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Abstract

Deep learning methods are constantly increasing in pop-

ularity and success across a wide range of computer vision

applications. However, they are perceived as ‘black boxes’,

due to the lack of an intuitive interpretation of their deci-

sion processes. We present a study aimed at understand-

ing how Deep Neural Networks (DNN) reach a decision

in regression tasks. This study focuses on deep learning

approaches in the common plant phenotyping task of leaf

counting. We employ Layerwise Relevance Propagation

(LRP) and Guided Back Propagation to provide insight into

which parts of the input contribute to intermediate layers

and the output. We observe that the network largely disre-

gards the background and focuses on the plant during train-

ing. More importantly, we found that the leaf blade edges

are the most relevant part of the plant for the network model

in the counting task. Results are evaluated using a VGG-16

deep neural network on the CVPPP 2017 Leaf Counting

Challenge dataset.

1. Introduction

As deep learning becomes more widespread in computer

vision, there is a growing need to understand the underlying

decision making process of deep neural networks (DNN).

However, deep architectures are typically seen as ‘black

boxes’, lacking a straightforward explanation of how a net-

work achieves a prediction.

The lack of insight is due to the non-linearity of the map-

pings that take as input raw image pixels and transform

them into a feature representation from which a final clas-

sifier or regression function is computed [4]. This can be a

major drawback, as it makes difficult for scientists to thor-

oughly verify the predicted decision. Oftentimes, the pre-

dicted output is either a pre-defined class choice for clas-

sification or a number when performing regression analy-

sis. However, we cannot extrapolate what are the important

parts of an image that contribute the most to the final result.

Figure 1. A: Common deep learning framework taking an image

as input into a trained deep neural network (DNN) which outputs

the leaf count. B: We investigate what elements of the input image

contribute the most in computing a prediction and gain an under-

standing of the intermediate layers.

The visualization of the inner mechanism of a deep net-

work provides a human level understanding of how the deep

learning models make decisions and what image represen-

tations they have learned. Investigating the ‘black box’ will

increase the confidence in deep learning predictions [19]

and will permit the redesign of the architecture to improve

performance.

Improvements in plant phenotyping are essential for the

development of the sector, as they are necessary for in-

creasing plant productivity and resistance. Leaf count is a

fundamental plant trait that underlines plant development

and growth stages [7]. There have been numerous stud-

ies that propose deep learning approaches in leaf counting

[2, 10, 12, 15], but they have failed to answer a key ques-

tion: what does a deep neural network focus on to predict

a specific leaf count? Furthermore, the best reported results

for this task have been through using a direct regression ap-

proach [10, 15], which is poorly studied from a visualiza-

tion perspective. An attempt to gauge salient regions in im-

ages has been done in [1, 10], however not in much detail.

Gaining insights into what contributes to the decision mak-

ing process in direct regression deep learning approaches
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would lead to a better understanding of the model. Addi-

tionally, visualizing what the networks focus on may help

in improving the results. This can be done by choosing dif-

ferent methods of acquiring images, pre-processing data, or

choosing better suited architectures or hyper parameters to

the model.

In this paper, we aim to visualize and understand DNNs

for regression problems, by finding which image areas con-

tribute the most to leaf count. There have been several stud-

ies that describe approaches for classification [9, 14, 33],

but there is a lack of experimental examples that focus on

regression models. We focus on two popular methods for

visualization: Layerwise Relevance Propagation (LRP) [4]

and Guided Back Propagation [29]. We chose them because

they are widely used and have the advantage of being able

to traverse convolutional layers, which are used to extract

features, as well as fully connected layers, which are then

used to implement the leaf count regressor.

Our contributions are the following:

• We focus on visualizing methods for regression prob-

lems. Using the layerwise relevance, we study the in-

fluence of each input both on the final predicted value

as well as in intermediate layers.

• We show that regression value is predicted mainly us-

ing the foreground object (i.e. the plant).

