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a b s t r a c t 

This paper proposes a filter-based feature selection method by combining the measurement of kernel 

canonical correlation analysis (KCCA) with the mutual information (MI)-based feature selection method, 

named mRMJR-KCCA. The mRMJR-KCCA maximizes the relevance between the feature candidate and 

the target class labels and simultaneously minimizes the joint redundancy between the feature candi- 

date and the already selected features in the view of KCCA. To improve the computation efficiency, we 

adopt the Incomplete Cholesky Decomposition to approximate the kernel matrix in implementing the 

KCCA in mRMJR-KCCA for larger-size datasets. The proposed method is experimentally evaluated on 13 

classification-associated datasets. Compared with certain popular feature selection methods, the experi- 

mental results demonstrate the better performance of the proposed mRMJR-KCCA. 
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. Introduction 

Hand-crafted features, as the inputs for most machine learn-

ng methods, are the quantitative and informative variables

enerated from the original data. Features can be time-domain

 Machado, Gomes, Gamboa, Paixão, & Costa, 2015 ), frequency-

omain ( Suto, Oniga, & Sitar 2016 ), and hybrid ( Montalto, Guerra,

ianchi, De Munari, & Ciampolini, 2015 ). The initial features usu-

lly include redundancy or may be too large to be efficiently dealt

ith, which results in several issues, such as higher computational

ost involved in learning, low learning efficiency, over-fitting on

nseen data, etc. ( Chu, Liao, Ng, & Zhang, 2013; Gheid & Challal,

016; Guyon & Elisseeff, 2003 ). Feature selection (FS), commonly

sed as a dimensionality reduction strategy, selects a smaller-size

ubset of the original feature set by removing the redundant and

rrelevant features. The selected features are part of the original

eatures without any feature transformation and maintain the

hysical meanings of the original features. In this way, FS helps

sers acquire a better understanding of their data by figuring
∗ Corresponding author. 
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ersity, Qinhuangdao 066004, China and School of Engineering and the Built Envi- 

onment, Edinburgh Napier University, Edinburgh EH10 5DT, UK. 
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ut the most informative features, and hence to facilitate learn-

ng, enhance the generation performance and improve model

nterpretability ( Tang, Alelyani, & Liu, 2014 ). 

Supervised FS methods, designed for the classification or re-

ression tasks, are generally seen as the following types: filter

 Gheid & Challal, 2016 ), wrapper ( Bolón-Canedo, Sánchez-Maroño,

 Alonso-Betanzos, 2013 ), and embedded approaches ( Li, Cheng

t al., 2017; Li, Zhu et al., 2017 ). Filter methods filter out irrelevant

eatures by evaluating the relevance of a feature to the class label

sing a specific selection criterion ( Urbanowicz, Meeker, LaCava,

lson, & Moore, 2017 ). A filter algorithm first ranks the original

eatures based on the criterion, then selects the features with

igher rankings. The above selection process is independent of any

lassifier, computationally efficient and usually obtains a trade-off

etween performance and efficiency. 

Selection criteria play a critical role in filter-based FS methods.

 range of criteria has been explored in the past decades, such

s distance measure, similarity, dependency, mutual information

MI), correlation measure, canonical correlation analysis (CCA)

 Dessì et al., 2015; Gheid et al., 2016 , Li, Cheng et al., 2017; Li,

hu et al., 2017 ). As the largest family in filter-based FS methods,

n MI-based FS algorithm measures the importance of a feature

y its selection criterion with the class label, assuming that the

eature with a stronger correlation with the label will improve
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classification performance. The popular algorithms in MI family

are minimum Relevance Maximum Relevance (mRMR) ( Peng, Long,

& Ding, 2005 ), Joint Mutual Information (JMI) ( Bennasar, Hicks, &

Setchi, 2015 ), Conditional Mutual Information Maximum (CMIM)

( Gao, Ver Steeg, & Galstyan, 2016 ), etc. MI considers the correla-

tion of variables in pairs and then uses a simple approximation

strategy, i.e., the sum or the average, to approximate the relation

between one variable (a feature or a label) and multidimensional

variables (e.g., a set of features) ( Brown, Pocock, Zhao, & Luján,

2012 ). As a result, the MI-based FS shares a common problem,

i.e., it doesn’t fully consider the complementarity within a set

of variables. Different from the MI, the CCA measures the linear

correlation between two sets of multidimensional variables by

maximizing the correlation coefficients between them. The CCA

may not extract a useful description of the data due to its linearity.

The KCCA is a nonlinear correlation measurement by mapping the

data into a higher-dimensional feature space with kernel tricks

( Hardoon, Szedmak, & Shawe-Taylor, 2004 ). The CCA or the KCCA

are easily employed as a feature selector ( Mehrkanoon & Suykens,

2017; Yoshida, Yoshimoto, & Doya, 2017 ). 

