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Unsupervised Rotation Factorization in Restricted Boltzmann
Machines

Mario Valerio Giuffrida, and Sotirios A. Tsaftaris, Senior Member, IEEE

Finding suitable image representations for the task at hand
is critical in computer vision. Different approaches extending
the original Restricted Boltzmann Machine (RBM) model have
recently been proposed to offer rotation-invariant feature learn-
ing. In this paper, we present an extended novel RBM that
learns rotation invariant features by explicitly factorizing for
rotation nuisance in 2D image inputs within an unsupervised
framework. While the goal is to learn invariant features, our
model infers an orientation per input image during training,
using information related to the reconstruction error. The train-
ing process is regularised by a Kullback-Leibler divergence,
offering stability and consistency. We used the ~-score, a mea-
sure that calculates the amount of invariance, to mathemati-
cally and experimentally demonstrate that our approach indeed
learns rotation invariant features. We show that our method
outperforms the current state-of-the-art RBM approaches for
rotation invariant feature learning on three different benchmark
datasets, by measuring the performance with the test accu-
racy of an SVM classifier. Our implementation is available at
https://bitbucket.org/tuttoweb/rotinvrbm.

Index Terms—machine learning, neural networks, rotation-
invariant features, Restricted Boltzmann Machines.

I. INTRODUCTION

The unsupervised learning of image representations is an
important computer vision task, allowing to learn suitable
features from unlabeled data. Several algorithms have been
proposed [1], such as kernel PCA [2], autoencoders [3], and
Restricted Boltzmann Machines [4]. When features are learned
in an unsupervised manner, it is typically unclear what can be
considered a “good” representation [5]. However, it is widely
acknowledged that invariant features possess good properties,
as they disentangle irrelevant variation from the dataset [6].

There are two potential approaches to learning invariant rep-
resentations. On one side, we hope that an algorithm will learn
to factor out invariance implicitly [7], assuming the presence
of sufficient training data. On the other side, invariance can be
learned explicitly, where a feature extractor ® has some prior
knowledge of invariance in the form ®(z) = ®(Tx) [8], [9].
In this case, the transformation 7" is modeled during training
and the algorithm learns to factorize it out.

It comes as no surprise that explicit encoding of prior
knowledge should help, instead of trying to learn it (and factor
it out) implicitly. Findings in human understanding do actually
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Fig. 1. Representation of the proposed rotation-invariant RBM. In this
example, we have S = 4 rotations, corresponding to the equidistant angles
D = {¢po =0°,¢1 = 90°, p2 = 180°, ¢3 = 270°}. Each angle is associ-
ated with a matrix Ws. When an image is provided to the network, the weight
matrix minimizing the reconstruction error is chosen, as highlighted in bold
red. We depict the unfolded steps of the CD-1 [13]. (Best viewed in color).

point to this direction, noting the distinct benefits of explicit
learning (such explicability of actions and interpretation) [10],
[11]. Thus, in the context of learning from few data, one
must openly consider that shallow neural network architectures
that are specifically designed to be invariant to some form of
nuisance can be beneficial.

We endow a shallow unsupervised generative model to
be invariant to rotations, which is an ubiquitous transforma-
tion in several computer vision problems [12]. Specifically,
we propose an extension of Restricted Boltzmann Machines
(RBMs) [4]. In their original formulation, RBMs are a shallow
neural network characterized by a bipartite graph, whose sides
are called visible (denoted as x) and hidden (denoted as h)
layers respectively. In its original formulation, RBMs do not
accommodate for geometric transformations occurring in an
image. The most straightforward way to learn variability in
a dataset is to provide the network with a sufficient amount
of data. However, training sets may lack variability, resulting
in models with poor generalization capabilities. To cope with
this, other approaches to regularize the learning process are
considered, such as dataset augmentation. The drawback of
this approach is that it does not explicitly enforce the network
to learn transformation-invariant features. Therefore, our aim
is to build a model that is capable of learning features invariant
to rotations, which is one of the most ubiquitous geometric
transformations in images, extending the original RBM model.

In this paper, we present RBMs that explicitly factorize
rotations in 2D images in an unsupervised manner. Our
architecture, represented in fig. 1, uses a weight matrix per
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each dominant orientation of the input images. During training,
an input image is passed through all weight matrices. To
determine the orientation of the input image, the reconstruction
error (per orientation) is computed. The weight matrix that best
reconstructs the input is chosen, and then the gradient for that
matrix is computed to update the parameters. Furthermore,
the contribution of each input is also shared with the other
weight matrices, by applying proper rotations to the gradient
[14].! This step of sharing the gradients is essential to achieve
rotation-invariance. The training process is regularized with
a KL-Divergence term that enforces a prior distribution of
the rotations. We measure the performance of our method by
training an SVM classifier [14]-[16].
The contributions of this paper are multi-fold:

i. rotation invariant features: we mathematically prove,
using the v-score [17], that our model learns rotation
invariant features. This is further shown with quantitative
experimental results on several benchmark datasets. The
feature space that our method learns is compact (limited
number of hidden units are required);

ii. robust dominant orientation inference: we show that our
model can infer robust dominant orientations, rather than
relying on exogenous inputs. During training, the use of
a regularization term maintains the balance among the
predictions of the dominant orientations. Our inference
method obtains similar test-time performance with respect
to supervised methods;

iii. no augmentation: we show that our approach outperforms
baseline and state-of-the-art methods when trained with
limited data, without requiring augmentation.

