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Abstract

Deep learning is making strides in plant phenotyping

and agriculture. But pretrained models require significant

adaptation to work on new target datasets originating from

a different experiment even on the same species. The current

solution is to retrain the model on the new target data im-

plying the need for annotated and labelled images. This pa-

per addresses the problem of adapting a previously trained

model on new target but unlabelled images. Our method

falls in the broad machine learning problem of domain

adaptation, where our aim is to reduce the difference be-

tween the source and target dataset (domains). Most classi-

cal approaches necessitate that both source and target data

are simultaneously available to solve the problem. In agri-

culture it is possible that source data cannot be shared.

Hence, we propose to update the model without necessar-

ily sharing the data of the training source to preserve con-

fidentiality. Our major contribution is a model that reduces

the domain shift using an unsupervised adversarial adapta-

tion mechanism on statistics of the training (source) data.

In addition, we propose a multi-output training process that

(i) allows (quasi-)integer leaf counting predictions; and (ii)

improves the accuracy on the target domain, by minimis-

ing the distance between the counting distributions on the

source and target domain. In our experiments we used a re-

duced version of the CVPPP dataset as source domain. We

performed two sets of experiments, showing domain adap-

tation in the intra- and inter-species case. Using an Ara-

bidopsis dataset as target domain, the prediction results ex-

hibit a mean squared error (MSE) of 2.3. When a different

plant species was used (Komatsuna), the MSE was 1.8.

Figure 1. Domain shift representation: two datasets consisting of

the same semantic objects have different representation. To reduce

the domain shift, we considered the following domain adaptation

scenario. a neural network is pretrained to perform leaf counting in

a dataset (source domain). The trained model is given to someone

who wants to use it with their data. The model is fine tuned on

the target data, using adversarial domain adaptation. Our model

does not require direct access to source data, but only their image

representation (features).

1. Introduction

Plant phenotyping focuses on the characterisation of

plants by analysing visual traits. The large-scale analysis of

plants is intractable when performed manually, as it is time-

consuming and error-prone [9]. Image-based plant pheno-

typing can help reduce effort in train extraction, but requires

the development of robust algorithms to obtain accurate

predictions [36]. Machine learning has been recent.ly em-

ployed to tackle plant phenotyping problems, such as plant

segmentation [20], plant stress assessment [31], plant image

synthesis [12, 44], leaf segmentation [26, 27, 29, 41, 44],
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and leaf counting [1, 7, 10, 11, 16].

The power of machine learning stems on the ability to

learn a function f(·) that maps the data x ∈ X to desired

values y ∈ Y . Typically, a dataset D = {X ,Y} comes with

data and annotations and the function f can learn a (non-

linear) relationship between these two sets: this is known

as supervised learning. However, it is known that when

trained on a source dataset may not work with adequate pre-

cision on unseen target data. This is typically known as the

generalisation problem. When the distributions between the

data sets differ this is known as the domain shift problem.

In Figure 1, we show a graphical representation of such a

problem: two datasets representing the same semantic ob-

jects (in this case, plants), are mapped into two different

clusters in the feature space. The distance between these

two clusters is known as domain shift.

Here, we are interested in a simple, but very practical,

scenario. How can we take a pretrained model (trained on

annotated source data) and optimise it on an unseen target

dataset, assuming we do not have access to the labels in

this new dataset? We are particularly interested in the case

that the optimisation on the target domain assumes no direct

access to the source dataset. This is a scenario particularly

prevalent now, due to concerns of confidentiality between

data holders. Even if we want to share models, we may not

be able to share source data and annotations.

In this paper, we propose a method that aims to improve

performance of leaf counting models in unseen scenarios,

using adversarial domain adaptation to reduce the domain

shift between two datasets (c.f. Figure 1). Inspired by [38],

we propose a method to learn to count leaves on a new tar-

get dataset, without providing the actual labels (no anno-

tations). We start from a network pretrained on a dataset,

known as source domain (DS). Using adversarial learning,

we can learn leaf counting on a new dataset (target domain

DT ), using the knowledge the network has already learnt

when pretrained on the source domain. The purpose of

adversarial learning is to reduce the domain shift between

source and target datasets.

