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Abstract 22 

Mangrove ecosystems are highly productive and provide important ecosystem 23 

services. However, in the Red Sea mangroves are under severe nutrient-limiting 24 

conditions, reflected in dwarf plants. The nutrient limitation is especially acute for iron, as 25 

verified experimentally, although the low carbon-to-nutrient stoichiometric ratios 26 

reported for Red Sea mangrove leaves are indicative of general nutrient depletion. 27 

Therefore, atmospheric nitrogen (N2) fixation in mangrove sediments might be 28 

particularly important considering the minimal nitrogen inputs from land. Here, we tested 29 

the effect of temperature and crab density on sediment N2 fixation rates in mature and 30 

juvenile mangrove (Avicennia marina) stands in the central Red Sea. The average N2 31 

fixation rates (from 0.002 ± 0.002 to 0.46 ± 0.12 mg N m–2 d–1) fall in the low range of N2 32 

fixation rates reported in mangroves elsewhere, which is in agreement with the small size 33 

of the mangrove plants. Mature mangrove sediments hold higher N2 fixation rates than 34 

the juvenile mangrove sediment, related to a higher sediment organic matter and carbon 35 

content. We found a detrimental effect of temperature and crab density on sediment N2 36 

fixation rates. Maximum N2 fixation rates were detected at 28°C with a sharp decrease at 37 

35°C. Similarly, high crab-density reduced N2 fixation, likely due to the sediment 38 

oxygenation or the grazing of cyanobacteria by crabs. This is supported by i) previously 39 

reported higher oxygen concentration and redox around burrows compared to undisturbed 40 

sediment and ii) lighter sediment carbon isotopic composition in high crab-density than in 41 

low crab-density sediments, indicating a higher contribution of microphytobenthos in the 42 

mature sediments supporting low crab-density. Our data document temperature and crab 43 

density as factors affecting N2 fixation in the Red Sea mangrove sediments.44 

45 
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1. Introduction 46 

Mangroves are highly productive ecosystems occupying the upper intertidal zone in 47 

the land-sea interface of tropical and subtropical regions (Giri et al. 2011). They provide 48 

important ecosystem services, being habitat for a wide range of living organisms such as 49 

birds, crabs, and fish (Polidoro et al. 2010; Reef, Feller, and Lovelock 2010), protecting 50 

the coast from erosion due to exposure to tides, storms, and currents (Mazda et al. 1997), 51 

providing wood for construction and fuel (Walters et al. 2008), and acting as intense 52 

carbon sinks (Bouillon et al. 2008). Due to their large carbon storage capacity, mangroves 53 

rank among the most carbon-rich forests in the tropics (Donato et al. 2011). 54 

A significant part of mangrove biomass is exported to adjacent coastal areas, as litter 55 

and particulate and dissolved organic matter, or stored in sediments. At the same time, 56 

mangroves receive organic matter from adjacent coastal areas by tides and rivers. The 57 

magnitude of these fluxes is highly variable (Lee 1995; Kristensen et al. 2008). However, 58 

the continuous export and sink of nutrients could lead to nutrient limitation for plant 59 

growth and production. As they often grow in river deltaic areas, they receive high inputs 60 

of nutrients and sediment that contribute to maintain a positive nutrient balance required 61 

to support high primary production, nutrient sequestration in sediments and export to 62 

adjacent marine habitats (Jennerjahn and Ittekkot 2002). However, nutrient supply to 63 

mangrove stands is restricted in arid and/or karstic areas, where freshwater runoff and the 64 

associated nutrient and sediment delivery is limited, often resulting in dwarf, nutrient-65 

limited mangrove trees (Almahasheer, Duarte, and Irigoien 2016a, 2016b). 66 

Central Red Sea mangroves are stunted and severely nutrient-limited. Experimental 67 

nutrient additions showed that they are iron-limited (Almahasheer, Duarte, and Irigoien 68 
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2016a) due to absence of inputs from land and low nutrient concentration in Red Sea 69 

seawater (Mandura 1997; Saifullah 1997). Iron is a co-factor in the nitrogenase enzyme 70 

(Howard and Rees 1996), and its deficiency limits atmospheric nitrogen (N2) fixation, a 71 

key process for nitrogen (N) supply, particularly where terrestrial inputs are minimal. 72 