Inspired by MI-based FS methods and CCA-based measure-

ments, this paper proposes and implements a new FS method,

named mRMJR-KCCA. The mRMJR-KCCA maximizes the relevance

between the feature candidate and the class labels and simul-

taneously minimizes the joint redundancy between the feature

candidate and the already selected features by using KCCA. The

proposed mRMJR-KCCA is experimentally evaluated over the 10

classification–related benchmark datasets from UCI 1 and our three

ground-truth datasets involving 17 daily activities from 21 volun-

teers. We also compare mRMJR-KCCA with other available popular

FS methods, including MCR-CCA and mRMR-CCA ( Kaya, Eyben,

Salah, & Schuller, 2014 ), Autoencoder ( Wang, 2016 ), Sparse Filtering

( Ngiam, Chen, Bhaskar, Koh, & Ng, 2011 ), four MI-based methods

( Brown et al., 2012 ). The contributions of this paper are summa-

rized as (1): mRMR uses the approximation of sum operation �

when measuring the redundancy between the feature candidate

and the already selected features in pairs, which somehow does

not fully consider the complementarity within the already selected

features. Our proposed mRMJR-KCCA introduces the measurement

of KCCA into mRMR, which replaces the approximation of sum in

mRMR with the KCCA analysis to measure the joint redundancy

between the feature candidate and the already selected features.

(2): We apply Incomplete Cholesky Decomposition (ICD) ( Li, Bi,

Kwok, & Lu, 2015 ) to reduce the dimensionality of the kernel

matrix in the implementation of mRMJR-KCCA on the large-size

ground truth datasets. (3): We also investigate the impact of the

kernel parameter and the number of components decomposed

from the kernel matrix by ICD on the classification accuracies. 

The rest of the paper is organized as follows. Section 2 de-

scribes the fundamentals of MI and CCA and related studies.

Section 3 presents the proposed method, mRMJR-KCCA, and its

implementation. Section 4 gives the experimental results and the

discussions. The conclusion is provided in Section 5 . 

2. Related works and fundamentals 

2.1. Entropy and MI-based FS 

This paper considers two groups of FS methods, and the first

one is the MI-based FS. The MI is one of the most effective criteria

to measure the correlation between variables. Let x and y be two

discrete random variables, both x and y have N observations, the
1 http://archive.ics.uci.edu/ml/ . 

m  

t  

E  
I between x and y is defined as 

 ( x ; y ) = H ( y ) − H ( y | x ) = 

∑ 

x,y 

p ( x, y ) 
p ( x, y ) 

p ( x ) p ( y ) 
(1)

here H ( y ) represents the entropy of y which quantifies the degree

f uncertainty in a discrete or discretized random variable y and

 ( x | y ) represents the conditional entropy of x given y; p (.) is the

robability mass function ( Bennasar et al., 2015 ). The MI signifies

ow much information x and y share, which is nonnegative and

quals zero if x and y are independent. The minimum Redundancy

aximum Relevance (mRMR) algorithm ( Peng et al., 2005 ), which

irectly uses MI to value the redundancy and relevance of involved

ariables, is one of the most popular FS methods. The ranking

riterion of the mRMR is 

 mRMR ( f k ) = max 
f l ∈ S, f k ∈ F −S 

[
I ( f k ;C ) − 1 

| S | 
∑ 

I ( f k ; f l ) 

]
(2)

here I (; ) is given in Eq. (1) , f k is a feature candidate; F is the

hole feature set; S is the already selected feature set; f l can be

ny feature in S ; and C is the class labels. The second term in

q. (2) considers the redundancy between the feature candidate

nd any already selected features in terms of paired variables,

hich doesn’t fully consider the joint relevance and the condi-

ional redundancy given the third or more variables. The improved

utual information measures can deal with the MI between three

ariables, one of which is Conditional Mutual Information Maxi-

ization (CMIM) ( Brown et al., 2012 ). The corresponding criterion

f the CMIM is 

 cmim 

( f k ) = I ( f k ;C ) − max [ I ( f k ; f l ) − I ( f k ; f l | C ) ] (3)

here the additional term I ( f k ; f l | C ) includes the redundancy

iven the class labels C compared with the mRMR criterion. The

ther two typical MI-based methods are Joint Mutual Information

JMI) that includes the complementary information that is shared

etween the feature candidate and the already selected features

iven the class labels. The criterion of JMI is given in Eq. (4) below

 Brown et al., 2012 ). Double Input Symmetrical Relevance (DISR)

s the modification of JMI by estimating the normalization H( f k , f l ;

 ). 

 JMI ( f k ) = max 
∑ 

f l ∈ S 
I ( f k , f l ;C ) (4)

here I ( f k , f l ; C ) is the joint mutual information of variables f k ,

 l and C . 

