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Abstract — This paper describes a Hardware Description Language (HDL) based fully
customizable module for real-time Infrared (IR) hot spot detection and feature extrac-
tion from a video stream. The aim of the research was to investigate and evaluate
possible solutions for object detection using connected component labelling that could
be implemented within a streaming video embedded processing platform as a hardware
accelerator. The proposed algorithm is based on a single-pass approach; this guarantees
real-time processing together with very low resource utilisation. The hardware imple-
mentation was verified on a Xilinx XUP V2P (XC2VP30 FPGA) development board
with an IR camera module interfaced as a real-time video source. The system was tested
with an image resolution of 640 x 480 processing input data at a speed of 30fps which

was limited by the bandwidth of the camera.
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I INTRODUCTION

The availability of low cost thermal infrared cam-
eras increases the viability of their inclusion in
automated pedestrian detection and tracking sys-
tems. Conventional vision processing systems re-
quire fast processing and memory access as they
struggle to cope with variation in lighting, shad-
ows, reflections and other ambient image condi-
tions. In contrast infrared images, although lower
resolution, largely contain emitted radiation from
hot bodies which is more tolerant to changes in am-
bient conditions. Infrared image processing does
however have to deal with other issues such as
slow variations in background temperature, cloth-
ing, and lower signal to noise. In this paper we
examine some of the unique aspects of processing
infrared images as we move toward the hardware
implementation of a real-time pedestrian detection
and tracking system.

Specifically, this paper reports the investigation
into and evaluation of a hardware implementation
of a Connected Component Labelling (CCL) algo-
rithm that can be used for hot spot (object) de-

tection and feature extraction within an infrared
image processing system. CCL algorithms oper-
ate on binary images, thus the raw (grey scale)
image is reduced to a binary image after noise re-
duction and thresholding operations prior to CCL.
The traditional Connected Component Labelling
approach is to first scan the binary image frame
and assign each pixel with a preliminary label. A
second image scan is then used to ensure all the
connected pixels within component are assigned
with the same label. Once the components are la-
beled, feature extraction can be applied once all
the objects are assigned. This paper describes a
technique where all the objects are detected and
their features are extracted in a single image scan.

The customisable hardware available using Field
Programmable Gate Array (FPGA) technology al-
lows for concurrent processing on a parallel archi-
tecture. This means that FPGAs are an excellent
means for the implementation of image processing
algorithms. FPGAs can be disadvantaged by lim-
ited on-board memory leading to longer processing
times if external memory has to be accessed.

In this paper a description of the very fast and
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Fig. 1: Surveillance system data flow. (a) background
model. (b) current frame. (c) background removal.
(d) intensity thresholding. (e) object detection.
(f) output image frame.

memory efficient technique for object detection
and feature extraction from infrared video streams
is given. This particular implementation is in-
tended for FPGA based processing platforms and
was designed as a self contained processing unit
that could be applied to video processing systems
as a hardware accelerator for object detection.

The outline of this paper is as follows: Section II
introduces the reader with common algorithms for
the CCL and feature extraction. Memory require-
ments are provided and a comparison of the al-
gorithms is made. Section IIT gives a detailed de-
scription of the single pass algorithm developed for
hardware implementation as standalone fully cus-
tomizable module. The following Section IV gives
implementation details with synthesis results and
experimental results. Section V formulates conclu-
sions and plans for future work.

II DETECTION ALGORITHMS

An automated surveillance system for pedestrian
detection with an infrared camera as a video source
was described in [1]. The system digitizes video
stream provided by an IR camera module and pro-
cesses input data as follows: update the adaptive
background model, subtract input image in order
to extract regions of interest (ROIs), perform in-
tensity thresholding and finally detect infrared hot
spots (pedestrians). A block diagram of the data
flow can be seen in Figure 1.

a) Labelling Algorithms

Object detection algorithms, often referred to
as Connected Component Labelling (CCL) algo-
rithms, can be categorised according to whether
they scan the entire image to locate components,
or trace the components contour or process a num-
ber of pixels at a time in parallel. The scan algo-
rithms can be further classified by the number of
scans that is needed for each image. They differ
in execution time as well as in memory require-
ments. The following subsections briefly describe
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Fig. 2: A typical label collision

the main algorithms, identifying the one most suit-
able for hardware implementation.