The contribution of this paper are multi-fold:

• We apply unsupervised domain adaptation in a plant

phenotyping problem, for the first time (to the best of

our knowledge). Once a deep network is pretrained

to perform leaf count in a known source dataset, our

method optimises the network parameters to perform

leaf counting in an unseen dataset without having ac-

cess to the labels.

• During the domain adaptation, the source datasets

are not required (only their image representation is

needed). In case our model would be pretrained on

private data, restricted-access images do not need to

be disclosed, ensuring data confidentiality.

• Instead of global regression [7, 10, 16], we propose

a multi-output regression, which brings the following

benefits: (i) allows (quasi-)integer leaf counting, by

constraining the network with a properly designed reg-

ulariser; and (ii) allows to learn a distribution of the

predicted leaf count. The actual leaf counting is ob-

tained using the SumLayer, which sums all the contri-

butions of the multi-output regression layer.

• We impose a prior distribution over the leaf count-

ing prediction, as the multi-output regression allows to

learn a distribution over the counts. This is achieved by

minimising the Kullback-Leibler divergence between

the predicted and a prior distribution .

The reminder of this paper is structured as follows. Sec-

tion 2 discussed the related works. The proposed method is

described in Section 3. Then, Section 4 shows experimen-

tal results demonstrating the effectiveness of our approach.

Then, Section 5 concludes the paper.

2. Related Works

As of now, deep neural networks are the state-of-the-

art of machine learning models, as they have been demon-

strated to work well for plant phenotyping problems as well

[37], such as leaf segmentation [26, 27, 41, 44] and leaf

counting [1, 7, 10, 16] show extraordinary performance.

Although deep learning has been demonstrated to perform

well on the leaf counting, still lacks of generalisation on un-

seen datasets. One way to solve the generalisation problem

is to perform domain adaptation: a network is pretrained

to perform leaf counting on a dataset (source domain), then

the learnt knowledge is adapted to work on another dataset

(target domain).

A lot of research has been devoted on the domain adap-

tation problem. Firstly, we discuss related works in domain

adaptation (a recent survey can be found in [6]). Then, we

will describe related works utilising domain adaptation and,

more general transfer learning, in plant phenotyping. Al-

though domain adaptation is a special case of transfer learn-

ing, they are different problems.

Following the taxonomy in [6], we focus to solve domain

adaptation in the homogeneous case, where source DS and

target DT domains are similar (their representations are in

the same space, but are far due to the domain shift).

2.1. Domain Adaptation

With the emergence of big data and machine learning,

domain adaptation has become an important area of study,

as a way to lessen the burden of acquiring annotations [23].

With the increasing prevalence of deep learning, numer-

ous domain adaptation approaches have been proposed for

many visual tasks, such as object recognition [15], image



classification [38], and face recognition [30]. A first domain

adaptation approach to transfer knowledge from a source to

a target dataset is the finetuning: a network is trained on DS

on a given task; this pretrained network is used as starting

point for DT . Although it is a successful technique, fine-

tuning is supervised and requires an annotated target do-

main. In [24], the authors present how fine-tuning can be

performed in an unsupervised fashion in an image retrieval

problem. However, they rely on reconstructed 3D models

of the data to make a dataset of positive and negative exam-

ples, which are then used to fine tune the network.

When labels for the target domain YT are not available,

the typical approach is to match the feature space of the tar-

get domain with the space learnt from the source domain.