.2. CCA and KCCA 

CCA statistically finds the correlation between two sets of ran-

om variables X and Y ( Hotelling, 1936 ). Denote X = ( x 1 , . . . x p ) ∈
 

N×p , Y = ( y 1 , . . . y q ) ∈ R N×q . X and Y can be two feature spaces,

r a feature space and a label space. To obtain the correlation

etween the two sets of variables, CCA finds a linear projection

 in the space of X , and a linear projection v in the space of Y to

aximize the following sample correlation in Eq. (5) . Such that

he projected data u ′ X and v ′ Y have a maximum correlation. 

CCA = argmax 
u ∈ R p , v ∈ R q 

u 

′ X 

′ Y v √ 

( u 

′ X 

′ Xu ) ( v ′ Y ′ Y v ) 
(5)

CCA-based filter FS methods intend to use the correlation

measured by Eq. (5) ) between the two projections of the vari-

ble sets to figure out the most important original features.

aya et al. (2014) propose two CCA-based FS methods. The first

ethod is called mRMR-CCA, which replaces the MI indicator with

he CCA coefficient, as presented in Eq. (6) . The second term in

q. (6) is changed from a sum of paired redundancies in Eq. (2) to

http://archive.ics.uci.edu/ml/
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edundancy which is handled once from multidimensional vari-

bles. 

 mRMR −CCA ( f k ) = max [ ρCCA ( f k ;C ) − ρCCA ( f k ; S ) ] (6) 

here ρCCA is given in Eq. (5) . The second method in

aya et al. (2014) is the Maximum Collective Relevance (MCR-CCA),

imilar to the JMI, which maximizes the collective correlation of

he feature candidate and the already selected features against the

lass labels. The criterion of the MCR-CCA is 

 MC R −C CA ( f k ) = max [ ρCCA ( f k ∪ S;C ) ] (7) 

he CCA describes the linear correlation between two sets of

ariables, which are often insufficient to reveal the highly non-

inear correlation with many real-world data ( Wang et al., 2015 ).

he KCCA provides a nonlinear extension of CCA, which catches

he nonlinear correlation by mapping the data into a higher-

imensional feature space before performing CCA ( Sakar, Kursun,

 Gurgen, 2012 ). The KCCA-applied correlation between two sets

f random variables X and Y is thus to identify the weights α, β
hat maximize 

KCCA = argmax 
α,β

α′ K X K Y β√ 

( α′ K X K X α) ( β ′ K Y K Y β) 
(8) 

here K X = X X ′ and K Y = Y Y ′ are the kernel matrices correspond-

ng to the variable sets X and Y . However, the kernelized CCA

roblem in Eq. (8) causes an ill-posed inverse problem, and thus

 regularization approach is needed to construct a meaningful

stimator of the canonical correlation ( Ashad Alam & Fukumizu,

015; Bach & Jordan, 2002 ). The objective function for regularized

ernel CCA becomes 

KCCA = argmax 
α,β

α′ K X K Y β√ 

( α′ K X K X α + εα′ K X α) · ( β ′ K Y K Y β + εβ ′ K Y β) 

(9) 

here ε is a regularization parameter that should be a small and

ositive value and approaches zero with an increasing sample size

 ( Lisanti, Masi, & Del Bimbo, 2014 ). 

In KCCA, the inputs X = { x p } N 1 and Y = { y q } N 1 caused kernel

atrix K X and K Y are both with the size of N × N . Thus, solving

q. (9) involves an eigenvalue problem of size N × N , which is ex-

ensive both in memory (storing the kernel matrices) and in time

ith naively costs O( N 

3 ) ( Wang & Livescu, 2015 ). To overcome

his issue, a range of kernel approximation techniques have been

roposed to scale up KCCA, including singular value decomposition

SVD) ( Chakraborty, Chatterjee, Dey, Ashour, & Hassanien, 2017 ),

yström method ( Patel, Goldstein, Dyer, Mirhoseini, & Baraniuk,

016 ), Incomplete Cholesky Decomposition (ICD) ( Li, Bi, Kwok,

 Lu, 2015 ), and so on. After applying the above approximation

ethods, the efficiency of calculating KCCA can be much improved

 Wang & Livescu, 2015 ). 

. The proposed KCCA based feature selection method 

Over the last two decades, the KCCA has been using for var-

ous purposes in statistic and machine learning, such as feature

earning ( Sakar et al., 2012 ), computational vision ( Bilenko and

allant, 2016 ), statistical independence measurement ( Lopez-

az, Hennig, & Schölkopf, 2013 ) and so on. Lisanti et al. (2014) in-

estigate matching people across cameras views by applying a

earning method based on KCCA to find a common substance

etween their proposed descriptors, and their experimental

esults demonstrate the superiority of the proposed method.