Most CCL algorithms classify groups of con-
nected pixels (connected component) as disjoint
objects with unique identifiers (labels).  This
operation can be described as assigning a unique
label [ taken from a set of integral values L C N,
to each connected component. Thereby an input
binary image frame B € Z2, where all the pixels
p € B correspond to the background or to the
foreground objects (F, = 0 or Fy = 1 respec-
tively), is transformed into a frame where each
pixel is represented by a decimal value (label)
which is the identifier of the connected component
CC} it belongs to. Here 1 < k < K and K
defines the total number of connected compo-
nents within the frame. Labelling of B can be
written as g : B — N, where g(z,y) is described as:

oa9) = {f b BB = I 1)
r if B(z,y) € CCy.

Object features such as position, size, etc. can-
not be extracted until the image is labeled com-
pletely. Also, the common problem for most of
the labelling algorithms are label collisions caused
by the ”u” shaped objects, depicted in Figure 2.
Due to the raster scanning nature of the image in
digital systems, pixels are labeled on the basis of
local information (adjacent pixels). Both pixels pq
and ps have no direct neighbours. On the first
scan, there is no information that pixels p; and ps
belong to one object: they will be assigned new la-
bels. Once p3 is encountered, labels 2 and 1 need
to be merged and previously labeled pixels need
to be reassigned with a unique label for the whole
object. This is the reason why most labelling al-
gorithms need to scan the image frame more than
once. Further subsections describe also how these
algorithms deal with the label collision problem.

Two Pass (Classical) Algorithm

This algorithm, introduced by Rosenfeld and Pflaz
[2], uses two scans through the image frame in or-
der to label all the objects. The main disadvantage
is the memory consumption (which grows rapidly



with increasing image complexity) and the need for
an auxiliary memory to store all the label equiv-
alences. It has been successfully implemented in
Handel-C [3].

Multiple Scan Algorithm

Haralick presented an algorithm [4], which does
not require storage for label equivalences. Ambi-
guities caused by label collisions are resolved on a
local neighbourhood basis during iterative forward
and backward image scans. This algorithm was
popular for hardware implementations because of
the locality of calculations and the low memory
requirements [5, 6]. However, due to the number
of multiple scans varying on image complexity, it
cannot be employed for real-time video processing
applications.

Parallel Processing Algorithm

Algorithms from this group are designed for spe-
cialised parallel processing platforms. They often
use one logical processing element per pixel. Al-
though these algorithms can be implemented on
FPGAs, they require a great amount of logic re-
sources [7], even for low resolution images, and are
not efficient for labelling streaming video signals.

Contour Tracing Algorithm

Chang and Chen [8] developed a new algorithm
based on contour tracing that uses a single pass
through the image frame to label all the objects.
It was proved that this gives better performance
and uses less memory. Since objects are labeled
while their contour is traced, there are no label col-
lisions and memory is not needed for label equiva-
lences. However, because features can still be ex-
tracted, this algorithm works well for applications
which do not need uniquely labeled object masks.
FPGA implementation requires two scans through
the buffered image frame, and there is a slight in-
crease in hardware complexity compared with the
classical algorithm, but it is an interesting alter-
native. A successful implementation can be found
in [9].

Single Pass Algorithm

Single pass labelling is a new approach which does
not label images in the traditional manner where
an output frame is created [10]. Instead, objects
are detected and their features are extracted dur-
ing the image scan. The main advantage of this
algorithm is it does not require an input image to
be buffered, and it does not use any auxiliary mem-
ory to store labeled objects. In order to perform
object detection, a single row buffer has to be em-
ployed together with a line buffer and data table
where object features are stored. The single scan
ensures real-time processing together with very low
memory requirements. was described in [11].

Tab. 1: Memory requirements for labelling algorithms
with up to 255 objects per image
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Fig. 3: Memory requirements for labelling algorithms with
up to 255 objects per image

b) Summary

There is a wide range of CCL algorithms suitable
for hardware implementation. Only the classical,
contour tracing and single-pass algorithms can en-
sure real-time video processing due to constant
processing time per frame. The first two algo-
rithms require an input image frame to be buffered,
and an auxiliary memory for storing labelling re-
sults in order to extract features. Assuming that
every object encounters one label collision, the to-
tal amount of required memory for three different
image sizes with up to 255 objects per image was
calculated and can be found in Table 1; Figure 3
gives a graphical representation.

As can be seen, the single-pass algorithm out-
performs other algorithms with the lowest memory
requirements, it also processes an image frame at
least twice faster that other algorithms.