Let ΦS be the representation space of the source domain,

ΦS = {φS(x) | x ∈ XS}, and ΦT the representation space

of the target domain, the task that domain adaptation algo-

rithms solve is to reduce the distance between ΦS and ΦT :

min
Φ{S,T}

d(ΦS ,ΦT ). (1)

A common approach regularly deployed is to break down

the problem into two steps. The first one is to train a su-

pervised deep neural network, and the second one is to op-

timise domain shift. Different choices of the function d(·, ·)
lead to different methods. In [18], the authors minimise

the maximum mean discrepancy between source and target

feature space. In [33], the correlation alignment (CORAL)

[32] is used to minimise the covariance between the two

domains. In [38], the authors propose the Adversarial Dis-

criminative Domain Adaptation (ADDA) to minimise the

domain shift using adversarial loss [13]. In this case, a dis-

criminator network is responsible to differentiate between

features extracted from the source and the target domain,

while the feature extractor tries to make the target feature

space as similar as the source domain. A similar approach

is the Domain-Adversarial Neural Network (DANN) [8],

where the authors propose a model that solves two tasks at

the same time: (i) classification in the source domain; and

(ii) domain classification (source vs. target). The network

is optimised such that the features are discriminative for the

task, but are non-discriminative for the domain classifica-

tion. Therefore, if the domain classifier cannot differentiate

between features coming form the source or target domain,

it means the domain gap has been reduced.

All of the aforementioned approaches solve the domain

adaptation problem in a classification task, whereas primar-

ily leaf counting is a regression task. A recent work ad-

dressing domain adaptation on regression task is described

in [4]. The authors propose a convex optimisation frame-

work for sample re-weighting. Although their approach can

be used on the regression task, it assumes the availability of

source data during the domain adaptation and it still lacks

of end-to-end learning integration.

Therefore, we decided to build upon the ADDA

paradigm [38] for this paper for the following reasons: (i) it

is a general framework using adversarial learning (ideally,

any neural network can be used); (ii) it does not require ac-

cess to the source dataset when the network is optimising

for the target domain (only the image representation ΦS are

required); (iii) the learning from source and target are sep-

arated (useful when the model needs to be deployed); (iv)

it is unsupervised in the target domain (no expert manual

annotations are required).

2.2. Domain Adaptation in Plant Phenotyping

Although the problem of domain shift in plant pheno-

typing was recently emphasised in [39], domain adapta-

tion in plant phenotyping has not been extensively explored

and investigated. In [35], a plant classification problem is

proposed, where a GoogLeNet is pretrained on ImageNet,

which is then fine tuned on the CVPPP dataset (Arabidop-

sis vs Tobacco). A similar approach is followed in [7, 10],

where a ResNet-50 is pretrained on ImageNet, then fine

tuned to predict leaf counting. In particular, in [10] the fine-

tuning is used to perform leaf counting in other datasets.

Given a network pretrained on only the Arabidopsis images

in the CVPPP dataset (A1, A2, and A4), the network is fine

tuned on other datasets (e.g., Tobacco A3).

Although these can be seen as solving the domain adap-

tation problem in plant phenotyping, all of them require la-

bels on the target domain. Therefore, we are the first to

present an algorithm to perform unsupervised domain adap-

tation in plant phenotyping applied to leaf count.

3. Proposed Method

The methodology we propose is split into three steps, as

displayed in Figure 2. First, we pretrain a neural network as

in [7] to achieve leaf counting, where we extend the model

via the multi-output regression task and SumLayer. Then,

we detail how we can perform domain adaptation from one

dataset to another, using adversarial training. Lastly, we

describe how the trained model can be finally used to obtain

leaf counts in the target domain.

3.1. Pretraining

The model used to be trained for the regression task con-

sists of two subnetworks: (i) the feature extractor; and (ii)

the leaf counting network (LCN in Figure 2(1)). Follow-

ing the successful performance shown in [7, 10], we use

a ResNet-50 [14] as a feature extractor (network architec-

ture details are in [7, 14]). The output feature vector of the

ResNet-50 has a dimension of 2048, which is provided to

the Leaf Counting Network (LCN) (details of the architec-

ture are provided in Table 1).



Figure 2. Outline of our proposed method, based on [38]: (i) pre-

training using supervised learning on the source domain XS ; (ii)

unsupervised adversarial domain adaptation (DA) using the fea-

tures from the source domain ΦS and the unlabelled data of the tar-

get domain XT ; (iii) inference in the target domain. Solid lines in-

dicate (sub-)networks which weights are optimised, whereas faded

dashed lines indicate (sub-)networks with frozen parameters. The

greek letter Σ indicates the presence of the SumLayer.