Avicennia marina is the most abundant mangrove species (El-Juhany 2009) in the 135 73 

km2 mangrove forest of the Red Sea (Almahasheer, Duarte, and Irigoien 2016a) and, 74 

considering the low nutrient inputs to the area, N2 fixation could be an essential N source 75 

to support its growth. Recent studies in the Red Sea pointed out an increasing importance 76 

of N2 fixation as a source of N in mangrove ecosystems towards the north, based on the 77 

stable N isotopic composition of mangrove leaves and sediments (Duarte et al. 2018; 78 

Garcias-Bonet et al. 2019a). However, to the best of our knowledge, actual N2 fixation 79 

rates in Red Sea mangrove sediments have not been estimated yet. 80 

N2 fixation has been detected in sediments, roots, rhizosphere and decomposing 81 

leaves in mangrove systems elsewhere and represents, therefore, a key, rate-limiting step 82 

in the N cycle (Alongi et al. 2002; Ray et al. 2014). It also occurs in large cyanobacterial 83 

mats that typically cover mangrove sediments and contributes to mangroves primary 84 

productivity (Alvarenga et al. 2015). High concentrations of calcium, carbon, magnesium, 85 

nitrogen, phosphorus, and sulphur, as well as several soluble extracellular carbohydrates, 86 

have been detected in cyanobacterial mats providing nutrients to mangroves (Lovelock et 87 

al. 2010). A substantial heterotrophic bacterial community exploits this capacity by 88 

colonizing and producing strong attachments to the sheaths and mucilage of some 89 

cyanobacteria (Simmons et al. 2008). 90 
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Mangrove ecosystems support abundant fauna (Nagelkerken et al. 2008), whose 91 

activity alter the sediment structure, chemical composition and affect biogeochemical 92 

processes (Aller 1994; Kristensen 2008; Bertics et al. 2010). Macrobenthic animals such 93 

as crabs, shrimps and mollusks bioturbate the sediment by excavating galleries, thereby 94 

increasing oxygen supply and oxidation of sediment materials (Laverock et al. 2011), and 95 

by feeding on the first layer of the sediment, which removes microbes, algae and 96 

meiobenthic fauna (Reinsel 2004). 97 

The effect of bioturbators on N2 fixation in mangrove soils has not been extensively 98 

studied. Available data provide evidence that sediment aeration inhibits nitrogenase 99 

enzyme activity (Goldberg, Nadler, and Hochman 1987; Bertics et al. 2010). However, 100 

oxygen inputs also oxidize iron sulfide produced in anoxic sediments, favoring the release 101 

of iron and its uptake in the presence of organic ligands (Luther et al. 1992). Indeed, 102 

bioturbators have been reported to enhance metal, including iron, release (Boto and 103 

Robertson 1990). In Brazilian mangroves iron sulfide oxidation has been reported to be 104 

enhanced under elevated temperatures, when mangrove evapotranspiration is highest, and 105 

increased crab activity (Uca spp.), which leads to release of iron from pyrite (Ferreira et 106 

al. 2007). As iron is a limiting nutrient in the Central Red Sea and required to synthesize 107 

nitrogenase, aeration of sediments through bioturbation may enhance iron mobilization 108 

and, therefore, nitrogenase synthesis. However, crab feeding on cyanobacterial mats may 109 

reduce N2 fixation. 110 

In addition to bioturbators, temperature maybe an important driver of N2 fixation in 111 

Red Sea mangrove sediments, as it is considered the warmest of all seas, reaching up to 112 

35oC in summer (Burkholz et al. 2019; Chaidez et al. 2017). There is growing evidence 113 
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that N2 fixation is temperature-dependent, with maximum rates typically achieved at 114 

about 25oC across ecosystems (20 to 30oC, (Houlton et al. 2008; Zhou et al. 2016)). This 115 

is consistent with findings for seagrass in the Red Sea (Garcias-Bonet et al. 2018) and the 116 

Mediterranean Sea (Garcias-Bonet et al. 2019b), showing declining N2 fixation rates at 117 

temperatures > 30oC. Hence, this suggests that N2 fixation in Red Sea mangrove forests 118 

can also be suppressed at temperatures > 30oC. 119 

Based on these premises, here we aim to determine if temperature and crab density 120 

influence N2 fixation rates in Avicennia marina mangrove sediments in the central Red 121 