IIT INFRARED SPOT DETECTION ALGORITHM

The IR spot detection algorithm proposed in this
paper is based on a single-pass CCL. During the
initial segmentation, ROIs (here hot spots) are ex-
tracted from the input image. This data is pro-
vided to the detection unit accordingly to raster
scan on the pixel basis, where values 0 and 1 re-
fer to the background and foreground objects re-
spectively. The aim of the detection module is
to distinguish disjoint groups of connected pix-
els as separate objects and calculate their features
of interests such as position, size, bounding box
and centre of gravity simultaneously while input
data is provided to the system. This approach
avoids the need for buffering the input image and
producing an output frame with labeled objects,
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hence the memory requirements are significantly
reduced. Since object features are extracted dur-
ing the single scan, this approach provides results
at least twice faster than other algorithms.

a) Architecture

In order to separate various objects in a single pass,
a multiple memory unit and fully pipelined data
flow architecture is required. The block diagram
of the detection module is depicted in Figure 4.
The detection module employs two control units:
LABEL CONTROL and MERGER & DATA CONTROL,
also four separate memory arrays: BUF FIFO,
LOOKUP TABLE, DATA TABLE and MERGER STACK.

- LABEL CONTROL keeps information about two
adjacent pixels to the input pixel denoted by
E. Both pixels at B and D are analysed together
with E in order to calculate preliminary label
for the current pixel. The identifier is assigned
according to the classical CCL algorithm:

(a) do nothing when all the adjacent pixels
are background pixels;

(b) if only input pixel was found as fore-
ground element E=1, assign a new label;

(c) if only one from the neighbouring pixels
was already labeled and E=1, assign its
identifier to the current pixel;

(d) if both adjacent pixels were already la-
beled with different identifiers and E=1,
assign E with lower identifier and for-
ward both labels to the subsequent con-
trol unit for further analysis;

- MERGER & DATA CONTROL manages label
merging and feature extraction; this unit
controls all the memory modules within the
detection unit;

- BUF FIFO is a fifo buffer that stores labels for
each pixel in the previous row; already read la-

bels are ’overwritten’ with the data from cur-
rent row;

- LOOKUP TABLE is a translation table that gives
a pointer to the particular label (label equiv-
alence) read from the BUF FIFO; all the newly
created labels are pointing to themselves, this
particular memory module makes sure that
previously merged labels use current identi-
fiers;

- DATA TABLE stores extracted features for all
the detected objects;

- MERGER STACK this particular module keeps
pairs of labels that need to be merged;

b) Object Detection

Let us consider the binary image depicted in Fig-
ure 5. During the first (I) line scan, the BUF row
buffer is filled with 0s. Once the pixel p; is encoun-
tered, BUF is updated, a new entry in the LOOKUP is
created for label 1 pointing to itself, also the DATA
is updated with newly calculated features for the
object 1. This procedure is repeated for pixels ps
and ps with labels 2 and 3 respectively. Once the
pixel py is encountered, both labels 3 and 2 need
to be merged. A lower index (2) is chosen, all the
features for labels 2 and 3 stored in DATA are com-
bined and the DATA is updated at 2, position 3 is
cleared. The LOOKUP is also immediately updated
with label 2 at location 3. However, there is a
risk that a series of mergers will occur, which may
lead to the situation where cells within the LOOKUP
will be pointing to already dead labels. To ensure
the LOOKUP is updated with recent labels before the
next line scan, both labels 3 and 2 are pushed onto
the MERGER STACK. A similar situation occurs at
pixel ps. LOOKUP is immediately updated at index
2 with label 1, the DATA at position 1 is overwrit-
ten with newly calculated features, labels 2 and 1
are pushed onto the stack. Since MERGER STACK is
not empty at the end of the IV line scan, LOOKUP
is revised with label pairs popped from the stack
in the reverse order than they were pushed onto
the stack: 2 and 1, 3 and 2 respectively. As the
LOOKUP was updated with recent labels before the
V line scan (values at the left of / ), pixel pg is
assigned with label 1 and features for this label
are updated. Otherwise (values at the right of / ),
label 2 would be assigned with features calculated
for this pixel only.