akar et al. (2012) propose a filter method for feature selection

ith the aim to find the unique information, which exploits

orrelated functions explored by KCCA as the inputs to mRMR.
hey demonstrate the effectiveness of their method on some

enchmark datasets. Considering Eqs. (6)–(9) , we propose a new

ernel version FS method, i.e., mRMJR-KCCA, by applying KCCA in

q. (9) to Eq. (6) . The criterion of mRMJR-KCCA is 

 mRMJR −KCCA ( f k ) = max 
f k ∈ F −S 

[ ρKCCA ( f k ;C ) − ρKCCA ( S; f k ) ] (10) 

here ρKCCA is the correlation coefficient calculated by KCCA be-

ween two sets of variables, given in Eq. (9) . It is noted that we in

act use ρcorr (the Pearson’s correlation) in calculating the first item

i.e., the relevance of the feature candidate and the target labels) in

q. (10) , since the CCA or KCCA essentially perform the calculation

f the Pearson’s correlation ( Zou, Zeng, Cao, & Ji, 2016 ) when both

 and Y are two vectors (such as f k and C ) in Eq. (5) or Eq. (8) , The

RMJR-KCCA combines the idea of the mRMR and KCCA to max-

mize the relevance between the feature candidate and the target

lass labels, and simultaneously minimize the joint redundancy

etween the already selected features and the feature candidate. 

The MI between two variables in Eqs. (1) and (2) is the sum

f MI between the discrete variates x and y if there are no higher

rder statistic dependencies than correlation ( Fig. 1 (a)). The CCA

n Eq. (5) finds a pair of linear transformations from X and Y

uch that the correlation coefficient between extracted features

s maximized ( Fig. 1 (b)). The KCCA in Eq. (8) finds pairs of non-

inear projections of the two views, and the optimal projections

an maximize the correlation between X and Y by mapping the

ata-cases to feature vectors �( x ) and �( y ), as shown in Fig. 1 (c). 

The second term in Eq. (2) ( Brown et al., 2012 ) is replaced

rom an approximation of sum of the paired redundancies with

 new redundancy measurement in Eq. (6) ( Kaya et al., 2014 )

hich is handled once for multidimensional variables by CCA. Our

roposed mRMJR-KCCA further changes the measurement of CCA

n Eq. (6) to the KCCA, as presented in Eq. (10) . 

To implement the mRMJR-KCCA especially for the large-size

atasets, we apply Incomplete Cholesky Decomposition (ICD) for

ernel matrix approximation to improve the computation effi-

iency due to its accurate matrix approximation with far fewer

amples ( Patel et al., 2016 ). ICD generates a low-rank matrix N × M

 M � N ) by performing a standard Cholesky Decomposition but

erminating the decomposition considering a small number of

olumns ( M ). So that the complexity to the eigenvalue problem

f size N × N in Eq. (9) turns to O( M 

2 N ) ( Hardoon et al., 2004 ).

able 1 details the procedure to implement mRMJR-KCCA in this

aper. 

The mRMJR-KCCA algorithm ranks the features by the maximal

elevance between the feature candidate and the target class labels

nd the minimal joint redundancy between the feature candidate

nd the already selected features, as presented in Eq. (10) . It is

oted that the nonlinear correlation coefficient is used to rank

he feature candidates following Eq. (10) , which is acquired by

he transformation in KCCA. However, the coefficient is only for

anking the features, the selected features with higher ranking

re still the original features instead of the transformed data. The

teps of the mRMJR-KCCA algorithm in Table 1 are explained in

etail below: 

Step 1: Normalize features value to [0 1] range. This step ensures

that all features have the same importance. 

Step 2: Calculate the relevance score of each feature candidate

with the class labels based on the first item in Eq. (10) . 

Step 3: Select the first feature f s which has maximal relevance

score in Step 2. 

Step 4: Update S = S ∪ { f s } , F = F |{ f s } . 
Step 5: Calculate the mRMJR-KCCA using Eq. (10) . Also, the ICD

is adopted to improve the implementation of KCCA in

Eq. (10) . 
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Fig. 1. The representation of MI, CCA, and KCCA. 

Table 1 

Pseudocode of the mRMJR-KCCA. 

Algorithm mRMJR-KCCA: Maximum Relevance and Minimum Joint Redundancy Kernel CCA 

Input : an original feature set F, the number of features to be selected U 

Output : a selected feature set S 

Initialize F = { f 1 , f 2 , . . . f l , . . . f n } , S = { } , U
Normalize features to [0 1] 

Calculate ρKCCA ( f n , C ) using Eq. (9) for each f n with the class labels C 

Select the first feature f s with maximum ρKCCA ( f n , C ) 

Update S = S ∪ { f s } , F = F |{ f s } 
If U < desired numbers 

Calculate mRMJR-KCCA: ρKCCA ( f k ;C ) − ρKCCA ( S;C ) following Eq. (10) 

Select the next feature that maximizing mRMJR - KCCA 

Update S, F 

End 

Write S to an excel file 

Table 2 

Descriptions of UCI datasets and ground-truth datasets used in the experiments. 