• We demonstrate experimentally that edges of leaf

blades are the most influential for count. We found

that the petiole or the central parts of leaves are not

taken into account in the decision making.

In this study we aim for a functional understanding of

the model, as opposed to a lower level algorithmic under-

standing of it. We focus on interpreting the outputs of a

DNN and explain individual predictions and where the pre-

dictions come from. The main network used in this study

is the VGG-16 model [28] modified to have a leaf count

regressor at the top (c.f. Figure 1).

2. Related Works

When relating to DNNs, the concept of model under-

standing has been defined in terms of interpretability and

explainability [19, 22]: an interpretation is the mapping of

an abstract concept (e.g a predicted class) into a high-level

domain that a human can make sense of, and an explana-

tion is the collection of features of the interpretable domain

that have contributed to a decision such as classification

or regression [22]. For example, an explanation can be a

heatmap highlighting specific pixels from the input, or a

feature map that contributes the most to an output decision

[17, 27]. In recent years, researchers have investigated a va-

riety of approaches to visualize the inner workings of deep

neural networks in computer vision problems [9, 14, 33].

2.1. Explainability

Zeiler and Fergus [31] proposed a deconvolutional net-

work (Deconvnet) that records the activations of a convolu-

tional layer and reverses the forward pass to display which

visual patterns from the input image contribute to the ob-

served activations. Another approach [27] uses information

from lower layers in concordance with the input image to

estimate the image regions responsible for activations seen

at top layers. Gradient based approaches that compute gra-

dients of a part of a DNN with relation to the input image

[20] are also generally accepted visualization methods. Re-

cently, this work was expanded in [23] by including mid

level elements to identify relevant features encoded and use

strided operations when performing the backwards pass to

reduce visual artifacts.

In [34], the authors propose Class Activation Map using

global average pooling of activations of the filters in the last

convolutional layer. This yields a weighted sum over the

spatial locations of the activations resulting in a class activa-

tion map which is up-sampled to the size of the input image.

Grad-cam [26] and the extension Grad-cam++ [8] are visu-

alization methods that compute weights of activation maps

of trained models at layer and neuron level, achieving im-

proved object localization in the resulting heatmaps.

2.2. Interpretation

A common method of interpretation is to cover part of

the input image and to measure the difference in activations

of a trained model. This method of visualization works

on the assumption that occluding relevant parts of the in-

put will lead to a significant drop in performance [31, 34].

However, the resolution of this method depends on the size

of the occluded regions. Escorcia et al. [11] proposed a

method to predict object attributes using a feature selec-

tion process that combines neuron activations with object

categories. Similarly, other methods that match the activa-

tions of convolutional filters against a particular dataset with

pixel-wise annotations have been proposed [5, 32]. Pattern-

Net [16] has been proposed as a method to explain the con-

tributions of the input data signal. The technique trains a

linear signal estimator on top of a pre-trained DNN to ex-

plain the relation between the data signal and the attributed

patterns learned by the DNN.

All the studies mentioned in this section experimentally

tested their proposed methods on classification tasks, while

in our study we focus instead on using visualization tech-

niques for a regression application.

Recently, there have been studies that include some in-

terpretation techniques in plant phenotyping. In [10], the

network was still considered as a ‘black box’, but the au-

thors found out that the network was mostly focusing on

the plant by masking parts of the image with a black square

and evaluating the impact on predictions. In [1], the authors
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Figure 2. Visualization techniques that show which parts of the in-

put are taken into account for a final leaf count prediction. The

rows represent the four datasets available in the CVPPP 2017 Leaf

Counting Challenge denoted A1-A4 containing Arabidopsis and

Tobacco plants. Guided back-propagation computes positive gra-

dients from the leaf count prediction to the input image and outputs

an RGB image. Layerwise relevance (LRP) is computed using the

α2β1 propagation rule described in section 3.2. Red indicates ar-

eas of positive relevance while blue areas represent negative rele-

vance. The results of both techniques reveal that the most impor-

tant parts of the plant are the leaf blade edges, independent of the

different datasets and plant species.

use the method described in [34] to find salient regions for

wheat shoot count. The drawback of this approach is that it

does not work with fully connected layers. In [18], they in-

vestigate the visualization of learned leaf features for plant

classification.