The rest of this paper is structured as follows. Section II
discusses related works. In Section III, we offer the theoretical
background of the original RBM. Then, Section IV discusses
our proposed approach, showing mathematical proofs of its
validity. Section V describes the algorithm to infer the dom-
inant rotation of an input image, offering a stability analysis
that shows the robustness of our approach. In Section VI we
present experimental results on three different datasets, in-
cluding ablation experiments demonstrating how our approach
benefits from the gradient sharing method [14] and the KL-
Divergence based regularization term. We also experimentally
show how consistent our unsupervised dominant orientation
inference method is, including a comparison with supervised
methods. Finally, Section VII concludes the manuscript.

II. RELATED WORKS

Several approaches have been proposed in the last years
to improve the original RBM model to accommodate for geo-
metric image transformations. In [18], the authors showed that
Deep Belief Networks (DBNs), obtained by stacking several
RBMs, produce high-level features that carry a certain amount
of invariance, as the number of layers increases. In [19], they

IThis manuscript is an extension of [14] but is different in: (i) how the
estimate of the dominant orientation is performed (here done via recon-
struction rather than relying on exogenous processes); (ii) that we further
regularize the learning process with a KL-Divergence term; (iii) that we
provide mathematical proofs of the invariance achieved by our model; and
(iv) that we included extensive tests in more datasets and several ablations.

proposed a different way to train DBNSs, such that filters were
transformed at the end of each training epoch to account for
geometric transformations. A more sophisticated DBN model
that learns rotation equivariant features is STEER-DBN [20],
where the authors aim to learn steerable filters [21]—[24]
to achieve translation and rotation equivariance. Filters are
defined as steerable when they can be expressed as a linear
combination of (directional) basis filters [25]. In [16], the au-
thors proposed an RBM model that can learn transformation-
invariant features (TI-RBM), using a set of transformations
S. The transformations are incorporated during training and
the actual image representation is then obtained using max-
pooling. In [26], they proposed a block RBM, where invariance
is achieved by pre-aligning the input patches according to
their dominant orientation and scale, computed using SIFT
descriptor [27]. In [28], the authors proposed a convolutional
RBM that learns rotation equivariant features [9].

Extensive efforts have also been made to explicitly learn
transformation invariant features using deep networks. The
Convolutional RBM (C-RBM) [29] learns shift invariant fea-
tures, extending the original RBM to accommodate the convo-
lution. The Spatial Transformer Network aligns input images
in a common reference space, allowing end-to-end training
[30]. In [31], the authors introduce TI-POOLING, a siamese
network that extracts features from transformed versions of the
inputs using convolutional layers. Then, the output of each of
the sub-networks is merged using a max-pool operation. In [9],
the authors proposed the RotEgNet, a convolutional neural net-
work that accounts for rotation equivariant features. A similar
approach producing rotation invariant features was proposed
in [32]. Recently, harmonic networks have been proposed to
learn deep translation and rotation equivariant features [33].
They replace the convolutional filters with circular harmonics,
then max-pooling is applied to obtain the orientation at each
location of the receptive field.

Albeit the important contributions that deep learning brings
to the computer vision community, often optimizing such net-
works involves learning of millions of parameters [34], which
are not suitable for all datasets and tasks. As an example,
in [35], [36] the authors adapt the network architecture to
perform image segmentation for each of the datasets they
tested. Furthermore, deep networks have also a vast number
of hyper-parameters that need to be tuned, such as the number
and size of the filters, or the depth (in terms of layers) of the
network. The main drawbacks of deep neural networks are
essentially two: i) prone to overfitting, especially for reduced
training set; and ii) computationally expensive [37].

ITI. MATHEMATICAL BACKGROUND
A. Adopted Notation and Conventions

In this paper, we will adopt the following notation. Matrices
are written in bold and capital letters (e.g. W), while vectors
are written in bold and lower letters (e.g. x). Vectors are
always of size n x 1 (column-wise vectors). Scalars are written
with italic and lower letters, using both Latin and Greek
alphabet (e.g., a or \), and constant are written with capital
italic Latin letters (e.g., H). Vector elements (e.g. xj) are
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considered as scalars. The notation Wp; refers to the item
located at the k-th row and j-th column in the matrix W .
Then, we will use W. and W.; to refer to the k-th column
and j-th row respectively. Capltal Greek letters or calligraphic
capital Latin letters are typically used for sets (e.g., X or ®).
The corresponding small letter generally denotes an item in
such a set (e.g., x € X or ¢ € ®). Lastly, the notation X
denotes a (finite) partition of a set X.

B. Restricted Boltzmann Machine

An RBM is a probabilistic shallow neural network that
maximizes the following joint probability density function:

b e—E(x,h) |
plx.h) = ——, 1)
where E is an energy function, taking as input x € {0, 1}V
and the hidden layer h € {0,1}", and Z is the partition
function that ensures that eq. (1) is a probability density
function (the integral over all possible values of x and h is
1). The energy term E is defined as follows:

= —x'"Wh-x"c—h’b

E(x,h) )

where W € RV*H is a weight matrix, c € RV and b € RY
are the bias vectors for the input and hidden layer respectively.