¢) Feature Extraction

Within the MERGER & DATA CONTROL unit the de-
tection module extracts features such as location,
size, coordinates of the bounding box and its cen-
tre of gravity. The area is calculated as a sum
of foreground pixels I(z,y) = 1 for each object.
The bounding box gives coordinates of the smallest
rectangle containing the detected object. The lo-
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Fig. 5: Object detection algorithm; a). binary input
image; b). memory registers, where values recently
changed are underlined, "-" indicates empty cell, "x"
previously assigned value, "+" stands for an update.

cation is defined as the intersection of diagonals of
the bounding box. The Centre of Gravity (CoG),
also referred to as centroid gives, coordinates of the
centre of mass and can be calculated according to:

Mo
Moo’

Mo,

T = 0
Moo

Y= (2)
where image moments Mg, My and Mgy can be
obtained using;:

My =" a'y'I(z,y). (3)

IV  HARDWARE IMPLEMENTATION

During the initial development stage, the code
was written and tested using Matlab environment.
A fully featured simulation model was created
where the algorithm was verified. An additional
script was created to generate a VHDL ROM file
with a test image pattern for visual verification
of the hardware implementation. Results of the
processing were verified with red bounding boxes
overlapping detected objects. Extracted features
were compared with simulation results using inter-
nal and external logic analysers, Chip Scope Pro
(CSP) and Ant16 respectively.

The main advantage of the presented detection
module is the fact it was fully designed using
VHDL and all the memory blocks used within the
design were instantiated using behavioural HDL
inference template. This method is semi-device in-
dependent and allows the designer to easily change
memory size with the use of generic parameters.

a) Module Instantiation

The detection module can be customized using
generic parameters that specify maximum num-
ber of objects per frame, define width of the label
counter, also size of the input image. These gener-
ics will be used by synthesis tool to adjust sizes
for memory units and registers to particular video
signal.

Together with pixel value register E, there are
also pixel clock and reset signal included within
the entity, also horizontal and vertical counter that
give current location of the pixel.

There are two output signals supported by de-
tection module: data vector which provides all the
calculated features and boolean signal specifying
whether the current pixel should be displayed as
bounding box or not.

b) Object Detection Mapping

Input data pixel is stored in the register E. After a
clock cycle this value is shifted in a window filter
manner to the register D being direct left neigh-
bour. The top adjacent pixel stored in the reg-
ister B is decoded from the LOOKUP which is ac-
cessed at the address that is provided by the out-
put register from BUF. Since majority of the mem-
ory modules within the design are synthesized as
BlockRAM, this requires that BUF to be accessed
for two clock cycles in advance. Object detection
and feature extraction are performed on the ba-
sis of the local neighbourhood of the pixel E and
data stored in the registers regarding these pixels.
To reduce the number of memory accesses, tempo-
rary values are stored in the registers. The DATA is
updated once the end of the object was detected
(E=0, D=1). The BUF keeps recording labels from
the current location, whereas LOOKUP is updated
only when a new object is encountered or two la-
bels are merged. The LOOKUP write enable signal is
also multiplexed with control signal from the stack-
based merging process. This process runs only
when the MERGER STACK is not empty and is com-
pleted during the horizontal blanking period. At
the end of the image scan after the calculated data
was passed for further processing, all the memory
modules are cleared to ensure no error will occur
in the next image scan.

¢) Feature Extraction Mapping

The main assumption for described detection mod-
ule was it will be capable of extracting the follow-
ing features: position, size, bounding box, CoG.
In order to reduce storage memory, position of the
detected object is not stored in the memory as is
can be calculated online based on the coordinates
defining bounding box (as average for both mini-
mum and maximum z and y coordinates). Bound-
ing box is stored in the memory as coordinates of
the top-left and bottom-right corner which is up-
dated while the object grows. The size of the ob-
ject was calculated as a sum of pixels E=1. Once
two labels were merged, the size was calculated as a
total sum of both sums. The most difficult feature
to extract is CoG. It is calculated as two image mo-
ment M7y and My, divided by the My, where Mg
is defined by the area (size) of the object accord-



Fig. 6: Detection results

ing to equation (2). The M was implemented as
a sum of column numbers and the Mp; as a sum
of row numbers for pixels E=1 within particular
object. The division was implemented using the
Pipelined Divider 3.0 from Xilinx Core Generator.

d) Experimental Results

The implementation of the detection module gave
excellent performance; results can be seen in Fig-
ure 6. The processing was carried out in real-time
at the frame rate of the video source with a res-
olution of 640 x 480 pixels. The report from the
synthesis tool for basic implementation (bounding
boxes only with up to 255 objects per frame) using
XC2VP30 FPGA stated less than 2% resource util-
isation with only 4 BlockRAMs used. Implemen-
tation with CoG extraction causes little increase
in hardware complexity and the number of Block-
RAMs used highly depends on the precision of the
division (fractional remainder width up to 32 bits).