3. Visualization techniques

In this section we describe the visualization techniques

used in this study. In particular, we provide insights on

guided backpropagation [29] and layerwise relevance prop-

agation [4]. Overall, we chose to use both of these visual-

ization methods, as they can effectively work for convolu-

tional and fully-connected layers. In addition, they allow

intermediate layer investigation.

3.1. Guided backpropagation

This approach is a gradient-based visualization tech-

nique designed to highlight what parts of the input con-

tribute to a given neuron in a neural network [29]. The

method back propagates the gradient with relation to the

input image while masking negative values. This results in

only positive gradients being conserved. The advantage of

retaining only positive gradients is to prevent a backward

flow of negative signals corresponding to neurons which in-

hibit activation of the higher level neuron. As opposed to

usual backpropagation, this can act as an additional guid-

ance signal when traversing the network. The output of

guided backpropagation is an RGB image of the same di-

mensions as the input image. This method works for visu-

alizing neurons in convolutional as well as fully connected

layers. Examples of outputs can be seen in Figure 2.

3.2. Layerwise relevance propagation (LRP)

LRP [4] is a backwards propagation technique, designed

as a method of explainability in deep neural networks. It

was found to be widely applicable to classification prob-

lems [3, 22]. The principle behind this technique is the con-

servation property: each neuron receives a share of the net-

work output and redistributes it to its predecessors in equal

amount, until the input is reached. The output of the LRP

technique is a relevance heatmap highlighting which areas

of an input contributes to the output. There are several ad-

vantages to this technique: firstly, it works with convolu-

tional layers as well as fully connected layers. Secondly, it

produces a heatmap that relates to the input image. Further-

more, as opposed to the guided backpropagation approach,

it can capture both positive and negative evidence. Exam-

ples of generated relevance heatmaps are displayed in Fig-

ure 2.

LRP is divided in two phases. The first phase is a stan-

dard forward pass through the network, which records the

activations at each layer. In the second phase, the score ob-

tained at the output of the network is back propagated in

the network adhering to propagation rules based on the rel-

evance conservation property [4]. The rules are described as

follows: let j and k be indices of neurons in two successive

layers and Pk be the relevance of neuron k for the prediction

of f(x). Then, the term Pj←−k is defined as the share of Pk

that is redistributed to neuron j in the lower layer. The con-

servation property of the neuron dictates
∑

j Pj←−k = Pk

when moving towards a higher layer. Similarly, the notation

of neurons from the lower level can be defined as an aggre-

gate of the relevance corresponding to neurons in a higher

layer Pj =
∑

k Pj←−k. Combining the two notations shows

that the conservation of relevance holds between layers and
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Figure 3. Diagram showing the LRP phases. A) Standard forward

pass through the neural network from the input to the output. In

this phase, the activations are recorded, and are shown here as aj

and ak. B) The relevance propagation is done going backwards

through the network from the output to the input. As the signal

travels, it detects the relevance of nodes Pi←k. The red and blue

lines denote an excitatory or inhibitory influence, respectively.

travels from the input to the output:

d
∑

i=1

Pi = . . . =
∑

j

Pj =
∑

k

Pk = . . . = f(x) (1)

When looking at how relevance is carried over individual

neurons, the conservation principle still holds and relevance

can be divided into positive (excitatory influence) and neg-

ative (inhibitory influence). Let a neuron in a deep neural

network be described by the following equation:

ak = ϕ





∑

j

ajwjk + bk



 , (2)

where ak represents the activation of the neuron, aj the acti-

vation of the previous layer, wjk the weights and bk the bias

of the neuron. We assume that the function ϕ is a positive

and monotonically increasing activation function.