The network parameters to be optimized are © =
{W,b,c}. To achieve this, the negative log-likelihood
—log(p(x|©)) is minimized, using the Contrastive Divergence
algorithm [38]. The update rules for the parameters are [39]:

VW = xh(x)" — %h(%)" 3)
Ve=x—X, 4
Vb = h(x) — h(X). (5)

The function A(-) in egs. (3) and (5) computes the condi-
tional probability of h given x (this probability is explained
in the next paragraph). The first term in the update rules in
eqgs. (3) to (5) is usually referred to as the positive phase,
whereas the second term is called the negative phase [39]. The
positive phase is computationally easy to calculate, whereas
the negative phase is generally intractable, due to the partition
function Z that appears in the computation of the partial
derivatives. To overcome this problem, the negative phase
is approximated with Gibbs sampling, which produces the
reconstructed input X.

Gibbs sampling performs alternate inference and sampling
of h and x, using the following conditional probabilities

(6)
)

where the function o(+) is the logistic activation function, W;.
is j-th column of W, W, is the k-th row of W, h; is the j-th
element in the hidden layer, and x is the k-th element in x.
The conditional probability in (6) is the one used to compute
the function A(-) in egs. (3) and (5), thus h(x) = p(h|x).

p(hjlx) =0 (XTW]-. + bj) ,
p(zk|h) = o (Wih+c),

This formulation of RBM is typically referred in literature
as Bernoulli-Bernoulli RBM (BB-RBM), as eqgs. (6) and (7)
define the success probability of a Bernoulli distribution.
In general, the update rule for a generic parameter § € ©
is applied as follows:
o) — p(t-1)

+ Ve, (8)

where 7 is the learning rate, and the superscript ¢ refers to the
current iteration number.

IV. PROPOSED ROTATION INVARIANT FACTORIZATION

In our formulation of rotation-invariant RBM, we assume a
set S = {Ry, Ry, ... ,Rs_l} of S = |S| equidistant rotation
matrices with R; € RV*V representing an in-plane rotation by
¢; = z , for all ¢; € ®. Details of how the rotation matrices
R; are generated are in the Supplemental Material Sec L.

Given that angles have a periodicity of 27 radians, it
can be proven that ¢, € @, [t| > S. As an example,
assuming S = 4, then ¢5 = ¢; (the argument holds also
for negative indices). In general, ¢; = ¢,,,(; j), Where m(i, j)
is the modulo function, which allows for cyclical indexing.
The modulo function is defined as m(¢,j) = (i + j) mod S,
where i, 7 € {0,£1,42,...,£(S — 1)}. The definition of the
modulo function is useful to support the proof of the theorem
showing our approach learns rotation invariant features.

A. Revised Energy Function

Differently from the original RBM formulation [4], we
associate a specific weight matrix to each of the rotations in S.
Therefore, W can be seen as a third-order tensor of dimension
V x H x S. A revised version of eq. (2), taking into account
rotations, takes the form of:;

S—1H-1V-1

E(x,h,r) ZZZQ (—zrhjwjks — bjh; — cray) .
s=0 j=0 k=0

9

In this formulation, a new binary vector r € {0,1}°
introduced, with one non-zero entry (i.e., only one orientation
is active at one time). This constraint can be formalized as:

S—1
Z rn = 1.
n=0
In addition, we will say that, if r¢ = 1, then the dominant
orientation is ¢5. (How r is inferred is discussed in section V).

Consequently, the conditional probabilities in eqs. (6) and (7)
are revised accordingly:

(10)

S—1

plh; =1x,r)=0 (Z s (XTI/VTS + bj)> , (11)

s=0

5-1
p(zr =1h,r)=0 (Z rs (Wish + ck)> .

s=0

12)
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B. Sharing The Gradients

Optimizing the third-order tensor W via eqs. (11) and (12)
has the drawback that inputs with a specific dominant orien-
tation will contribute to update only the corresponding slice
in W. This is equivalent to splitting the training set X" into
several non-overlapping partitions X, and train a separated
RBM for each of them. This will negatively affect the learned
features: each “individual” RBM is trained on a rather limited
dataset [14]. To overcome this problem, the contribution of
gradient VW computed on &5 can be shared across the other
slices in W. Therefore, we will apply the gradient sharing step
during training as proposed in [14], which is an essential step
of our training procedure to guarantee rotation-invariance.

For sake of clarity, let us consider an example with only
two rotations, Rg and Ry, which account for the 0° and 180°
rotations respectively. Since VW and VW were computed
on different portions of the data, namely X, and &), we want
to transfer the contribution of VW3 to VWj (and vice versa).
To do so, we add a rotated version of VW; by —180° (we
denote such a rotation as R_1) to VWj. In this example, we
can define the new gradients used to update the parameters

of the network as VWy = Ro(VWyg) + R_1 (VWy)
(an expression VW3 can be defined similarly). Using this
example, the update rules for W can be generalized as follows:

S—1
VWe=Y R (VW)

q=0

13)

We use the gradients computed in eq. (13) to update the
parameters of the network 6 € © using eq. (8).