Layer Name Input Size Output Size Activation

Dense D1 2048 1024 ReLU

Dense D2 1024 512 ReLU

Dense D3 512 50 Sigmoid

Sum O 50 1 -

Table 1. Architecture details of the Leaf Counting Network.

3.1.1 Multi-output layer for integer counting

The layer D3 in the LCN (c.f. Table 1) is a fully-connected

layer of size m using the sigmoid l = σ(x) as activation

function. Thus, the output l of the D3 layer is in the range

of [0, 1]. We can constrain the network to output num-

bers very close to either ‘0’ or ‘1’ and thus achieve (quasi-

)integer counting. To achieve this, we constrain the deriva-

tive ∇xσ(x) of the sigmoid function, as the derivative of a

function is directly related to its steepness. Observing Fig-

ure 3, the first derivative of the sigmoid function reaches its

minimum (thus the least steep points) when the function ap-

proaches ±∞. Hence, we add a constraint to the learning

process penalising for the first derivative of σ(x), encour-

aging the network to minimise it as follows:

Lint = λint‖∇xσ(x)‖2 = λint‖σ(x)(1− σ(x))‖22.

We set in our experiments λint = 0.02.

3.1.2 SumLayer

As said in the previous section, the output of the D3 layer

is a sequence of m numbers between [0, 1], but it does not

Figure 3. Sigmoid activation function and some derivatives. The

function reaches its steepest point at x = 0 (red derivative). The

function is flatter when x → ±∞ (green derivatives).

provide the actual leaf counting. We obtain the actual leaf

counting by simply summing all the nodes in the D3 layer.

Formally, the output of the network ŷ is computed as:

ŷ =
m∑

k=1

lk. (2)

A visual representation of the SumLayer is shown in Fig-

ure 4: the multi-output regression provides a sequence val-

ues in [0, 1] (sigmoid activation function), then they are

summed to obtain the final leaf counting prediction.

We can use the output of Equation (2) to train the net-

work using the mean squared error as loss function [7, 10]:

J (y, ŷ) =
1

2

N∑

i=1

(yi − ŷi)
2
. (3)

3.2. Adversarial Learning

Originally proposed in [13], the main concept of ad-

versarial learning is to train a network, called generator,

to produce data as similar as possible to the train data.

Specifically, let P (s), ∀s ∈ Xs, be the probability of the

source space, a network G(t; Θ), ∀t ∈ Xt, parametrised

by the set Θ, learns a distribution P (G(t; Θ)), such that

P (G(t; Θ)) = P (s).
The parameters Θ are optimised with the help of another

network D(x; Ψ), called discriminator, which has the task

to classify whether the input data x come from the source

or target distribution. Adversarial networks take their name

from the fact that the generator competes with the discrim-

inator in a zero-sum game: G has the task to produce data

as similar as the training set, while the discriminator’s task



Figure 4. Graphic representation of the multi-output regression

and the SumLayer. The output of the network is a total number

of leaves and can be trained using MSE loss function.

is to tell what is real and what is generated (fake). In our

case, the generator network is the ResNet-50, which takes

an image as input and provides its representation as output.

The role of the discriminator is to be able to differentiate

features coming from the source and target domain. By

doing that, the generator is encouraged to output features

extracted from the images in the target domain as similar as

the features extracted from the images in the source domain.

The parameters of generator and discriminator are alter-

nately updated, optimising the following objectives:

min
Ψ

Es∼XS
[F(D(G(s; Θs); Ψ), 1)]+

Et∼XT
[F(D(G(t; Θt); Ψ), 0)] ,

(4)

and

min
Θt

Et∼XT
[F(D(G(t; Θt); Ψ), 1)] , (5)

where F is the adversarial loss, Ψ are the parameters of the

discriminator network, Θs are the parameters of the gener-

ator pretrained on the supervised task of leaf counting (c.f.

