the model to deal with complex gap patterns, as

there are numerous possible inpainting solutions, the model

does not know what to do and would leave it as a gap (refer

to Figure 3 baseline model results).

To obtain sharper results, we use a local discriminator

network DL to learn a data-driven loss. Normally, a dis-

criminator takes the inpainted image from the generator or

a ground truth image as input, and learns to discriminate

between these two. However, as overall low-frequency fea-

tures could already be captured by the CE loss, we only

need the discriminator to focus on local high-frequency de-

tails as CE tends to average them. Thus, we adopt a Marko-

vian discriminator as in [14], which classifies a 128 × 128
patch in an image as real or fake. The discriminator is run

convolutionally across an 256 × 256 patch, where all out-

comes are averaged to obtain the final score for the patch.

We replace the sigmoid cross entropy loss function in the

vanilla GAN [11] with least square loss [20], as it has a

more stable training dynamic and enables the model to pro-

duce higher quality results. We add Spectral Normaliza-

tion (SN) [23] layer for each convolutional layer in our local

discriminator, except for the last one. The SN layers con-

strain the weights of each convolutional layer, which shares

a similar idea of WGAN [1], limiting the Lipschitz constant

of the classification function learned by the discriminator.

More specifically, the formulation of the local adversarial

loss is:

LLocalDadv = Ex∼px
[(1−DL(x))

2]

+ Ex̂∼px̂
[DL(G(x̂))2],

(3)

LLocalGadv = Ex̂∼px̂
[(1−DL(G(x̂))2], (4)

where px is the empirical distribution of the training data.

3.4. Global Discriminator

Since the model is trained at a patch level, it has never

seen the appearance of a complete whole root. When the

model makes predictions on an input image, it may pro-

duce results of high inpainting quality but may lack full-

root-level completeness (see Figure 3(a) for an example).

Therefore, a global discriminator that can judge inpainting

results on whole root level is desired, where good inpainting

results should not only be consistent within a patch but also

improve the completeness of the whole root. DG is used at

both patch, when updating its own weights, and at global

level, when updating the weights of the generator G.

Due to memory issues introduced by training models on

large images and the existence of a non-differentiable pro-

cess during training, i.e. thresholding the probability map

to obtain binary output and placing the resulting patch back

into the full image, we adopt Policy Gradient [36]. We ap-

proximate the gradient for the generator from the global

discriminator, where back-propagation on full images can

be avoided, and where non-differentiable functions can be

used in training process.

We view our generator as a policy network, governed by

its weights. It takes corrupted root patches as input, and

produces probability map patches, indicating the probabil-

ity of each element being a root pixel. A Bernoulli sam-

pling is then conducted on the probability maps to obtain

binary inpainting results. Afterward, the inpainted patches

are put back to the whole root according to locations repre-

senting where they come from to obtain an inpainted whole

root. The global discriminator takes the inpainted whole

root and original complete whole root as inputs, transform-

ing them into a latent space of dimension 512 through a

mapping function f . The dot product of these two latent

features are computed and a sigmoid activation is employed

on the results to obtain the similarity (reward) score of these

two whole roots. We formulate this process as:

r(X, X̂) = σ(f(X), f(X̂)), (5)

where we use X to denote the whole root examples from

which the patches used for training the generator were ex-

tracted. X̂ represents inpainted whole root examples com-

posed by the sampled probability maps.

To avoid back-propagation on full images while updating

the global discriminator DG, we still use patches to train it

to minimize the similarity error. In contrast, the generator

is trained with reward from DG on whole root images. We

train G and DG with the cross entropy loss, as the last layer

of DG is a sigmoid function:

LGlobalDadv = Ex1,x2∼px
[log(r(f(x1), f(x2)))]

+ Ex̂1∼px̂
[log(1− r(f(x̂1), f(x2))],

(6)

LGlobalGadv = E
X̂∼p

X̂
,x̂∼px̂

[r(f(X̂), f(X)) log(x̂)], (7)
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Figure 3. Qualitative results comparison on patch level. We use different colours to indicate different segments caused by gaps. (a) and (b)

are synthetic root examples. (c) is a chickpea root example. A white box emphasizes local differences.

where both x1 and x2 are complete patches examples but

extracted from different root and x̂1 are corresponding

probability maps generated by generator network G.

Given an input image of size H ×W , we define the fea-

ture extraction function f of DG as a combination of the

encoder part of the generator GE , an additional 1 × 1 con-

volutional layer that imposes a linear transformation of the

features maps from GE to H
4

× W
4

× 512, and an aver-

age pooling layer over each feature map which supports DG

to accept images of different dimensions (as shown in Fig-

ure 2(h)). For each image, the output from f is a vector of

dimension 1 × 512 irrespective of the image’s dimensions.