Sea coast. In particular, we hypothesize that: i) N2 fixation is suppressed at high 122 

temperature, and ii) high crab-density affects N2 fixation, although the effects may vary 123 

from negative, where crabs remove N-fixing microorganism and therefore reduce N2 124 

fixation in mangroves, to positive where bioturbation increases nutrient supply to support 125 

N2 fixation, to neutral when both effects cancel each other. To test our hypothesis, we 126 

experimentally set up plots with different bioturbation levels by manipulating the density 127 

of Cranuca inversa and Dotilla sulcata crab species, in a mature and a juvenile mangrove 128 

stand and we measured N2 fixation rates in the first 10 cm of mangrove sediments at two 129 

in situ temperatures (28°C and 35°C). We note that our measurements are not designed to 130 

resolve all components of N2 fixation in the mangrove ecosystems, as we do not consider 131 

N2 fixation associated with mangrove roots (Alfaro-Espinoza and Ullrich 2015) or leaf 132 

litter (Pelegri, Rivera-Monroy, and Twilley 1998), as these would differ greatly between 133 

plots supporting mature trees and young seedlings. 134 

2. Material and methods 135 

2.1. Study site 136 
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The study site is located at the ‘Ibn Sina field research station and nature 137 

conservation area’ in KAUST (Thuwal, Saudi Arabia, 22° 20’ 25.032’’ N; 39° 5’ 138 

17.411’’E). This site is a natural mangrove fringe entirely vegetated by A. marina species 139 

and supports a high density of ecosystem engineering burrowing crabs, C. inversa and D. 140 

sulcata. Two experimental sites were chosen, one colonized by natural mature trees of A. 141 

marina (mature stand) and the second colonized by one-year old planted propagules of A. 142 

marina. (juvenile stand). For establishment of the juvenile stand, propagules, collected 143 

from the same location, were grown in a nursery in autochthonous sediment. 144 

Subsequently, one-month old seedlings were transplanted into the mangrove study site.  145 

To evaluate the effect of crab density on sediment N2 fixation rates, in each 146 

experimental site (mature and juvenile stands) we randomly selected 5 plots of 4 m2 (2´2 147 

m), which we enriched with C. inversa and D. sulcata crabs (high crab-density mangrove  148 

plots) and 5 plots of 4 m2 (2´2 m) with natural crab densities (low crab-density mangrove  149 

plots). One year prior to performing the experiment, we created plots artificially enriched 150 

with these two species of crabs, continuously surveying crab numbers following Skov et 151 

al. (2002). Throughout the study period the crab densities in the low crab-density plots of 152 

the mature and juvenile mangrove stands were 3.3 ± 1.1 and 11.5 ± 0.6 crabs m-2  153 

(average ± SEM), respectively, while in the high crab-density plots of the mature and 154 

juvenile mangrove stands, i.e. enriched in crabs, crab densities were 17.6 ± 5.5 and 32.6 ± 155 

1.6 crabs m-2 (average ± SEM), respectively (see Fig. S1 for details). The size of crab 156 

burrows was on average 1 cm in diameter × 5 cm in depth, with a determined 10 cm 157 

diameter halo of influence resulting in an area of 78.5 cm2 (Booth et al. 2019). The 158 

enrichment approach was adopted for two main reasons. Firstly, it is almost impossible to 159 



 

 8 

effectively remove crabs from sediment without altering the structure, since it requires 160 

digging up at least the first 20 cm of sediment, compromising the N-fixing microbiome 161 

object of this study. Secondly, crab enrichment is effective due to the high burrow fidelity 162 

of these animals which tend to maintain the same burrow if the environmental conditions 163 

are favorable (Booth et al. 2019). Crab activity was monitored before the experiment by 164 

manually plugging the burrow with a thin layer of sediment and waiting for 30 minutes. 165 

Active crabs quickly remove this layer of sediment to exit and forage on the surrounding 166 

area. Therefore, the number of burrows opened indicates how many crabs were 167 

effectively active (Andreetta et al. 2014).  168 

We performed two independent assessments of N2 fixation rates in sediments 169 

collected on experimental plots: the first sampling was performed in 170 

November/December 2016 when seawater temperature was 35°C, and the second was 171 

performed in January/February 2017 when seawater temperature was 28°C. Based on 172 

prior research in the Red Sea (Garcias-Bonet et al. 2018) and elsewhere (Houlton et al. 173 