Section 3.1), and Θt are the parameters of the generator for

the target domain to be optimised (Θt are initialised with

Θs). The function F takes two parameters as input: the out-

put of the generator, namely the representation Φs,t(x) of

an input image, and either ‘0’ or ‘1’. The discriminator can

be seen as a domain classifier (similar as in [8]), where ‘0’

means target domain and ‘1’ means source domain. When

the parameters Θt are optimised, the network leans how to

produce features as similar as the ones obtained from the

source domain, minimising Equation (1).

Different choices of F lead to different adversarial net-

work formulations [22]. The vanilla adversarial loss is the

cross-entropy [13]. Other possible choices are the Wasser-

stein loss [2] or least squares loss [19]. In our experiments,

we used either the cross-entropy as in [13], or the least

squares loss [19] as in Equation (3) function F . In general,

Layer Name Input Size Output Size Activation

Dense DD1 2048 1024 LeakyReLU

Dense DD2 1024 512 LeakyReLU

Dense DD3 512 1
Linear

Sigmoid

Table 2. Discriminator network architecture design. The activation

of the last layer depends on the loss function. In case of MSE

[19], linear activation has to be used. In the case of cross-entropy,

sigmoid activation is necessary instead [13, 38].

the cross-entropy H(p, q) is defined as:

H(p, q) = −
∑

k

pk log(qk). (6)

3.2.1 Avoiding the posterior collapse

In semi-supervised or unsupervised learning, algorithms

may learn wrong predictions on the target domain during

training. In the worst case scenario, an algorithm can out-

put the same prediction for any inputs: this phenomenon is

known as posterior collapse [42]. To cope with it, we opti-

mise the generator such that the distribution of the predicted

leaf counting is similar to a prior distribution. Therefore,

inspired by [34], we minimise the Kullback-Leibler diver-

gence DKL, jointly with the adversarial learning.

Let us assume that the output of the layer D3 (c.f. Ta-

ble 1) l is a matrix b ×m, where b is the batch size, and m

is the output dimension (50 in our case, Table 1). In partic-

ular, we define ls the output of the D3 layer obtained from

the source domain. Likewise, lt is the output of the layer

obtained from the target domain dataset. We can define

ps ≡ p(ls|xs) = 1

b

∑b

r=1
ls(r, ·), where ls(r, ·) indicates

the r-th row in the matrix (e.g., we are averaging the matrix

ls w.r.t. the batch size). In this way, we obtain the prob-

ability that the node lk is active. Similarly, we can define

pt =
1

b

∑b

r=1
lt(r, ·). In this way, ps(k) indicates the prob-

ability that the k-th node in the D3 layer can be activated.

Therefore, assuming ps to be our prior distribution over the

labels in the target domain, we can minimise the following

Kullback-Leibler divergence:

min
Θt

DKL(ps||pt) = min
Θt

m∑

k=1

ps(k) log
ps(k)

pt(k; Θt)
. (7)

This loss function is minimised alternately with the optimi-

sation of Equations (4) and (5).

3.2.2 Summary of the domain adaptation architecture

Generator: The architecture of the generator is the ResNet-

50 [14] used during the pretraining [7, 10] and its weights



Figure 5. Samples of the images taken from the adopted datasets.

Top row: CVPPP A1 (left), A2 (centre), and A4 (right). Middle

row: Multi-modal imagery. Bottom row: Komatsuna images [40].

are initialised with the pretrained model learnt in the pre-

training phase (c.f. Section 3.1).

Discriminator: The architecture of the discriminator is

similar to the leaf counting network and we summarise it in

Table 2. We set the parameter α = 0.2 for the LeakyReLU

activation function [43]. As shown in Figure 2, the output

of the generator is provided to the discriminator as input.

Regressor: The regressor network is the LCN network

without the SumLayer (c.f. Table 1). As for the discrimina-

tor, the output of the generator is provided to the regressor

network as input.

3.3. Learning and Inference Process

The learning and inference processes are displayed in

Figure 2 and we summarise them below.