Dataset Data type # Feature # Class # Instance Year 

1 Blood Real 4 2 748 2008 

2 Diabetes Integer, Real 8 2 768 1990 

3 Heart Categorical, Real 13 2 270 N/A 

4 Iris Real 4 3 150 1988 

5 Parkinsons Real 22 2 195 2008 

6 Seeds Real 7 3 210 2012 

7 Wdbc Real 30 2 569 1995 

8 Wine Integer, Real 13 3 178 1991 

9 Wine_red Real 11 6 1599 2009 

10 Wpbc Real 33 2 198 1995 

11 X_HAR Real 75 17 32,844 2015 

12 Y_HAR Real 296 17 32,844 2015 

13 Z_HAR Real 371 17 32,844 2015 
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T  
Step 6: Select the next feature which maximizes the mRMJR-

KCCA. 

Step 7: Go to Step 4 if the number of the already selected fea-

tures is lower than the number of features to be selected.

It is noted that the main difference compared with the CCA ap-

proach in Kaya et al. (2014) is in Step 5. Due to applying Eq. (9) in

the proposed Eq. (10) , we utilize the ICD to approximate a kernel

matrix and map the features into the nonlinear space especially

for the larger-size dataset, such as the datasets of X_HAR, Y_HAR

and Z_HAR in Table 2 . 

4. Experimentations and results 

4.1. Benchmark datasets and learning algorithms 

We employ 10 UCI benchmark datasets and three ground-truth

datasets to evaluate the performance of mRMJR-KCCA. The datasets

are all related to classification problems, covering both binary-

class and multi-class; the data type includes real, integer and

categorical; the number of original features ranges from 4 to 371;

the sample number of each dataset varies from 150 to 32,844. The

ground truth datasets 10–12 contain the daily activities performed

in a home environment using five wearable sensors. The data
ets 11, 12 and 13 record 17 activities from 21 subjects with 20 Hz

ampling rate. X_HAR represents the feature set extracted from the

earable’s attitude (roll, pitch, and yaw) and Y_HAR is the feature

et generated from the sensor readings of an accelerometer, a

yroscope and a magnetometer, a barometer and a temperature

ndividually. Z_HAR is the combination of X_HAR and Y_HAR. The

etails of all the datasets used in this work are shown in Table 2 . 

We experimentally evaluate mRMJR-KCCA using two learning

lgorithms on the selected subset of features, i.e., Support Vector

achines (SVM) and Random forest (RF) due to their excellent

erformance in classification applications ( Alickovic, Kevric, &

ubasi, 2018; Chernbumroong, Cang, & Yu, 2014; Sani, Massie,

iratunga, & Cooper, 2017 ). The pair of parameters gamma and c

n SVM, and the number of trees in RF are determined in 10-fold

ross validation process individually. The results report the aver-

ge accuracy from 10 times test. At the same time, we compare

ur proposed method with other available popular FS methods

resented in Section 1 . 

.2. Experimental results on the used datasets 

The classification accuracies with SVM and RF are shown in

able 3 and Table 4 , respectively, in which the best method for
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Table 3 

Classification accuracy (%) with SVM classification. 

Dataset (# of the 

selected best features) 

mRMJR-KCCA 

(proposed) 

mRMR-CCA a MCR-CCA a Sparse 

Filtering b 
Autoencoder c mRMR d JMI d CMIM 

d DISR d 

Blood (4) 77.94 77.94 77.94 77.94 77.94 77.94 77.94 77.94 77.94 

Diabetes (7) 77.98 77.98 78.12 72.26 70.18 77.98 77.79 77.99 77.79 

Heart (5) 84.07 84.93 84.81 71.48 80.37 83.33 83.85 83.33 83.70 

Iris (4) 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 

Parkinsons (5) 92.21 91.74 91.24 91.26 92.76 92.21 90.74 89.58 90.21 

Seeds (3) 93.81 91.43 93.81 94.76 96.19 94.29 92.86 93.81 93.81 

Wdbc (12) 97.71 97.01 97.07 95.25 95.78 96.31 96.31 96.32 96.52 

Wine (10) 99.44 97.78 99.44 97.78 96.22 96.11 99.44 99.44 99.44 

Wine_red (4) 68.35 68.98 68.29 70.1 66.48 68.17 68.04 68.04 68.05 

Wpbc (5) 80.82 79.26 80.37 76.82 78.82 81.37 78.26 78.82 78.79 

X_HAR (20) 96.51 94.90 96.10 95.75 94.61 93.46 96.82 96.82 96.78 

Y_HAR (20) 97.29 96.14 96.01 95.92 94.3 89.81 86.83 88.26 86.98 

Z_HAR (30) 98.50 97.75 97.75 98.04 97.51 91.19 90.61 91.74 90.63 

Rank ∗ 6 3 4 3 4 3 4 4 3 

Rank ∗ denotes each FS method’s ranking measured by the times of the FS method bests the others on the 13 datasets, i.e., the bigger number means higher ranking. 
a Kaya et al. (2014) . 
b Ngiam et al. (2011) . 
c Wang (2016) . 
d Brown et al. (2012) . 