C. Rotational Equivalence

Following eq. (13), using the periodicity of rotations as
discussed in Section IV, the following holds:

R_l(VWO) = R_l(Ro(VWO)) + R_l(R_l(le))
= Ry(—1,00(VWo) + Ry (—1,-1)(VW1).

Given that m(—1,0) = 1 and m(—1,—1) = 0, the above
relation becomes:

R_l(VWO) =R (VWO) + Ry (VWl)
— R_1(VWo) + Ro(VW;) = VW,

where R_1(-) = Ry(-) due to the rotational periodicity (e.g.,
rotating by £180° produces the same result).

This example with S = 2 shows that all gradients of
the form VW are rotated versions of each other. We can
generalize this property for eq. (13) as follows:

S—1
Ri(VWo) =3 Runr—g) (VWon(s.))

q=0

= VW, (5r)-
(14)

In order to facilitate the proof of the theorem stating that
our approach learns rotation-invariant features, we need the
following lemma that makes use of this rotational equivalence.

Lemma 1. Optimizing the tensor W € RV *HXS qs described

above for t > 0 iterations, then WS) = RH(Wgt)), with:
(15)

k=3s —s.

Proof is provided in Appendix A. This lemma states that all
the slices in the tensor W are rotated versions of each other.

D. Measuring the Invariance

We adopt the -score proposed in [17] to measure invari-
ance. Considering a set of transformations S and a dataset X',
the mean activation of the j-th hidden unit h; over all the
transformations 7" € S is computed as:

i) = 5 D2 (T (), 16

TeS
where h;(z) = p(h; = 1|x,r). It is important to note that
r is a function of x, hence when the transformation 7'(x) is
applied, the vector r has to be recomputed accordingly. Then,
the y-score is defined as:

var {1 (%) e x
V= — 17)

var {h; (X)}xGX
We employed the y-score because it is bounded to the inter-
val [0, 1], where values close to 1 indicate features invariant to
the set of transformations S. The y-score is closely related to
the auto-correlation [17] and does not require extra parameters
to be computed, as e.g. the firing threshold in [18]. Although
false positives (e.g., the ratio in eq. (17) is ‘1’ but the full
invariance is not achieved) might occur (as reported in [17]),
we will show in the next section that such cases do not arise

in our rotation-invariant RBM formulation.

E. Proving Rotation Invariance of the Proposed Method

In this section, we will prove that our model can learn
rotation invariant features on the basis of the y-score (c.f.
section IV-D). Our theorem is based on the hypothesis that the
model is trained using the revised energy model and further
adaptions showed in Section IV. The proof shows that the -
score reaches the highest value (numerator and denominator
in eq. (17) are equal).

Theorem 1. Under the hypotheses of Lemma 1 and given a
support set S of S rotations, v = 1 for our revised rotation-
invariant RBM model.

Proof is provided in Appendix B. The proof of this theorem
shows that our method achieves full invariance w.r.t. the ~-
score. We can make the following remarks about the theorem:

Remark 1. Theorem 1 does not make any assumptions how
the r vector is computed, as long as eq. (10) holds.

Remark 2. Theorem 1 is a theoretical result and does not
account for artifacts due to the discrete nature of inputs and
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rotations. Empirical computations of the y-score might result
in slightly lower values.

Remark 3. Lemma 1 is compatible with any typical additional
terms that can be added in eq. (8), such as momentum and
Lo regularizer [40].

Remark 4. Optimizing eq. (9) as in Section 1V, the negative
log-likelihood —In p(x|0©) is minimized as well.

V. INFERENCE OF THE DOMINANT ORIENTATION

In this section, we describe how to infer the optimal r
vector for an input x in the dataset. We propose an approach
that exploits the intrinsic information learned by the network
during training, using the reconstruction error. In our for-
mulation, we can define the reconstruction function p(x,r)
as p(x,r) = v(h(x,r),r), where h(x,r) = p(h|x,r) and
v(h,r) = p(x|/h,r). We define the dominant orientation for
an input x as the one that minimizes the following function:

§ = argmin, || (x. 1) — |3 )
such that 7, =0andrs = 1,5 #t.
Thus, the corresponding r for the input x is r; = 1 and
ry = 0, t # 5. This satisfies the one-hot encoding constraint in
eq. (10). The optimization of eq. (18) can be easily computed
for all the possible values of r, as it comes automatically
during the forward pass of the training process.

A. Implementation Details

Training. Our training algorithm is an extended version of
the Contrastive Divergence [38]. In our implementation, we
represent the third-order tensor W explictly, although all the
slices are rotated versions of each other. As discussed in the
previous section, the core part of our architecture is the infer-
ence of the dominant orientation. For each minibatch 5, we
compute the reconstructed input using all weight matrices in
‘W. For each image in B, the dominant orientation is inferred,
by selecting the weight matrix that better reconstruct the input
(c.f. fig. 1). Then, the gradients to update the poarameters (C]

are computed and the contribution of all the VWjy is shared
with the other weight matrices. Other gradients coming from
e.g. sparsity regularizer [40], the KL-Divergence in eq. (19),
or momentum are also used to update the parameters of the
network. Details are shown in Algorithm 1. Our Theano [41]
implementation takes ~ 0.8s for training on CPU (Intel Xeon
E5-1660), and ~ 0.4s on GPU (TITAN Xp) per batch.