Pretraining: The ResNet-50 with the LCN are trained on

the source domain on the leaf counting task (supervised

learning). The parameters of the ResNet-50 are initialised

with the ImageNet weights [17] to reduce overfitting. The

parameters of the ResNet-50 Θs are used for the domain

adaptation step, whereas the parameters of the LCN are

stored for the inference time.

Domain adaptation: The features of the source domain

are extracted (last layer of the ResNet-50), using the pa-

rameters Θs, as well as the leaf count to compute the prior

distribution. These data are needed to perform the domain

adaptation on the target domain. Then, the parameters of

the generator network Θt are initialised with Θs and Equa-

tions (4), (5) and (7) are alternately optimised. During this

Dataset Input Range Multi-output MSE

CVPPP* [0, 255] No 2.02 ± 0.16

CVPPP* [−1, 1] No 1.98 ± 0.28

CVPPP* [−1, 1] Yes 1.80 ± 0.23

Table 3. Comparison of different data normalisation approaches

and the use of the proposed multi-output regression on the

CVPPP* dataset. Overall, the use of data normalisation to [−1, 1]
and the multi-output regression obtain the best performance.

Unrounded |DiC| Fractional Diff

Single-output 1.02 ± 0.91 0.23 ± 0.14

Multi-output 0.77 ± 0.85 0.20 ± 0.14

Table 4. Single-layer vs. Multi-output evaluation w.r.t. two met-

rics: (i) difference in count on unrounded predictions; and (ii) dif-

ference between the unrounded and rounded prediction. The dif-

ference between single- and multi-output w.r.t. the two metrics is

statistically significant (p-value < 0.0001).

phase, the generator learns to output features as similar as

the ones extracted from the images in the source domain.

The aim of the adversarial learning is to minimise Equa-

tion (1). To improve the performance of the generator, we

schedule two iterations of Equation (5) for every iteration

of Equations (4) and (7).

Inference: The ResNet-50 is initialised with Θt, whereas

the LCN uses the pretrained weights. Now, leaf counting

can be performed using images of the target domain.

4. Experimental Results

In our experiments, we used the following datasets,

whose examples are displayed in Figure 5:

1. CVPPP*: we used the training Arabidopsis images of

the CVPPP 2017 dataset A1,A2, and A4 [3, 21]. (We

used the star * symbol to emphasise that we are not

using the entire CVPPP dataset, as A3 was excluded

as train and test set because it contains Tobacco plants

– different species than the Arabidopsis.);

2. MM: we used the RGB Arabidopsis images of the

Multi-Modal Imagery for Plant Phenotyping [5] (intra-

species domain adaptation).

3. Komatsuna: we also used the Komatsuna plant

dataset [40] (inter-species domain adaptation).

To assess the performance of our proposed model, we

use the CVPPP evaluation metrics [10, 29]. Assuming ǫi =
yi − ŷi to be the difference between the ground truth and

algorithmic prediction, the evaluation metrics are:

• Difference in Count [DiC]: 1

N

∑N

i=1
ǫi;

• Absolute Difference in Count [|DiC|]: 1

N

∑N

i=1
|ǫi|;



Intra-species Inter-species

Method DiC↓ |DiC|↓ MSE↓ %↑ R2 ↑ DiC↓ |DiC|↓ MSE↓ %↑ R2 ↑

FT 0.02± 0.68 0.40± 0.56 0.47 64 0.84 0.49± 1.21 0.94± 0.91 1.71 38 0.45
No FT −13.91± 4.21 13.91± 4.21 211.22 0 0.09 −7.05± 2.42 7.05± 2.42 55.53 0 0.01

Ours (XE) −0.81± 2.03 1.68± 1.39 4.78 20 0.02 −0.78± 1.12 1.04± 0.87 1.84 26 0.46
Ours (LS) −0.39± 1.49 1.18± 0.98 2.36 26 0.34 −3.72± 1.93 3.72± 1.93 17.50 2 0.38

Table 5. Domain adaptation experiment for the CVPPP* to MM (Intra-species) and CVPPP* to Komatsuna (Inter-species) experiments.