2008; Zhou et al. 2016; Garcias-Bonet et al. 2019b), we expected N2 fixation at 35°C, 174 

which corresponds to the maximum water temperature observed in the Central Red Sea 175 

(Chaidez et al. 2017), to be low, compared to those rates at 28°C. These temperature 176 

treatments were guided by previous results in seagrass sediments close to our study site, 177 

which showed maximum N2 fixation rates at 28°C and minimum rates at 33°C, the 178 

maximum temperature tested (Garcias-Bonet et al. 2018). The in situ air and sediment 179 

temperature were measured and continuously recorded every 15 minutes by an on-site 180 

weather station (Ibimet, Florence, Italy). Sediment temperature was measured at the 181 

sediment surface and 15 cm below ground. The in situ seawater salinity was measured 182 



 

 9 

from 13 November to 12 December 2016 (corresponding to the first sampling time) and 183 

from 28 January to 27 February 2017 (corresponding to the second sampling time) by 184 

deploying an EXO1 multiparameter probe (Xylem Inc., USA) at the closest distance from 185 

the mangrove edge where it remained completely submerged. Salinity was measured and 186 

recorded every 5 minutes for two periods of one month each. 187 

2.2. Sediment characterization 188 

The organic matter (OM) content in mangrove sediments was calculated by loss on 189 

ignition (Dean 1974). The sediment organic carbon (C) and nitrogen (N) contents were 190 

measured using a CHNS Elemental Analyzer (Flash 2000, KAUST analytical core 191 

laboratory, Saudi Arabia). Sediment samples were dried, ground and acidified before the 192 

analysis to remove carbonates. Sediment OM, C, and N contents were measured on five 193 

replicates per treatment. Sediment C and N isotopic composition (δ13C and δ15N) was 194 

analyzed on five replicates per treatment only for samples collected in January and 195 

February 2017, when seawater temperature was 28°C. Dried and ground sediment 196 

samples were acidified and analyzed using an isotope ratio mass spectrometer (Thermo-197 

Finnegan Delta V IRMS, UH-Hilo Analytical laboratory, Hawaii). Results of the δ13C and 198 

δ15N isotopic analysis are reported in parts per thousand (‰) and Vienna Pee Dee 199 

Belemnite limestone (V-PDB) was used as a standard for the stable C isotope and 200 

atmospheric N2 for the stable N isotope. 201 

2.3. Sediment N2 fixation rates 202 

N2 fixation rates in mangrove sediment samples were estimated using the acetylene 203 

reduction assay (ARA) (Boto and Robertson 1990; Capone 1993; Howard and Rees 204 

1996). The sediments were sampled during high tide using cores (cylindrical Plexiglas 205 
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cores of 10.4 cm in diameter and 27 cm in height) to avoid disruption of the sediment 206 

structure. For each sampling and sediment type, five replicated cores were collected from 207 

random positions in high and low crab-density plots in mature and juvenile mangrove 208 

stands and immediately transported to the laboratory and processed. The sediment 209 

samples were extracted from the cores and processed by slicing 10 cm from the surface. 210 

Sediment samples (200 ml of the first 10 cm of sediment) were placed in 500 ml Pyrex 211 

glass incubation jars and amended with 80 ml of seawater collected from the same 212 

sampling location. The Pyrex jars containing the sediment slurry were closed with lids 213 

equipped with a gas-tight valve to allow sampling of headspace air. To avoid 214 

underestimation of N2 fixation rates due to poor diffusion, acetylene was added to the 215 

incubation jars as acetylene-enriched seawater prepared according to Wilson et al. (2012), 216 

thereby reducing equilibration time. Briefly, acetylene-enriched seawater was prepared by 217 

bubbling acetylene gas (99.9%, supplied by Abdullah Hashim Industrial Gases & 218 