Table 4 

Classification accuracy (%) with RF classification. 

Dataset (# of the 

selected best features) 

mRMJR-KCCA 

(proposed) 

mRMR-CCA a MCR-CCA a Sparse Filtering b Autoencoder c mRMR d JMI d CMIM 

d DISR d 

Blood (3) 75.94 75.94 75.94 75.94 75.94 75.94 75.94 75.94 75.94 

Diabetes (6) 76.29 77.47 77.07 71.62 68.22 77.46 76.68 77.46 76.51 

Heart (3) 84.44 82.22 83.33 71.11 80.74 82.22 82.22 82.22 81.48 

Iris (2) 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 

Parkinsons (10) 94.34 92.26 92.79 90.26 89.18 90.13 90.66 92.26 91.68 

Seeds (4) 92.86 90.48 94.29 93.81 95.24 94.76 94.29 94.29 94.29 

Wdbc (5) 96.84 96.08 96.08 94.02 96.14 96.39 96.19 96.05 95.93 

Wine (7) 97.75 95.57 97.78 96.6 96.86 96.29 97.78 97.78 97.78 

Wine_red (8) 64.29 64.29 63.66 60.91 70.98 64.60 62.23 63.29 62.23 

Wpbc (3) 76.87 76.76 76.79 76.76 81.79 76.76 76.32 77.29 76.29 

X_HAR (30) 96.62 95.63 96.65 93.55 92.74 94.28 96.55 96.63 96.57 

Y_HAR (30) 97.80 95.79 95.79 94.17 93.39 96.25 96.52 96.69 96.80 

Z_HAR (30) 98.80 97.88 97.87 95.81 95.67 96.71 95.88 96.86 95.92 

Rank ∗ 7 3 4 2 5 2 3 3 3 

Rank ∗ denotes each FS method’s ranking measured by the times of the FS method bests the others on the 13 datasets, i.e., the bigger number means higher ranking. 
a Kaya et al. (2014) . 
b Ngiam et al. (2011) . 
c Wang (2016) . 
d Brown et al. (2012) . 
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ach dataset is highlighted in bold. Based on the SVM-based clas-

ification results in Table 3 , the mRMJR-KCCA produces the best

erformance with the largest number (6) of higher ranking on the

otal 13 datasets. The mRMJR-KCCA bests the other FS methods

n the datasets Blood, Iris, Wdbc, Wine, Y_HAR, and Z_HAR. The

CA-based methods show better performance than the MI-based

ethods regarding the Rank ∗ in Table 3 . The accuracies of MI-

ased methods on datasets Y-HAR and Z-HAR are much lower,

hich lowers down the Rank ∗ of the MI-based methods. However,

he mRMR presents the highest accuracy of 81.37% on the dataset

pbc. On the datasets Blood and Iris, all the nine FS methods

resent the same performances since the original size of Blood

nd Iris is small ( = 4) and all the four features are used for clas-

ification respectively, the performances are therefore independent

f the feature selection methods. The Autoencoder presents the

ighest accuracies of 92.76% and 96.19 on the datasets Parkinsons

nd Seeds respectively. The Sparse Filtering performs best on the

ataset Wine_red (70.1%). Regarding the Rank ∗ of each FS method

n Table 3 , the Autoencoder, MCR-CCA, JMI, and CMIM can still

rovide the performance four times better than the other methods.

Considering the RF classification results in Table 4 , the mRMJR-
CCA and Autoencoder rank the first two on the 13 datasets a
egarding the Rank ∗, followed by the MCR-CCA. Meanwhile, the

RMJR-KCCA bests the other methods seven times with RF.

he Autoencoder outperforms others four times with SVM in

able 3 and five times with RF in Table 4 . The JMI, CMIM, DISR,

nd MCR-CCA perform best on the dataset Wine with RF classifica-

ion. The Autoencoder and the Sparse Filtering obtains much lower

esults on datasets of Heart and Diabetes with both SVM and

F; this brings down the performance of the Autoencoder on the

sed datasets. The Autoencoder and Sparse Filtering fail to show

heir superiority in this paper, which could be attributed to the

act that we only use one-layer Sparse Filtering and Autoencoder.

he superiority may be revealed when increasing the layers of

utoencoder and Sparse Filtering. The mRMR produces the highest

ccuracy of 70.98% on the dataset Wine_red with RF in Table 4 ,

hile it performs best (81.37%) on Wpbc in Table 3 with SVM. This

mplies that different classification methods can produce different

esults even on the same feature sets due to the parameters op-

imization or the intrinsic quality of a classification method. From

he results in Tables 3 and 4 , the performance of the mRMJR-KCCA

emains consistent, which rank the first with both SVM and RF

lassification; the Autoencoder performs well in both Tables 3
nd 4 . 
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Fig. 2. Classification accuracy variations with the values of γ (0.1 ∼ 100) on datasets of Seeds and Parkinsons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Classification accuracies versus varied γ values in the RBF kerne l on X_HAR. 
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4.3. Impact of kernel parameter of on the obtained performance of 