The relevance signal is broken down into two factors for

positive and negative relevance influence and it can be for-

mally written as:

Pj =
∑

k

(

α
ajw

+

jk
∑

j ajw
+

jk

− β
ajw

−

jk
∑

j ajw
−

jk

)

Pk, (3)

where the α and β coefficients indicate the strength of the

positive and negative relevance signals to be displayed in

Label A B C D

Predictions 9 9 9 10
Figure 4. Test to evaluate our findings that the leaf blade edge is the

most important for computing count. A: The original image with

a ground truth of 9 leaves, B: The centres of several leaves have

been deleted and replaced with soil texture, C: the petioles from

several larger leafs have been removed altogether, D: An extra leaf

has been added but not attached to the centre of the plant. The

network predicts the same leaf count for images such as B and C

as does for the original image meaning that no crucial information

was lost. In D the network successfully detects an additional leaf

even if not attached to the central plant.

the output heatmap. For example when α = 1 and β = 0
only positive relevance is displayed and can be an interpre-

tation of the deep Taylor decomposition described in [24].

An experimentally inferred good choice for the coefficient

values is α = 2 and β = 1 [4] which are the values we

use for our experiments. A diagram depicting the phases

of LRP and how each node contributes to the final outcome

can be seen in Figure 3.

4. Results

In this section, we show our findings in interpreting a

deep neural network in the context of the regression task.

We adopted VGG-16 [28], where the last two layers were

adapted to accommodate the regression task, and main-

tained the same training parameters as in [10, 12]. We

opted to use a VGG-16 as opposed to a ResNet-50 [13]

or Inception-V3 [30] because they are not sequential net-

works and are generally difficult to interpret because of the

presence of skip connections and residual blocks [9]. The

model was trained on the CVPPP 2017 Leaf Counting Chal-
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Figure 5. The top part of the figure consists of a diagram of the VGG-16 network architecture used in this study. The leaf count regressor

composed of three fully connected layers was added after the convolutional blocks. The bottom part of the figure shows the average

activations at the end of several convolutional blocks at the start and end of training. In the end of block 5 the areas corresponding to the

plants show increased activity at the end of training for all the scales and species of plants.
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Network DiC |DiC| MSE %

ResNet-50 [10] 0.23 (1.02) 0.69 (0.73) 1.11 44

VGG-16 (Ours) 0.11 (1.10) 0.74 (0.80) 1.20 41
Table 1. Comparison of VGG-16 vs. ResNet-50 leaf counting per-

formance trained on CVPPP 2017 dataset.

lenge datasets [6, 21, 25] to perform the leaf counting task.

The VGG-16 based network has similar performance to the

ResNet-50 in [10], as reported in Table 1.

4.1. What is the network looking at?

In [10, 12], it was shown that the network can learn to ex-

clude the background and focuses mostly on the plant area.

However, the mentioned studies do not demonstrate which

part of the plant contributes the most to the leaf counting.

In Figure 2, we show the qualitative results of the guided

backpropagation (Figure 2(B)) and LRP (Figure 2(C)).

The guided backpropagation method helps in understand-

ing which parts of the input contribute to the final predic-

tion. On the other hand, LRP is used to determine which

of the highlighted areas have positive influence (coloured in

red), and which have negative influence (coloured in blue)

on the final prediction.

It is evident from these results that the most active parts

contributing the leaf count are the leaf blade edges. We

can hypothesize that neither the blade center nor the petiole

have any impact in reaching the final leaf count prediction.

To demonstrate this claim experimentally, we selected an

image from the test dataset and we manually removed the

centers of some leaves. In parallel, we similarly manipu-

lated the image to remove the petiole of some leaves. In ad-

dition, we created another image where we manually added

an extra leaf. We used our trained network to predict the

leaf count on the manipulated images. In Figure 4, we show

an example of the results of this experiment. We selected

an image from the A2 testing dataset (Figure 4(A)), which

we know has the ground truth leaf count of 9. Then we re-

moved the inner central part of some leaves (Figure 4(B))

and the network prediction remained 9. Then we removed

the petioles of several leaves (Figure 4(C)) and the total leaf

count prediction was still 9. Lastly, the network was able to

count 10 when an extra leaf was added to the image (Fig-

ure 4(D)). We can see from this experiment that the most

relevant plant areas are the blade edges.