Equipment Co. Ltd. Jeddah, Saudi Arabia) for five minutes. We added 20 ml of 219 

acetylene-enriched seawater to each incubation jar through the gas-tight valve to obtain a 220 

final acetylene concentration of 4 mM. After the addition of acetylene, samples were 221 

incubated in Percival chambers for 24 h at the temperatures recorded in situ (35°C or 222 

28°C) under light (200 µmol photons m-2 s-1) and dark conditions following the natural 223 

photoperiod (12 h light, 12 h dark). The following negative controls were run for each 224 

sampling: 1) sediment samples without addition of acetylene-saturated seawater in order 225 

to confirm that ethylene was not naturally produced; 2) seawater used in the preparation 226 

of the sediment slurries with addition of acetylene-saturated seawater in order to measure 227 

the N2 fixation due to pelagic diazotrophs. During the 24 h incubations, we sampled the 228 
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headspace of each jar at five different time points by taking three ml of the headspace air. 229 

The headspace air samples were injected in gas-tight vacuum vials using a syringe to be 230 

analyzed later for ethylene production. The concentration of ethylene in the headspace air 231 

samples was analyzed on a gas chromatographer coupled to a flame ionization detector 232 

and a mass spectrometer (MS-FID-GC, Agilent 7890) using HP-AL/S (30 m × 0.250 233 

mm ×5.0 µm) and GS-CarbonPLOT (60 m × 0.320 mm ×1.50 µm) columns (Agilent 234 

Technologies, USA). We used two different columns due to the over use of the first 235 

column. The ethylene concentration of each headspace air sample was calculated using a 236 

standard curve, which was built from the peak area of three ethylene gas standards of 237 

known concentrations (93 ppm, 9 ppm and 1.5 ppm containing Helium as balance gas 238 

(Abdullah Hashim Industrial Gases & Equipment Co. Ltd. Jeddah, Saudi Arabia)). Three 239 

replicates of each ethylene gas standard were analyzed to make the calibration curves for 240 

each column and batch of samples. The concentration of dissolved ethylene before 241 

equilibrium with the headspace was calculated from the ethylene concentration measured 242 

in the equilibrated headspace samples according to Wilson et al. (2012) and applying the 243 

solubility coefficient of ethylene extracted from Breitbarth et al. (2004) as a function of 244 

temperature and salinity. Monthly mean in situ seawater salinity values measured at each 245 

sampling time were used to calculate the solubility coefficient (i.e. 39.9 in Nov/Dec 2016 246 

and 40.5 in Jan/Feb 2017). Acetylene reduction rates were converted to N2 fixation rates 247 

following the theoretical ratio 3:1; which means that one N2 molecule is fixed for each 248 

three acetylene molecules reduced (Alongi et al. 2000; 2002). No ethylene production 249 

was detected in the negative controls. 250 

2.4. Statistical analysis 251 
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Differences in sediment OM, organic C and N content, and isotopic (δ13C and δ15N) 252 

composition among mature mangrove sediments with high and low crab-density, and 253 

juvenile mangrove sediments with high and low crab-density were tested by ANOVA 254 

analysis followed by Tukey’s post-hoc test. To evaluate the effect of the mangrove age, 255 

temperature and crab density on sediment N2 fixation rates, we performed an ANCOVA 256 

by considering three explanatory variables: two categorical factors as Age (two levels, 257 

mature and juvenile) and Temperature (two levels, 35°C and 28°C) both fixed and 258 

orthogonal, and crab density as our continuous explanatory variable, since crab 259 

abundance could not be tightly controlled and the replicated plots within different 260 

treatments showed variability in crab densities (Fig. S1). To test our model, we performed 261 

a generalized linear model with a Quasipoisson family of error. We updated the model to 262 

the first significant terms using the function update() in R. Statistical analysis and graphs 263 

were produced with JMP, PRISM, and R software (R core team, 2017) using “ggplot2” 264 

package (Wickham 2010).  265 

3. Results 266 

3.1. In situ temperature and salinity 267 

The air temperature at the study site ranged from 14°C in January to 40°C in July 268 

during a one-year period from July 2016 to July 2017. Similarly, the surface sediment 269 

temperature ranged annually from 11°C to 57°C, with maximum temperature recorded in 270 

July and minimum temperature in February. Surface sediment temperature oscillated 271 

from 11°C to 32°C in the colder period and from 30°C to 57°C in the hotter period. 272 