KCCA 

To produce kernel matrices in KCCA in this paper, we use a

Gaussian RBF kernel, given in Eq. (11) . Here, x and x ′ represent

two feature vectors. The parameter γ in Eq. (11) differs from

the choice of kernel bandwidth, which affects the shape of the

distribution of canonical features. 

k 
(
x, x ′ 

)
= e −γ ‖ x −x ′ ‖ 2 (11)

We therefore choose three datasets in Table 2 to explore the

impact of the kernel parameter γ on different datasets in this

section. Fig. 2 shows the variations of classification accuracy along

with the different kernel parameter γ in mRMJR-KCCA on datasets

of Seeds and Parkisons. Here, we set γ from 0.1 to 100 with

different steps. Fig. 2 only presents part of the results based on

the set γ values since some γ values yield similar results, e.g.,

γ = 80–100. The values of γ have different impacts on different

datasets. For instance, the values of γ = 0.9,1 and 2 produce better

performance on dataset Seeds with both SVM and RF classifica-

tion, while the values of γ = 0.1 and 1 perform better on dataset

Parkinsons. γ = 1 exhibits robust and steady performance on

both datasets. It is noted that we set γ as 1 for most datasets in

Tables 3 and 4 . Fig. 3 presents the impact of γ on the accuracies

of dataset X_HAR when we fix the number of selected features
s 30, from which we can see that when γ = 0.3, 0.5, 0.9, 1 and

, better and similar results with both SVM and RF are achieved.

his further demonstrates γ = 1 exhibits better results for most

f the datasets used in this paper. The choice of the γ values

as different effects on the performance of the mRMJR-KCCA in

igs. 2 and 3 . For other datasets in Table 2 , the optimization of
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Fig. 4. Classification accuracies versus the number of components in ICD on 

datasets of X_HAR, Y-HAR, and Z_HAR. 

t  

b  

(

4

f

 

i  

e  

a  

c  

p  

i  

c  

s  

(  

m  

i  

t  

o  

Z  

o  

t  

b  

i  

t  

T  

e

 

c  

n  

b  

M  

S  

i  

r

4

K

 

o  

t  

a  

t  

t  

s  

m  

r  

f  

t  

d  

a  

p  

b  

o  

p  

2  

d  

b  

w  

e  

c  

F  

s  

f  

F  

t  

c

5

 

K  

w  

p  

d  

d  

w  

m  

t  

T  

m  

a  

a  

a  

c  

m  

m  

a  

t  

t  

c  
he parameter γ in RBF kernel when using the mRMJR-KCCA can

e studied by trials on each dataset or deploying some algorithms

such as genetic algorithm) to attain the optimized γ . 

.4. Impact of the number of the components decomposed in ICD 

rom kernel matrices on the obtained performance 

In Table 2 , the sample sizes of the first 10 datasets can be eas-

ly dealt with to complete the full kernel matrix in KCCA. How-

ver, the sample sizes of the datasets of X_HAR, Y_HAR and Z_HAR

re much larger (e.g., N = 32,844), which is memory intensive and

omputation expensive to realize a O( N 

3 ) kernel matrix solution. A

ositive semi-definite matrix K can be decomposed as LL ∗, where L

s an N × N matrix, the decomposition in Incomplete Cholesky De-

omposition (ICD) is to find a matrix ˜ L of size N × M , for small M ,

uch that the difference K - ̃ L ̃ L T has norm less than a given value

 Bach et al., 2002 ). This paper applies ICD on the KCCA for kernel

atrix approximation, which reduces the computational complex-

ty of KCCA to O( M 

2 N ) , here, M is the maximal rank of the solu-

ion. We set a range of M from 1 to 100 to investigate the impact

f the number of the components in ICD on X_HAR, Y_HAR and

_HAR using the top 30 selected features. Fig. 4 presents the effect

f increasing the number of components decomposed in ICD on

he performance of mRMJR-KCCA evaluated by SVM and RF. It can

e seen in Fig. 4 that the number of components in ICD has a slight

mpact on datasets of X_HAR, Y_HAR and Z_HAR with RF classifica-

ion, whilst, it has a bigger impact when using SVM classification.

his may be attributed to that the optimal parameters in RF mod-

ls are easier to obtain than the counterpart in SVM models. 
From Fig. 4 , we also observe that increasing the number of

omponents decomposed in ICD from kernel matrices does not

ecessarily increase the performance. When M = 1, 20 and 50, the

etter performances are achieved on mRMJR-KCCA and RF; when

 = 20, the best performance is achieved with mRMJR-KCCA and

VM. Consequently, the impact of the number of the components

n KCCA may depend on the dataset itself from the experimental

esults. 