Testing. During inference, an input image is provided to the
network, and is passed through to obtain activations using
all the weight matrices (one per orientation). The hidden
layer activations produced by the weight matrix minimizing
the reconstruction error are selected. The chosen activations
represent the features of the input image (cf. fig. 1).

Algorithm 1: Training procedure of our proposed rotation-
invariant Restricted Boltzmann Machine.
Data: Training set X, parameters © = {b;, cx, Wjks}
Result: Updated parameters ©
begin
for e:= 1 to MaxEpochs do
foreach mini-batch B C X do
Perform a forward step with B of the network
and find § by minimizing eq. (18).
5 Compute the gradient for the slice VW3, as
well as Ve, and Vb as in egs. (3) to (5).
foreach t € {0,...,5 — 1} \ {8} do
Share the gradient of VWj and obtain

VW, using eq. (13).

B W N -

end
Apply the update rule in eq. (8) to all the
parameters in © using VW; and the shared

gradients from all VW,.

10 Update all the parameters in © with any other
gradients coming from momentum or
regularizer(s) (e.g., eq. (19)).

11 end
12 end
13 end

B. KL-Divergence Regularization Term to Improve Domi-
nant Orientation Inference

The rotation estimation approach may potentially assign
most inputs to one dominant orientation. To avoid this, we
opted to regularize the training process, by forcing a prior on
the distribution of orientations across the dataset. We achieve
this by minimizing the following Kullback-Leibler divergence:

S—1

_ Ds

D :)\r sl —
kL(P[F) o n =

s=0 s

19)

where p is a prior distribution, T is the average assignment of
the dominant orientation of the images in the training set, as
discussed in Section V, and A, is a positive constant weighing
the strength of the regularizer. Following [42], we compute the
average prediction vector T over a mini-batch, rather than the
whole training set.

C. Consistency Analysis

In this section, we want to assess the consistency of the
predictions performed by our approach to infer the dominant
orientations, computing what we define the change probability.
During training, we tracked the predictions made by our
algorithm to infer the dominant orientation of each image
in the training set. Then, we analyzed how many times each
image has been assigned to a dominant orientation over time.
We computed the probability at each epoch that an assignment
change occurs and we plotted the result in fig. 2.

It can be observed that our inference method stabilizes in
less than 10 epochs, becoming very consistent in ~ 40 epochs
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Fig. 2. Probability (in log-scale) of a prediction change of the dominant
orientation occurs during training on the mnist-rot dataset (change probabil-
ity). The stability of our inference method increases exponentially over time.
We also show two inset transition matrices: the left-hand side inset shows
the amount of misclassification between the first two epochs, whereas the
right-hand side for the last two epochs. (Best viewed in color).

(probability of a reassignment is very close to 0). Furthermore,
fig. 2 contains two inset transition matrices, where we show
how assignments are redistributed between two consecutive
epochs. Specifically, the left-hand side transition matrix show
reassignments occurring between the first two epochs, whereas
the right-hand side inset shows the changes occurring in the
last two epochs. These two plots show that, although the
initial predictions of the dominant orientation are unstable,
the network is able to automatically assign each image to the
same class of orientation.

In Supplemental Material Sec. II, we show a consistency
analysis of the estimation orientation. In particular, we show
the robustness of our approach to error in estimation during
training, and consistent predictions are at test time. Exper-
imental results show that our algorithm can ‘self-correct’
estimation errors occurred during training and we also show
high consistency during testing.

VI. EXPERIMENTAL RESULTS

We demonstrate our model on the following datasets: mnist-
rot [8], the MPEG-7 Shape Silhouette database [43], and a
rotated version of the zalando fashion-mnist dataset [44]. We
compared our performance with the following baseline and
state-of-the-art approaches:

o Support Vector Machine [15]: SVM trained directly on

the data, without preprocessing.

e RBM [4]: the original model will provide a baseline result

for our experiments.

e RBM [4] with data augmentation: we also compare with

the original model trained with augmented data (we will
refer to this method as RBM+).

o TI-RBM [16]: state-of-the-art method for learning
transformation-invariant features. Specifically, we only
used rotations as transformations.

e ERI-RBM [14]: state-of-the-art approach that computes
rotation-invariant features, using histograms of gradients
approach to split the dataset according to the dominant
orientation of the inputs.

Fig. 3. Filters learned by our model IRI-RBM for the mnist-rot dataset [8].
We display for brevity a set of 5 filters for each of the S = 4 weight matrix.

A. Parameters

If not otherwise stated, we run all the experiments using
the following parameters, which were set the same for all
methods. We trained RBMs with H = 500 hidden units for
100 epochs, using a learning rate n = 0.003. We also adopted a
sparsity regularizer target p = 0.1 with regularization constant
A = 0.003 [40].2 Furthermore, for the regularizer in eq. (19),
we set the constant A\, = 100 and the prior probability
distribution p = 4(0,.S — 1). We used a momentum « = 0.5
for the first 5 epochs, then we increased it to a = 0.9. If
it is not explicitly specified, number of rotations is set to
S = 4, as angles multiple of 90° avoid pixel interpolation
(this allows fair comparison with the other baseline and state-
of-the-art approaches, but we show later the effect of changing
the number of rotations S). We initialized the weight matrices
using the Glorot method [45], using random numbers sampled
from a Gaussian distribution with zero mean and standard
deviation of /2/(V + H), where bias terms are initialized
with Os. For classification, we followed the same protocol
as in [14], adopting SVM [15] with an RBF kernel. For the
classifier,> we set the spread parameter o = 0.002. The loss
parameter C' is set accordingly for each dataset. Experiments
were repeated 5 times, with different initialization, and mean
and standard deviation were computed.