4.2. Intermediate Layers Analysis

Next, we analyzed the intermediate layers of the network

to understand how each convolutional block in the VGG-16

processes the input data. In the top part of Figure 5, we

show a representation of the VGG-16 network: it consists

of 5 convolutional blocks, separated by max-pooling oper-

ations. We considered the last convolutional layer of each

Figure 6. LRP visualization of the last convolutional layer when a

leaf is hidden with a black box. The test shows that the network

does not ’memorise’ a count while ignoring features of the plant:

in A, the black box does not hide any leaves and the leaf count

prediction is 13, whereas in C the black box hides one of the leaves

and the prediction is correctly 12. The heatmaps B and D represent

the LRP at the final convolutional layer, showing in D that the

black box only has impact in the area where it occludes a leaf.

block and computed the average activation across the fea-

ture maps. In the lower part of Figure 5, we show the av-

erage output of the last convolutional layer in each block at

the beginning and at the end of the training process (only

block 2,3, and 5 are displayed for brevity).

The output of the second convolutional block provides

low-level features of the input. After the third block, the

network starts to focus on edges of the leaves or part of the

background. It is the output of the last layer that provides

higher activations corresponding to the location of the plant,

discarding most of the background. It is worth noting how

the convolutional block outputs evolve over time: the sec-

ond block provides similar features at the beginning and at

the end of the training. The output of the third block learns

to extract high level features from the blade edges, although

edges in the background areas are still very active (e.g., the

pots). In the last block the activations start off diffused but

after training the network learns how to exclude the back-

ground and only keeps meaningful activations in areas that

correspond to the plants.

From Figure 5, we can see that the network learns how

to mask the background after 5 convolutional blocks (and

downsampling operations). In Figure 6, we show an exam-

ple of the output of the last convolutional block. We noticed

that the majority of the highest activations are located in ar-
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Feature map DiC |DiC| MSE %

Unaltered 0.11(1.10) 0.74(0.80) 1.20 41

No top row 0.11(1.08) 0.74(0.80) 1.19 41

Only top row -9.71(5.73) 9.71(5.73) 126.16 0

Table 2. Test to determine effect on count prediction of the top row

of the feature map seen in Figure 6(B,D). ”No top row” means that

the top row of the feature map is forced to be 0. ”Only top row”

means we mask every other row except the top row in the feature

map to be 0. Results shown are based on the A1-A4 datasets.

eas within the plant. However, we also noted that the top

part of the feature maps contains information not related to

the plant. This top row is present in all images from the

A1-A4 datasets which contain examples of various back-

grounds and light intensities. This suggests that the network

stores additional information that might not be directly re-

lated to the plant features, but it is not evident what this in-

formation is related to. Thus, we next investigated whether

this information located at the top of the feature map is re-

lated to the regression task. We approached this problem in

two ways by altering (i) the input; and (ii) the feature map.

Input alteration test: In Figure 6(C), we masked one leaf

from the original image (A) and provided the new input to

the network. Using LRP, Figures 6(B) and (D) differ only

in areas corresponding to the leaf, and the activation infor-

mation stored on top of the feature map changes by only

2.27% of the activation values, indicating that these activa-

tions may not be related to the regression task.

Feature map alteration test: To further demonstrate that

the information on top of the feature map in Figures 6(B)

and (D) are not related to leaf count, we altered the feature

map during testing. Specifically, we added a masking layer

after the last convolutional layer in the block 5, where the

top row of Figures 6(B) is replaced with 0. Experimental re-

sults of all the images in the A1-A4 training sets are shown

in Table 2. Even after we replaced the top row with 0’s after

the last convolutional layer, results show that the leaf count

is unchanged and that the DNN can still correctly count leaf

numbers. To further confirm it, we performed another ex-

periment, where we masked the central part of the feature

map, maintaining the top-row information. As it can be ob-

served in Table 2, in this case the network is unable to make

predictions even if the top layer is preserved.