We compared our proposed unsupervised method with fine-tuning [FT] (supervised) and without fine-tuning (i.e., pretraining on CVPPP*

and testing on MM without any adaptation. We used two adversarial losses: [XE] cross entropy, as in Equation (6); [LS] mean squared

error, as in Equation (3). We underline the best results between the two variants of our proposed method.

↓: best values are closer to 0 – ↑: best values are closer to 1 (or 100 in the case of Percentage Agreement).

• Mean Squared Error [MSE]: 1

N

∑N

i=1
ǫ2i ;

• Percentage Agreement [%]: 1

N

∑N

i=1
1 [ǫi = 0];

• Coefficient of Determination [R2]: measures the good-

ness of the predicted leaf count w.r.t. a fitted model

(e.g., linear);

where 1 [·] is the indicator function, which returns ‘1’ if the

error ǫi = 0, otherwise returns ‘0’.

4.1. Setup

As in [7], we perform histogram normalisation as a pre-

processing step and rescale all the images to a size of

320 × 320 pixels. In addition, we also normalise the in-

put images from a range to [−1, 1].1 Before we train our

network on a target domain, we validate our preprocess-

ing approach and multi-output layer on the CVPPP* dataset

[3, 21]. In our experiments, we set the size of the D3 layer

to 50 (c.f. Table 1), as we know that the leaf count does not

exceed 50 in the employed datasets. However, this can be

extended to accommodate higher leaf counting, if needed.

We split the training dataset into 4 training-validation

sets, as in [7]. The trained network was then tested on the

CVPPP training set (A1, A2, and A4 only). As the test

set is the same for all the splits, we computed the average

and standard deviation of the MSE. In Table 3, we report

the experimental results on CVPPP* data and it can be no-

ticed that data normalisation to [−1, 1] and the use of the

multi-output regression obtain the best results. This valida-

tion experiment reinforces the benefits of our multi-output

regression layer.

We also evaluated the capability of our network to per-

form (quasi-)integer predictions. It is important to point out

that, as reported in [11], we round the network output to

the nearer integer before computing the evaluation metrics.

Here, we consider the unrounded leaf count prediction ỹ,

s.t. ŷ = round(ỹ). To assess the effectiveness of our model

to output numbers close to their rounded version, namely

ŷ ≈ ỹ, we introduce the following metrics:

1GAN Hacks: https://github.com/soumith/ganhacks

• Unrounded |DiC|: 1

N

∑N

i=1
|y − ỹ|,

• Fractional difference: 1

N

∑N

i=1
|ŷ − ỹ|.

We evaluated these metrics on the CVPPP* testing dataset

and we report the results in Table 4. Overall, our multi-

output obtains more accurate predictions and close to the

integer numbers. We run a paired t-test and the differences

of the two methods are statistically significant (p-value <

0.0001) for both of the metrics.

4.2. Domain Adaptation Experiments

In this section, we present two experiments to demon-

strate the performance of our approach. We use the

CVPPP* dataset as a starting point to pretrain the leaf

counting network, then we adapt for the MM dataset (intra-

species domain adaptation) and for the Komatsuna dataset

(inter-species domain adaptation). We show experiments

using two variants of our proposed method, which they

differ from the adopted adversarial loss: (i) cross entropy

(shortened as XE) as in [13, 38]; and the least squares loss

(shortened as LS) as in LSGAN [19].

4.2.1 CVPPP* to MM (Intra-species DA)

Here, we use the CVPPP* dataset as source domain and the

MM dataset as target domain. For the pretraining, we used

the hyper-parameters setup as in [7, 10], whereas for the un-

supervised domain adaptation part, used the setup as in [38].

We compare with finetuning [FT], which establishes a best

performance bound as a fully supervised transfer learning

approach. Specifically, the network is trained on CVPPP*

and then fine tuned on MM. We also test on the MM dataset

using the pretrained network on CVPPP*, without perform-

ing any domain adaptation step [No FT].