B. Experiments

Tests on mnist-rot [8]. This well-known benchmark dataset
contains 10,000 images for training and 50,000 for testing of
hand-written digits. For training, we adopted the parameters
discussed in Section VI-A, setting C' = 10 for the classifier.
Table I shows the results of our experiments. Overall, TI-
RBM and ERI-RBM perform similarly on this setup, outper-
forming the baseline by ~ 10%. Our proposed method obtains
the best performance, achieving more than 92% test accuracy.

2 As reported in [40], we only update the bias of the hidden units b.
3We set o = 0.02 when trained directly on the data (first row on Table I),
as this value gave the best performance.
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TABLE I
TEST ACCURACY OF OUR METHOD COMPARED WITH SVM [15], THE ORIGINAL FORMULATION OF RBM [4], RBM TRAINED WITH DATA
AUGMENTATION (RBM+), THE TRANSFORMATION-INVARIANT RBM [16], AND THE EXPLICIT ROTATION-INVARIANT RBM [14] ON THREE DIFFERENT

DATASETS. WE REPORT “best result (mean £ std)” OF 5 RANDOM INITIALIZATIONS.

Method mnist-rot [8] MPEG-7 [43] zalando mnist-rot
SVM [15] 89.36% 82.00% 74.71%

RBM [4] 80.18% (79.91% £ 1.96)  78.57% (78.28% =+ 0.27)  62.99% (62.92% + 0.10)
RBM+ 86.90% (76.71% =+ 0.15)  71.57% (70.66% =+ 0.87)  67.54% (67.34% + 0.13)
TI-RBM [16] 89.90% (89.75% =+ 0.16)  76.14% (75.14% + 0.57)  76.54% (76.42% =+ 0.12)

ERI-RBM [14]

90.61% (90.48% =+ 0.13)

73.00% (72.52% =+ 0.25)

74.84% (74.49% =+ 0.18)

Ours

92.12% (91.81% =+ 0.30)

85.71% (83.43% =+ 1.38)

77.14% (76.94% + 0.24)

This result shows that our method of inferring rotations is
more reliable than e.g., max-pooling across all rotations [16],
or relying on exogenous methods [14]. Then, we empirically
computed the y-score as described in eq. (17) and our method
scored v = 0.98, as expected from Theorem 1. In fig. 3, we
show a subset of the filters learned by our method and, as
it can be observed, filters are rotated versions of each other,
providing experimental evidence for Lemma 1.

As mentioned in Section I, our method learns compact
representations with high discriminative power. We compared
also with the Contractive Autoencoder on the same dataset
[46]. This method minimizes a regularization term based on
the Jacobian matrix of the encoder step of the network to
learn invariant features. Their results with 1,000 hidden units
showed a smaller test accuracy of 90.34%. In comparison, our
method learns high discriminative features with half of the
hidden units, thus learning a more compact representation.

Tests on a small training set. Here, we want to demonstrate
that our method learns robust features even when trained on a
small dataset. We used the MPEG-7 Shape Silhouette database
[43], containing only 1,400 images belonging to 70 categories.
Since the images have a variable size, we cropped and resized
them to 28 x 28 pixels. We randomly split the dataset into
700 images for training and 700 for testing, maintaining class
balance. In this case, we set the loss parameter for SVM C' =
100.

Results on this dataset are also reported in Table 1. Our
method outperforms all other approaches, reducing the testing
error by ~ 10%. Specifically, we can observe that TI-RBM
[16] and ERI-RBM [14] suffer from lack of data in the training
set, obtaining a testing accuracy lower than the SVM and RBM
baselines. On the other hand, RBM is not able to accommodate
the rotational variance in this dataset, causing it to perform
poorly compared with our approach. Therefore, our method
can learn better rotation-invariant features also in the case of
a reduced training set.

Tests on the rotated zalando fashion mnist dataset. We
also tested our approach on a customized version of the
zalando fashion mnist dataset [44]. Specifically, the original
dataset contains images of 10 categories of clothes. Images
are grayscale and 28 x 28 pixels size.* For these experiments,

“Further details on the zalando fashion mnist at https:/github.com/
zalandoresearch/fashion-mnist.
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Fig. 4. Comparison of our approach and TI-RBM [16] with respect to the
number of rotations S on mnist-rot test dataset [8]. Overall, TI-RBM requires
the double of rotations (S=8) to match our performance.

we generated a rotated version of the dataset, using uniformly
distributed random rotations. To create this customized dataset,
we adopted the original code from [8] used to generate mnist-
rot.> We generated 10,000 images for training and 50,000 for
testing [8]. To the best of our knowledge, an equivalent mnist-
rot for the zalando fashion mnist has not been created yet. We
refer to such a generated dataset as zalando fashion mnist-rot.
Results on this version of the zalando dataset are also shown in
Table 1.5 Overall, we can observe that our method outperforms
all the other approaches on this dataset as well.