.5. Impact of the features extracted by linear CCA and nonlinear 

CCA on the performance 

CCA finds pairs of basis vectors that maximise the correlation

f a set of paired of variables, and these pairs can be considered as

wo views of the same object. The KCCA is a technique that gener-

lises the linear CCA to nonlinear setting. This allows us to extract

he nonlinear relation of two sets of variables. This paper uses

he linear correlation coefficients in Eq. (6) for mRMR-CCA feature

election and nonlinear correlation coefficient in Eq. (10) for

RMJR-KCCA feature selection. Whilst, it is difficult to tell which

eal datasets imply linear or nonlinear correlation among the

eatures. Tables 3 and 4 show that the mRMJR- KCCA produces

he highest average performance and rank on the used benchmark

atasets. However, the mRMJR-KCCA does not perform best on

ll the datasets. For example, the mRMR-CCA and mRMJR-KCCA

erform the same on the dataset Blood, and the latter performs

etter than the former on most datasets. To visualize the impact

f CCA- and KCCA-extracted features on the performance in this

aper, we use Principal Component Analysis (PCA) ( Jolliffe et al.,

016 ) to derive the first 3 principle components of each feature

ataset. Fig. 5 presents the scatter plot of each feature set after

eing applied PCA. From Fig. 5 (a) presenting the dataset Y-HAR,

e can observe that it is difficult to see the difference of the two

xpressions since the sample size is too large (32,844) even we

an see the KCCA performs better in Tables 3 and 4 on the dataset.

ig. 5 (b) is the scatter plot of dataset Blood, which appears the

ame for the CCA and KCCA feature selection. This implies that

eatures in dataset Blood may not contain nonlinear correlation.

rom Fig. 5 (c) which presents the dataset Wine, we can see that

he results of mRMJR-KCCA may be better since some dots from

lass 3 are mixed with class 1 in mRMR-CCA. 

. Conclusions 

This paper presents a feature selection method, named mRJMR-

CCA, which replaces the correlation measure of the MI in mRMR

ith the KCCA. Experimental results demonstrate the superior

erformance of mRMJR-KCCA on the 13 classification associated

atasets used in this paper especially on the larger-dimensionality

adasets (such as Y_HAR and Z_HAR in Tables 3 and 4 ), compared

ith the other eight benchmark feature selection methods. The

RMJR-KCCA ranks first regarding the times and it is better than

he other FS methods with both SVM and RF classification in

ables 3 and 4 . From the mRMR to the mRMJR-KCCA, the FS

easure changes from the entropy to the KCCA. The mRMR gives

n entropy-based score between two variables and utilizes a sum

pproximation to measure the correlation between a variable and

 set of variables. Instead, the KCCA searches for the nonlinear

orrelation between two sets of variables in mRMJR-KCCA. The

RMJR-KCCA can avoid the sum approximation in mRMR when

easuring the joint redundancy between the feature candidate

nd the already selected features, which somehow considers

he complementarity between the already selected features in

he view of KCCA. Whilst, both mRMR and mRJMR-KCCA cannot

ompletely remove the dependencies and redundancies among
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Fig. 5. Scatter plot of the principle components of the feature sets selected by CCA and KCCA. 
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features since the two methods rely on a same selection criteria

structure as shown in Eqs. (2) and ( 10 ). Meanwhile, from the

results in Tables 3 and 4 , we can also see that Autoencoder

performs best on Wine_red and Wpbc with RF and the other

FS methods can also yield comparable or similar results on the

smaller-dimensionality datasets. The mRMJR-KCCA do not always

beat other FS methods; however, it performs much better on

the datasets with larger dimensionality since these datasets may

contain nonlinear correlations with another set of variables. The

results further prove that there is not a “best method” for all tasks.

The choice of the best feature set is usually with the aid of FS

methods or empirical evaluation of different combinations of fea-

tures. As previously mentioned, the optimized parameters in SVM

(c, gamma) or RF (the number of trees) classification in the paper

are achieved by searching in the preset ranges during 10-fold

cross validation. The parameters involved in the classification in
ables 3 and 4 and Fig. 3 can refer to the supplemental document.

he number of the parameters in Fig. 2 are too big to be included.

t is worth mentioning that the parameters shown in the doc-

ment are not the only ones to yield the corresponding results.

his means different parameters or parameter combinations may

roduce the similar results in classification. 

For the future work, we have the following issues remained to

e investigated. 

(1) The further work can be carried out to discover different

kernels in KCCA measurement. 

(2) The computational cost in the KCCA-based feature selec-

tion methods can be further reduced especially for larger

datasets. The further study can consider employing other

state-of-art matrix approximation methods to improve effi-

ciency and accuracy. 
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(3) The performance of the KCCA-based feature selection is af-

fected by the kernel parameters, and other associated CCA-

based selection criteria can be explored to apply on larger

datasets, such as sparse KCCA, group sparse KCCA, or deep

CCA. 
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