Experimental results are shown in Table 5 (intra-species

columns). Overall, our method drastically outperforms the

no-finetuning when the LS loss is used, with an MSE of

2.36, which edges closer to the best case of full supervi-

sion. In the other variant, where the XE loss was used, the



trained model providing unreliable results on the target do-

main. Overall, when LS was used in our experiments, our

method learned to perform leaf counting on an unseen tar-

get dataset of Arabidopsis plants (intra-species experiment).

In the next section, we will perform a similar test, where

the target dataset contains plants of different species (inter-

species domain adaptation experiments).

4.2.2 CVPPP* to Komatsuna (Inter-species DA)

In this section, we perform domain adaptation from the

CVPPP* to the Komatsuna dataset [40], which samples are

displayed in Figure 5. In this experiment, we assess the

ability of our method to perform inter-species domain adap-

tation for leaf counting. We run this experiment keeping the

same setup as before, except for the loss function. Specif-

ically, we used the cross-entropy loss (Equation (6)), as it

proved to perform better than the MSE loss in this case.

Moreover, we used the same data setup as in [10].

We report the experimental results in Table 5 (inter-

species columns). It can be observed that the overall MSE

is below 2 for our method and is very close to the finetun-

ing performance (XE loss). When the LS loss was used, we

noticed that the training was unstable providing unreliable

results. We also compared with the case when no-finetuning

or domain adaptation is performed and the predictions are

very inaccurate. Therefore, our method is also able to per-

form leaf counting in the inter-species domain adaptation

case, using the cross entropy loss, opposed as the inter-

species experiment (Section 4.2), where the training with

the LS loss provided the best results.

5. Conclusion

Deep neural networks have shown considerable success

in addressing plant phenotyping analysis tasks. However,

they require significant amount of annotated data to be

trained effectively and they lack generalisation capabilities

on previously unseen datasets. In this paper, we tackle these

problems training a network to perform leaf counting on un-

seen unlabelled datasets.

Inspired by [38], we used the unsupervised adversarial

domain adaptation framework to infer leaf count on another

target dataset, which differs from the source training set.

Our method is divided into three major steps (c.f. Figure 2).

First, we pretrain the leaf counting network on the source

domain. Then, we use adversarial training to learn image

representation on the target domain as similar as the fea-

tures extracted from the source domain. Lastly, the adapted

network is used to count leaves on the target domain.

We presented two different experiments to assess the per-

formance of our domain adaptation approach: (i) CVPPP*

to MM [intra-species]; and (ii) CVPPP* to Komatsuna

[inter-species]. Overall, as summarised in Table 5, our

method can learn to count leaves on unseen data using the

proposed unsupervised adversarial domain adaptation.

This paper introduces several novelties. Since labels in

the target domain are unavailable and this might cause pos-

terior collapse [42], we impose a prior distribution over the

predicted leaf counting during the adaptation step. We min-

imise the Kullback-Leibler divergence between a prior and

the predicted labels in the target domain during the domain

adaptation step (c.f. Figure 2(2)).

To learn a distribution over the leaf counts, we introduce

the multi-output regression, opposed to the state-of-the-art

single-output regression [1, 7, 10, 16]. The multi-output re-

gression layer uses a sigmoid function as activation, there-

fore it outputs a sequence of 0s and 1s. The final leaf count-

ing is obtained with SumLayer, which agglomerates the pre-

dictions of the multi-output layer. Besides the learning of

a leaf counting distribution, the multi-output layers brings

another benefit. We can regularise the learning process to

push towards (quasi-)integer leaf counting prediction, by

constraining the first derivative of the sigmoid function in

the multi-output layer.

During the domain adaptation, we do not assume direct

access to the source dataset, but to the features extracted

from it. We also do no assume direct access to the leaf

count in the source domain, but we assume to know only

the obtained distribution (after training). Therefore, if our

network is pretrained on a private dataset, data do not need

to be provided along with the network for the domain adap-

tion step. In case our model is trained on restricted datasets,

our approach promotes data confidentiality.

Future works should focus on stabilising the adversar-

ial training. In our case, intra- and inter-species experi-

ments had best performance using two different loss func-

tions (MSE and cross-entropy respectively) to address the

difficulty of training adversarial networks [25, 28].
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