The effect of increasing the number of rotations S. Here,
we asssess the effect of increasing the number S of rotations
during training. Comparing with TI-RBM [16], we determine
the minimum number of rotations S required by TI-RBM to
match our performance. In fig. 4, we report the classification
accuracy when the methods are trained on mnist-rot and
zalando mnist-rot datasets. Overall, TI-RBM requires S = 8
rotations to match our best performance. Our method improves
when S = 8 is used, although it results in a minimal increase
in performance. Thus, our method can sufficiently learn highly
discriminative rotation-invariant features with S = 4.

Discussion. From our experiments, it appears that it is
better to rely on the intrinsic information encoded in the

5Available at http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/
DeepVsShallowComparisonlCML2007.

SWe also trained our model on the original zalando fashion mnist dataset
[44] and it performed similarly to an RBM (84.55% vs 85.99% for ours and
RBM respectively). Furthermore, our method had a higher accuracy compared
with TI-RBM and ERI-RBM. Thus, our method works well when there are
no rotations present in the training set.
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TABLE I
ABLATION RESULTS SHOWING THAT OUR METHOD BENEFITS FROM SHARED GRADIENTS AND THE REGULARIZER PRESENTED IN SECTION V-B.

Method mnist-rot [§] MPEG-7 [43] zalando mnist-rot
RBM [4] (as a reference) 80.18% 78.57% 62.99%
Ours without sharing gradients and eq. (19) 53.80% 68.71% 56.76%
Ours without eq. (19) 91.96% 82.14% 76.21%
Ours (proposed method) 92.12% 85.71% 77.14%

network to infer the dominant orientation. In this way, our
model explicitly cancels out the nuisance given by rotations,
producing fully rotation-invariant image representations with
a reduced number of rotations. We showed that our approach
is better than marginalizing across all possible rotations, as
it happens in TI-RBM [16], or using an exogenous process
to estimate orientations, as in ERI-RBM [14]. Our method is
better than the standard approach of training a neural network
with data augmentation (RBM+ in Table I). This shows that
data augmentation does not automatically ensure the learning
of invariant features, as it still needs to learn variability in the
dataset [31]. In addition, we showed that our method works
particularly well in datasets with small size. To further demon-
strate this, we compared our method with TI-POOLING [31],
a recent deep learning method for transformation-invariant
feature learning. Most importantly and differently from all the
methods described in Table I, TI-POOLING is a deep network,
trained end-to-end with supervision.

We trained TI-POOLING with 4 rotations and we set the
size of the last fully connected layers to 500 to maintain
a similar setup as the unsupervised methods described in
Section VI. Although TI-POOLING outperformed our method
by ~ 5% on the mnist-rot and zalando-rot datasets, classifica-
tion accuracy in the MPEG-7 dataset was 78.11% + 1.28
(best results was 79.57%), compared to 85.71% for ours.
This indicates that deep architectures require big datasets to
efficiently train their network parameters.

C. Ablation Experiments

We want to assess how our approach benefits from the gradi-
ent sharing step [14] and the KL-Divergence based regularizer
described in Section V-B. Experiments were performed using
the same protocol as discussed in the previous sections. We
show the result of our experiments in Table II.

To establish a reference baseline, we trained the original
RBM model [4]. Next, we trained our model disabling sharing
gradients and eq. (19). In this case, our model has lower
performance compared to the baseline. Training our network
without shared gradients is similar to training S different
RBMs, such as the s-th model is trained with only the A
partition of the data. This means that the training set X" is split
and each RBM is trained independently on a smaller portion of
the data. This procedure is closely related to the Oriented RBM
baseline method described in [14]. By enabling the shared
gradients, the performance of our approach improves by 20%
(even =~ 40% on mnist-rot), showing that this technique is
effectively improving the training. The gradient sharing step
also ensures the learning or rotation-invariant features (see
Theorem 1), thanks to the rotation equivalence property in

eq. (14). When the regularizer in Section V-B is also enabled
during training, performance improves further, as the inference
of the dominant orientation becomes more robust and reliable.

D. Unsupervised vs. Supervised Rotation Inference

In this experiment, we want to assess the performance of
our unsupervised method to infer the dominant orientation (c.f.
Section V). It is important to point out that making the actual
correct orientation estimation is not the purpose of our method.
What is indeed important is the consistency of the predictions
during training. As a first test, we compared the performance
of our algorithm with an SVM classifier in the dominant
orientation prediction task, using the ground truth rotations
(c.f. Section VI-B), setting C' = 1 and v = 0.02 as parameters.
As expected, the supervised SVM classifier outperformed our
unsupervised approach. Specifically, on the zalando mnist-rot
dataset, our method predicts the correct dominant orientation
with an accuracy of 60% vs 92% obtained by SVM.

Given this result, we trained our rotation-invariant RBM,
using a supervised SVM classifier loss: we replaced our
inference process with the SVM classifier to infer the dominant
orientation during training. In Table III, we show the result of
this test. Although using a classifier loss minimally improves
on mnist-rot, the performance of the unsupervised and super-
vised approaches are the same on the zalando mnist-rot. This
shows that it is important to make a consistent decision in
predicting the dominant orientation during training.