Belowground sediment temperature ranged from approximately 15°C in February to 273 

50°C in July. Belowground sediment temperature oscillated from 15°C to 29°C in the 274 
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colder period and from 30°C to 50°C in the hotter period. Seawater temperature was 275 

35°C in November/December 2016 and 28°C in January/February 2017. Monthly mean 276 

(± SEM) seawater salinity was 39.9 ± 0.01 from 13 November to 12 December 2016 277 

(first sampling time when temperature was 35°C) and 40.5 ± 0.01  from 28 January to 27 278 

February 2017 (second sampling time when temperature was 28°C). 279 

3.2. Sediment characteristics 280 

The sediment OM content differed among the four experimental treatments 281 

(ANOVA, F3, 16 = 196, p < 0.0001, Fig. S2A), with higher values (mean ± SEM) recorded 282 

in mature mangrove sediments (3.26 ± 0.04 and 2.81 ± 0.04% of dry weight in high and 283 

low crab-density sediments, respectively) compared to juvenile mangrove sediments 284 

(2.06 ± 0.05 and 2.05 ±0.04% of dry weight in high and low crab-density sediments, 285 

respectively). Similarly, the sediment organic C content differed among sediment types 286 

(ANOVA, F3, 16 = 72.14, p < 0.0001, Fig. S2B), with the highest organic C content 287 

measured in mature mangrove sediments with high crab-density (0.38 ± 0.01 mmol C g 288 

DW sed-1), followed by mature mangrove sediments with low crab density (0.25 ± 0.01 289 

mmol C g DW sed-1) and juvenile mangrove sediments (0.21 ± 0.01 and 0.20 ± 0.01 290 

mmol C g DW sed-1 in sediments supporting high and low crab-density, respectively). 291 

The sediment N content also differed among sediment types (ANOVA, F3, 16 = 6.89, p = 292 

0.003, Fig. S2C). The N content in mature mangrove sediments supporting high crab-293 

density (0.04 ± 0.0003 mmol N g DW sed-1) was significantly higher than the N content 294 

in mature mangrove sediments supporting low crab-density (0.03 ± 0.002 mmol N g DW 295 

sed-1t), juvenile mangrove sediments supporting high crab density (0.03 ± 0.002 mmol N 296 

g DW sed-1) and juvenile mangrove sediments supporting low crab-density (0.03 ± 0.002 297 
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mmol N g DW sed-1) sediments (Tukey post-hoc test, p < 0.05, p < 0.001 and p < 0.001, 298 

respectively). 299 

The sediment carbon isotopic (δ13C) signature differed among sediment types 300 

(ANOVA, F3, 16 = 9.04, p = 0.001, Fig. S2D). The sediment from mature mangrove with 301 

low crab-density plots showed the heaviest average δ13C (-19.20 ± 0.25 ‰) compared to 302 

mature mangrove with high crab-density (-20.72 ± 0.09‰), juvenile mangrove with high 303 

crab-density (-20.74 ± 0.34‰), and juvenile mangrove with low crab-density (-20.32 ± 304 

0.20‰) sediments (Tukey post-hoc test, p < 0.01, p < 0.01 and p < 0.05, respectively). 305 

The sediment N isotopic (δ15N) signature ranged from 1.68 ± 0.24‰ and 1.76 ± 0.44‰ in 306 

juvenile and mature mangrove sediments with low crab-density, to 2.16 ± 0.12‰ and 2.18 307 

± 0.86‰ in mature and juvenile mangrove sediments with high crab-density (Fig. S2E), but 308 

these differences were not statistically significant (ANOVA, F3, 16 = 0.27, p = 0.85). 309 

3.3. Sediment N2 fixation rates  310 

Sediment N2 fixation rates ranged 200-fold from 0.002 ± 0.002 mg N m–2 d–1 in 311 

juvenile mangrove sediments with high crab-density at 35oC, to 0.46 ± 0.12 mg N m–2 d–1 312 

in mature mangrove sediments with low crab-density at 28oC (Fig. 1). The age of the 313 

mangrove stand, temperature, and crab density had significant statistical effects on 314 

sediment N2 fixation rates, as did the interaction between temperature, crab density, and 315 

age of the mangrove stand (GLM, Table 1). N2 fixation rates were higher in mature 316 

mangrove sediments than in juvenile sediments and the rates dropped when temperature 317 

increased from 28°C to 35°C. Similarly, sediment N2 fixation rates decreased under high 318 

crab-density (Fig. 1), with a linear decrease in rates with increasing crab-density (Fig. 319 