We assume that the encoder of our generator could detect

the gaps present on the root and there is no need to learn

another network to conduct the same task. Noteworthy is

that the encoder part of the generator GE is updated twice

within an training iteration, when updating the global dis-

criminator weights and generator weights.

3.5. Total Training Objectives

The gradient for updating the generator comes from:

(i) the supervised cross entropy inpainting loss; (2) patch

discriminator loss; (3) policy gradient of the reward from

global discriminator. The final training loss for the genera-

tor is:

LG = Lce + λ1LLocalGadv + λ2LGlobalGadv, (8)

where λ1 and λ2 balance the influence of each loss.

4. Experiments

Model Architectures. For the generator G, we adopt the

same architecture that is detailed in [5], except the last con-

volutional layer which has 2 filters instead of 1. A softmax

activation is applied to the feature maps produced by the

last convolutional layer to obtain probability maps. For the

local discriminator DL, we use 5 consecutive convolutional

layers with a stride of 2. Each convolutional layer has a

kernel size of 5. The number of filters of the convolutional

layers in DL follows [64, 128, 256, 256, 256]. The global

discriminator DG consists of a mapping function f we de-

fined in Section 3.4. DG functions sequentially on 2 input

roots to extract feature vectors of them, where the dot prod-

uct of 2 feature vectors is calculated and sigmoid activation

is applied to obtain similarity.

Training details. Our model is implemented in Pytorch

[26]. Training data pairs are created from mixed dicot and

monocot synthetic root images [5]. We optimize eq. (8)

for the generator, eq. (3) for local discriminator DL and

eq. (6) for global discriminator DG. We set λ1 = 4e−3

and λ2 = 2e−3 in our experiments. Adam [15] optimizer is

adopted for both generator and discriminators with differ-

ent learning rate [12], i.e. 2e−4 for generator and 4e−4 for

discriminators. The model is trained for approximately 36

hours on a single NVIDIA TITAN Xp GPU, yet inference



Metrics MSE # Pixel Diff. # Connected Component Diff.

Models Overall Within Gaps
g.t. - input

(before inpaint)

g.t. - pred.

(after inpaint)

g.t. - input

(before inpaint)

g.t. - prediction

(after inpaint)

Synthetic

Baseline 0.0042± 0.003 0.8069± 0.167

694.7± 388.2

257.4± 182.6

9.9± 4.8

1.9± 3.5

Ours (w/o global) 0.0027± 0.002 0.7845± 0.169 190.9± 125.3 0.9± 2.4

Ours (w/ global) 0.0025± 0.002 0.7289± 0.171 161.4± 113.8 0.3± 0.7

Chickpea

Baseline 0.0035± 0.002 0.9136± 0.083

1,171.5± 259.9

226.2±126.1

8.3± 3.0

1.1±1.0

Ours (w/o global) 0.0033± 0.002 0.8723± 0.084 215.2± 122.8 0.4± 0.5

Ours (w/ global) 0.0028± 0.002 0.8427± 0.073 185.7± 115.3 0.3± 0.5

Table 1. Comparison of synthetic root patches (N = 1500) and chickpea patches (N = 150) using MSE loss, number of pixel difference

and number of fully connected component difference. We compute the difference between ground truth and input, and ground truth and

predictions. For chickpea patches, we visually selected a set that appears complete. We set λ2 = 2e
−3 for including global discriminator.

on a 256× 256 patch takes only a few milliseconds.

Evaluation setup. We evaluate our model and compare

with the baseline in [5] with qualitative and quantitative re-

sults on synthetic patches, real chickpea patches, and chick-

pea whole root images. We test models on 1500 synthetic

patches that are randomly selected from our augmented syn-

thetic whole root images containing both dicot and monocot

roots, and 150 chickpea patches, which were manually se-

lected to avoid not including gaps, in Section 4.1. MSE

loss over the full patch and MSE only within gaps are com-

puted respectively to measure the image fidelity between

inpainted results and ground truths. Proxy metrics, such

as difference of the number of pixels and difference of the

number of fully connected components are also used. Ex-

periments about inpainting quality on 25 full real chickpea

root images are conducted in Section 4.2. We use the num-

ber of fully connected components to evaluate the complete-

ness of the inpainted results. We also use the root analysis

software Root Image Analysis-J (RIA-J) [17] to measure

several traits, i.e. the root length, tip counts and convex hull

area, to show how they are ‘recovered’ by our models.

4.1. PatchLevel Results of Real and Synthetic Root

Here, we test our model on 1500 synthetic patches and

150 real chickpea patches. The synthetic patches are ob-

tained from random selection from the synthetic roots in

our test set, which contains dicot and monocot equally.