As a further test, we trained our rotation-invariant RBM
using the actual ground truth rotations, without employing any
(un)supervised processes. This test establishes an upper bound
performance of our rotation-invariant RBM. Test accuracy is
reported in Table III. Overall, the performance of our unsuper-
vised approach edges with the upper bound computed using
ground truth rotations. Although our unsupervised method may
make errors in predicting the actual rotation, its performance
is comparable to both the supervised and the upper bound
performance. Overall, using the actual ground truth rotations
improves the test accuracy of ~ 2%.

VII. CONCLUSIONS

Finding suitable features for the task at hand is considered
hard in computer vision. We presented a novel method to
extract rotation invariant features, extending the original model
for Restricted Boltzmann Machines (RBMs). The core part of
our method is the inference of the dominant orientation of
the input, that is done by minimizing the reconstruction error.
In order to have more robust inference of such a dominant
orientation, we regularize the learning process with a term
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TABLE III
COMPARISON OF OUR UNSUPERVISED DOMINANT ORIENTATION
INFERENCE METHOD WITH TWO SUPERVISED METHODS. 2nd row: THE
INFERENCE METHOD IN SECTION V WAS REPLACED WITH AN SVM
TRAINED DIRECTLY ON GROUND TRUTH ROTATIONS. 3rd row: RBM IS
TRAINED ON GROUND TRUTH ROTATIONS.

Method mnist-rot [8] zalando mnist-rot
Uns.  Ours 92.12% 77.14%
S Ours using SVM 93.32% 77.14%
YP Ours with GT rotations 93.96% 79.38%

derived from the KL-Divergence. This regularizer enforced a
prior distribution over the dominant orientation in the dataset.

We evaluated our method on three publicly available
datasets and it outperformed baseline and state-of-the-art ap-
proaches in all the cases. Our approach scored v = 0.98,
demonstrating full rotation invariance. Furthermore, we also
showed that our method can learn highly discriminative fea-
tures in the case of a reduced training set. Our ablation
experiments showed that our method benefits from the sharing
gradient method [14], as well as the regularizer based on
the KL-Divergence. This allows our method to compete with
supervised methods, such as SVM trained to infer dominant
orientations. This was further demonstrated by a consistency
analysis, where rotated images obtain the correct dominant
orientation prediction w.r.t. the unrotated version. We also
showed that the training of the network is not affected by
errors in the estimation of the dominant orientation.

We showed that our approach outperforms the other shallow
state-of-the-art methods, although is still challenged by the size
of the input image. A future research direction is to embed our
method within a deep network, where a fully-connected layer
can be extended with a third-order tensor to accommodate a
set of rotations S to extract rotation-invariant features.

In conclusion, our proposed method explicitly factor-
izes rotational nuisance from the training set, learn-
ing high discriminative and compact features. In fact,
experimental evidence showed that explicit unsupervised
feature learning performs better than the others (e.g.,
[14], [16]). Our python implementation is available at
https://bitbucket.org/tuttoweb/rotinvrbm.

APPENDIX A
PROOF OF LEMMA 1

Proof. We will proceed by induction over the iteration ¢. For
the base case t = 0 , we impose that:

i. W e RV*H js a matrix initialized with e.g., Glorot
Gaussian method [45],7
i. W = R, (W), Vse{0,1,...,5 —1}.
This means that all slices in W(?) are initialized as rotated
versions of W, which initially can be any matrix. Now, let us
suppose that the lemma is true until £ — 1, and demonstrate it
for t. Then we have:

7We observed that the base case of the induction can be relaxed. Experi-
mental evidence showed that by initializing W with random numbers drawn
from a normal distribution it is still possible to have rotation-invariant features.

o (t=1)

R.(W®) =R, [ WD 4+ YW

S

From eq. (8)

o (t—1)

= R (WD) 4R, YW, (20)

Linearity property (c.f. Section IV)

R o (t-1)
= Wi 4y vw

m(s,k) *

By induction From (13)

At this point, we need to expand the modulo function. Ap-
plying (15), we obtain that m(s,x) = (s + k)modS =
(s+5 —s)mod S = s’. Thus, to conclude, eq. (20) becomes:

o (t—1)
RH(Wgt)) — W‘S*l) + nvwm(s,ﬁ) =
o (t—1)
=wi Lgyw,  =w,
APPENDIX B
PROOF OF THEOREM 1

Proof. We have to prove that v; =1, j = 1,2,..., H. From
eq. (17), we will show that the numerator and denominator
coincide. Now, starting from the definition of p; showed in
eq. (16), we obtain:

S—1
1
=520 z 7y (b + Ry(x)"W;. 1)
t=0

From eq. (11)

o (bj + Ry(x)"Wj..s)

From (10), 3s’ s.t. 7y = 1

o (b + Ry(x)"Ry(W;,. 5))

Ry(W,) =W,

From Lemma 1, Js :

o (bj + [Rgx]"RqW,. 5)

o (b +x"RIRW;,. )

(AB)T=BTAT

o (b7 + Wj7.)SX)
RIR,=R,RT=I

S—1
g Tt (bj +XTWj7.7t)
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Since p;(x) = h;(x), then also their variance over all the
samples in the training set is equal. Therefore v; = 1. O
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