S3). 320 
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Sediment N2 fixation rates measured in January/February at 28°C increased with 321 

increasing sediment OM content in high crab-density (lm, F1,8 = 7.63, p = 0.02) and in 322 

low crab-density (lm, F1,8 = 12.17, p = 0.008) mangrove sediments (Fig. 2A, B). 323 

Similarly, sediment N2 fixation rates increased with increasing sediment organic C 324 

content in high (lm, F1,8 = 7.68, p = 0.02) and low crab-density (lm, F1,8 = 12.45, p = 325 

0.008) mangrove sediments (Fig. 2C, D). However, the sediment N content and sediment 326 

N2 fixation rates at 28°C were not linearly related in high crab-density (lm, F1,8 = 2.82, p 327 

= 0.13) and in low crab-density (lm, F1,8 = 4.33, p = 0.07) mangrove sediments (Fig. 2E, 328 

F). Similarly, sediment N2 fixation rates measured in January/February at 28°C increased 329 

with heavier sediment C isotopic (δ13C) composition of organic matter pools (lm, F1,18 = 330 

42.05, p < 0.0001, Fig. 3A). However, sediment N2 fixation rates measured in 331 

January/February at 28°C were not linearly related to the sediment N isotopic (δ15N) 332 

composition (lm, F1,18 = 3.3, p = 0.09, Fig. 3B). 333 

4. Discussion  334 

This study provides evidence that high temperature and crab density can reduce N2 335 

fixation rates in mangrove sediments from arid regions. Sediment N2 fixation rates 336 

detected in A. marina mangrove stands in the Central Red Sea (from 0.0007 to 0.168 g N 337 

m-2 yr-1) were lower than the average N2 fixation rates previously reported in mangroves 338 

(from 0.03 to 2.6 g N m-2 yr-1, Zuberer and Silver 1978; Howarth et al. 1988). The 339 

comparatively low N2 fixation rates measured here could be explained by the high salinity 340 

values in our study site, in agreement with Vovides et al. (2011) that found a strong 341 

negative relation between N2 fixation rates and salinity in an impacted black mangrove in 342 

the Gulf of Mexico. Central Red Sea mangrove stands are stunted, with low productivity 343 
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and with organic-poor sediments when compared to mangrove stands elsewhere 344 

(Almahasheer, Duarte, and Irigoien 2016b; Almahasheer et al. 2017; Garcias-Bonet et al. 345 

2019a), due to a critical nutrient limitation, including iron-limitation (Almahasheer, 346 

Duarte, and Irigoien 2016a). The low N2 fixation detected here is consistent with the iron-347 

limiting condition of these mangrove stands as the nitrogenase enzyme requires iron as a 348 

cofactor (Howard and Rees 1996). Despite the low rates of sediment N2 fixation, we 349 

revealed a number of drivers eliciting a 200-fold range in N2 fixation rates in central Red 350 

Sea mangroves. 351 

N2 fixation was strongly temperature-dependent, with 10-fold higher rates at 28°C 352 

than at 35°C, where higher temperatures resulted in undetectable N2 fixation rates. This is 353 

consistent with the thermal optima for N2 fixation, ranging between 15°C and 30°C, 354 

described in terrestrial ecosystems elsewhere (Houlton et al. 2008), and reports of reduced 355 

N2 fixation rates at > 30°C in desert soils (Barger, Castle, and Dean 2013; Zhou et al. 356 

2016), and seagrass meadows (Garcias-Bonet et al. 2018; Garcias-Bonet et al. 2019b). 357 

The temperature dependence of N2 fixation can be explained by a thermal suppression of 358 

nitrogenase synthesis (Brooks, Collins, and Brill 1984). In addition, temperature can 359 

control the microbial community structure (Wang et al. 2013), including microorganisms 360 

responsible for N2 fixation. Although thermophilic N2-fixing microorganisms have been 361 

reported in anoxic environments and hydrothermal vents (Wahlund and Madigan 1993; 362 