The chickpea patches are chosen manually from full chick-

pea root to ensure they are as complete (and without gaps)

as possible so that image fidelity scores and difference of

proxy metrics could be computed.

We show a number of qualitative comparisons in Fig-

ure 3 between our model, where the global discriminator is

turned off (i.e. λ2 = 0) and a baseline model [5]. Root

segments resulting from discontinuities are colored, where

the less number of colors indicates a more complete root.

From these results, one can observe that the baseline model

has poor performance when dealing with complex gap pat-

terns: it could not inpaint them as there are too many pos-

sible results and the baseline model does not know what

to inpaint. By combining the baseline model with a local

patch discriminator, there is an improvement already shown

in terms of the number of fully connected components. A

local discriminator helps the model to inpaint more accu-

rately, yet it is not powerful enough, leaving some gaps. A

global discriminator further boosts performance, by provid-

ing inpainting results that makes the root more complete.

These observations hold also quantitatively across a rep-

resentative testing set as the comparisons in Table 1 shows.

Image fidelity measurements such as MSE and pixel differ-

ence are computed. Lower MSE loss and lower pixel dif-

ference, indicate the model is inpainting more accurately,

according to the ground truth. To show the capability of the

models to recover root segments, we compute the difference

of the number of fully connected components, which should

be as close as to zero. We performed a paired t-test when

comparing the results of our adversarial model and baseline

model, where a highly significant difference is shown with

a two-tailed p value < 0.0001 (highlighted as a bold font).

The superiority of combining local and global adversarial

losses is statistically evident, where our model could inpaint

roots more precisely; pixel difference has been significantly

decreased and the number of fully connected components

are reduced to be under one (on average).

4.2. Complete RootLevel Results of Chickpea

It is more difficult to evaluate results of whole chickpea

roots as no ground truth exists. However, we carefully select

25 real chickpea whole root images. We highlight that there

is no ground truth on these chickpea whole root images and

the model has never seen real (chickpea) images.

We display qualitative results in Figure 4. The baseline

model could inpaint several gaps present; but shows worse

performance compared to the proposed. Even using only a

local discriminator, larger and more complex gaps can be

inpainted compared to baseline.

On these 25 real images, we also assess improvement

from a phenotypic trait preservation perspective as de-

scribed previously in Section 4. We compute the relative

improvement for each metric between the inpainted output



Input Baseline Ours (w/o global) Ours (w/ global)

(a)

(b)

Figure 4. Qualitative results comparison on whole root level. We use different colours to indicate the different segments caused by gaps.

(a) and (b) are examples of real chickpea roots inpainted with the method in [5] and two variants of the proposed method without and with

global discriminator.

Baseline Ours (w/o global) Ours (w/ global)

# Fully Conn. Comp. (%) 58.82±38.8 63.91±47.4 68.88±55.5

Root Length (%) 7.84±7.6 7.16±7.0 8.1±8.4

Tip Counts (%) 20.00±10.5 25.00±14.9 29.2±18.4

Convex Hull Area (%) 60.9±7.8 63.9±10.0 70.2±10.6

Table 2. Comparison of real chickpea whole root results (N = 25)

in terms of relative improvement (after inpainting) on the number

of fully connected components, root length, tip count, and convex

hull of inpainted results compared to original corrupted ones.

and before inpainting, normalised by the metric value be-

fore inpainting. As shown in Table 2, our model can pro-

duce inpainting results that have lower number of fully con-

nected components (an indication of being more complete),

which is statistical significant over the results of baseline

model, indicated by a paired t-test. The improvement on tip

counts and convex hull area is considerable (albeit statis-

tically not significant, probably due to small sample size).

The original chickpea roots have many segments, resulting

in inaccurate tip counts, which our model could ‘repair’ ef-

fectively. Also, inpainted results from our model have larger

convex hull area, indicating more discontinuities shown in

original chickpea root are reconnected together in inpainted

ones.

5. Conclusion

We present an effective approach for filling gaps in the

roots visualized via affordable plant root phenotyping sys-

tems. Our approach is trained in an adversarial way, with a

local discriminator to encourage local high-quality inpaint-

ing results and a global discriminator to produce inpaint-

ing results with a global root view. We include global view

of root through Policy Gradient [36], which is the first at-

tempt of combining reinforcement learning techniques with

large-scale image inpainting. Our results are comparable to

state-of-the-art results on thin-structure inpainting.

Future works should focus on including real data during

training, with a mechanism that involves some of the real

data could help improve the results. Finally here we used

proxy metrics to judge performance but ultimately human

expert evaluation can judge whether our models improve

root structure preservation.
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