From these experiments we can conclude that:

• VGG-16 focuses on the leaf blades to make leaf count-

ing predictions.

• VGG-16 disregards the surface of the leaves when

counting leaves.

• After 5 convolutional blocks, the network focuses on

the plant, discarding most of the background.

Figure 7. Visualization of the three most influential neurons in the

layer following the last convolutional layer (three are shown for

brevity). The neurons express an attention, only receiving a signal

from part of the input.

• The network stores information unrelated to the count-

ing task on top of the last convolutional block.

• The information stored on top of the last convolutional

block is unnecessary to predict leaf count.

4.3. What is the regressor looking at?

The last three layers of our VGG-16 network are respon-

sible for learning the regression task. We analyzed the first

fully-connected layer, as it is responsible to learn a map-

ping between the visual features and the predictions. Us-

ing LRP, we identified the most active nodes in this 1024-

dimensional vector. Focusing on each node in order of rel-

evance we performed guided backpropagation and LRP all

the way to the input.

The qualitative results of the three most active nodes are

displayed in Figure 7 as an example. Each of these nodes

acts as an ‘attention map’: they get excited by different parts

of the plant, ignoring the rest of the image. We hypothe-
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Parameters DiC |DiC| MSE %

57M 0.11 (1.10) 0.74 (0.80) 1.20 41

36M -0.21 (1.13) 0.79 (0.83) 1.33 41

Table 3. Network compression experiment. We compared the per-

formance of two versions of the VGG-16, which have a different

number of parameters.

size that thanks to this ‘self-learned attention mechanism’

the network is able to distinguish between foreground (the

plant) and the background (the soil).

4.4. Compressing the network

When computing the relevance of each neuron in the

fully connected layers we found that ∼ 40% of the nodes

are mostly inactive irrespective of the input image. This

suggests that we could further reduce the size of the fully

connected layers. This would reduce computational strain

during training and help reduce over-fitting. Fully con-

nected layers are characterized by a weight matrix W with

dimensionality depending on their input and output layer

sizes. This means that these layers make up a considerable

part of parameters.

For this test we halved the number of nodes in the fully

connected layers, from 1024 and 512 to 512 and 256, re-

spectively. By making this change the total parameter count

decreased from 57 million to 37 million. We trained the

reduced parameter network using the same training proce-

dure as the full parameter network. The quantitative results

on the full training set are reported in Table 3. We obtained

a reduction of the total network parameters by 37%, how-

ever the impact in the prediction accuracy is not significant.

A paired t-test gives a p-value of 0.17. The MSE prediction

error increases by∼ 10% but the overall agreement remains

the same for both networks.

5. Conclusions

Numerous studies have been done to understand the de-

cision making process of DNNs for classification applica-

tions in computer vision. However, there has been little

analysis into the interpretation of regression based architec-

tures and what the network focuses on to reach a decision.

In this paper we addressed the gap by employing deep learn-

ing visualization techniques to gain a better understanding

of the decision contributing factors in the regression based

plant phenotyping task of leaf counting.

We used LRP and guided backpropagation to inspect

what areas of the input image are important for the out-

put and we also investigated what information is captured

in intermediate layers. We experimentally determined that

the blade edge is the most important part of the plant that

contributes to the final leaf count, regardless of the image

background or plant species and scale. We determined that

the network focuses on the plant by observing the activa-

tions of intermediate layers during the training process. We

show that the network reacts to occlusions of the input and

does not store count information in areas not corresponding

to the plant. Finally, through improved understanding, we

show that we can compress the network, while not signifi-

cantly impacting the performance.
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