Since the divider module was generated using
Core Generator, for optimal resource utilisation it
has to be re-generated when the generic parame-
ters are changed. The implementation of a custom
divider module is currently being investigated.

In order to further reduce memory require-
ments, a stack-based label counter was imple-
mented. Once two labels are merged, the LOOKUP
is updated as described previously, the DATA is also
cleared for the higher label. The proposed feature
ensures that no memory is wasted by these 'dead
labels’. Once a new object is encountered, it is
assigned with a label from the label-stack if not
empty, otherwise the one from the label counter is
used.

V  CONCLUSIONS

In this paper we have described the design of a
fully customizable generic HDL module for hot
spot detection and feature extraction from an in-

frared video stream. This work has shown that it
is possible to detect hot spots (people) in IR video
sequences at the full frame rate. The key to this
is the use of a single-pass algorithm for the com-
ponent labelling stage that follows the relatively
straightforward separation of the image into fore-
ground and background based on temperature.

The FPGA implementation of the algorithm
works well, and is able to label hot spots, as well
as locate them, produce a bounding box around
them, and their centre of gravity, all in a single
image scan. People tend to present a non-uniform
shape, and in locating such shapes, the CoG is a
useful measure for tracking algorithms. The sys-
tem currently produces this value, but the imple-
mentation is sub-optimal, and we are currently
working on improving this as we move toward the
hardware implementation of a real-time pedestrian
detection and tracking system.

REFERENCES

[1] R. Walczyk, A. Armitage, and T.D. Binnie. An Em-
bedded Real-Time Pedestrian Detection System Using
an Infrared Camera. In IET Irish Signals and Systems
Conference, 2009. IET ISSC 2009.

[2] A. Rosenfeld and J.L. Pfaltz. Sequential operations
in digital picture processing. J. ACM, 13(4):471-494,
1966.

[3] M. Jablonski and M. Gorgon. Handel-C implemen-
tation of classical component labelling algorithm. In
Digital System Design, 2004. DSD 2004. Euromicro
Symposium on, pages 387-393.

[4] R.M. Haralick. Some neighborhood operations. Real
Time/Parallel Computing Image Analysis, pages 11—
35, 1981.

[5] D. Crookes and K. Benkrid. FPGA implementation of
image component labelling. Reconfigurable Technol-
ogy: FPGAs for Computing and Applications, 1999.

[6] K. Appiah and A. Hunter. A single-chip FPGA im-
plementation of real-time adaptive background model.
In 2005 IEEE International Conference on Field-
Programmable Technology, 2005. Proceedings, pages
95-102, 2005.

[7] E. Mozef, S. Weber, J. Jaber, and G. Prieur. Parallel
architecture dedicated to image component labeling in
O (n Log n): FPGA implementation. In Proceedings
of SPIE, volume 2784, page 120, 1996.

[8] F. Chang, C.J. Chen, and C.J. Lu. A linear-time
component-labeling algorithm using contour tracing
technique. Computer Vision and Image Understand-
ing, 93(2):206-220, 2004.

[9] H. Hedberg, F. Kristensen, and V. Owall. Implemen-
tation of a labeling algorithm based on contour tracing
with feature extraction. In IEEE International Sym-
posium on Circuits and Systems, 2007. ISCAS 2007,
pages 1101-1104, 2007.

[10] D.G. Bailey and C.T. Johnston. Single pass connected
components analysis. In Image and Vision Computing
New Zealand, pages 282-287, 2008.

[11] C.T. Johnston and D.G. Bailey. FPGA implementa-
tion of a single pass connected components algorithm.
Electronic Design, Test and Applications, pages 228—
231, 2008.



	I Introduction
	II Detection Algorithms
	a) Labelling Algorithms
	b) Summary

	III Infrared Spot Detection Algorithm
	a) Architecture
	b) Object Detection
	c) Feature Extraction

	IV Hardware Implementation
	a) Module Instantiation
	b) Object Detection Mapping
	c) Feature Extraction Mapping
	d) Experimental Results

	V Conclusions