Mehta and Baross 2006), high temperature conditions clearly reduce N2-fixing activity in 363 

mangrove sediments in the Central Red Sea. 364 

The age of mangrove trees, with the associated difference in stand and rhizosphere 365 

development and biomass, had a significant effect on sediment N2 fixation rates, with 366 
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higher rates in the mature mangrove stand than in the juvenile mangrove stand. This 367 

suggests that mature mangrove stands, which also support increased sediment OM 368 

content and organic C stocks, provide more suitable biogeochemical conditions favoring 369 

N2-fixing microbial communities (Holguin, Vazquez, and Bashan 2001; Inoue et al. 370 

2019), as supported by the positive linear relationship of sediment OM and organic C 371 

content and sediment N2 fixation in both low and high crab-density plots. Sediment N2 372 

fixation was independent of sediment N content. However, since N2 fixation is known to 373 

be suppressed under high inorganic N concentrations (Knapp 2012), some of the 374 

variability detected here could be also due to differences in ambient nitrate and 375 

ammonium concentrations.  376 

The difference in C isotopic (δ13C) composition of mangrove sediments, ranging 377 

from -20.74 ± 0.34 to -19.20 ± 0.25‰, and mangrove tissues in the central Red Sea, -378 

26.08 ± 0.11‰ (average ± SEM, N=117, Almahasheer et al. 2017), suggests a potential 379 

additional source other than mangrove tissues to their accumulated sediment OM. 380 

Garcias-Bonet et al. (2019a) recently reported that mangrove leaves were the major 381 

contributors (56 ± 8 %) to the accumulated sediment OM in Red Sea mangroves, with 382 

additional, but minor, contributions from other primary producers, such as macroalgae, 383 

seagrass, and halophytes, based on stable isotope mixing models. Similarly, the δ13C of 384 

mature low crab-density sediments (-19.20 ± 0.25‰) reported here likely indicates the 385 

contribution of microphytobenthos, for which δ13C has been reported between -14.4‰ 386 

and -13‰ (Oakes and Eyre 2014) and we recently measured δ13C values of -15.07 ± 0.07 387 

‰ in microbial mats in Central Red Sea mangroves (Garcias-Bonet et al. 2019a). This 388 

highlights the role of cyanobacteria as both a source of C and N, through N2 fixation in 389 



 

 18 

mature low crab-density mangrove sediments, holding the highest N2 fixation rates. 390 

However, N2 fixation rates were independent of sediment N isotopic (δ15N) composition, 391 

possibly indicating N inputs from additional sources to N2 fixation (Kuramoto and 392 

Minagawa 2001), as the rates measured were low, insufficient to satisfy the N demands of 393 

the ecosystem. 394 

Sediment N2 fixation rates were negatively affected by crab density. Low crab-395 

density sediments consistently showed higher N2 fixation rates than the high crab-density 396 

sediments. Crab activity can affect N2 fixation activity in several ways. First, crab 397 

burrowing activity allows the transport of oxygen to deeper, anoxic sediment layers, 398 

increasing oxygen concentration and redox potential in sediment around the burrow 399 

(Booth et al. 2019) and making the conditions less favorable for N2 fixation due to 400 

potential inhibition of nitrogenase enzyme activity, which requires anaerobic conditions 401 

(Goldberg, Nadler, and Hochman 1987; Reef, Feller, and Lovelock 2010). However, 402 

burrowing activity could have a positive effect on mangrove growth by favoring 403 

oxidation and release of iron from the sediment, which is limiting mangrove growth 404 

(Mokhtari et al. 2016; Almahasheer, Duarte, and Irigoien 2016a). In addition, crabs can 405 

limit N2 fixation through their feeding behavior, which alters the microbial community in 406 

the sediments. Cyanobacteria have an important role in N2 fixation in mangrove 407 

ecosystems (Alvarenga et al. 2015). Hence, crab grazing on cyanobacteria might reduce 408 

N2 fixation in the system, as supported by the differences in δ13C values between low and 409 

high crab-density in mature sediments, which suggest a somewhat lower contribution of 410 

microbial mats to organic C pools in sediments affected by crab activity. We 411 

acknowledge here that some crab species belonging to sesarmid family, which have a 412 
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herbivorous diet, can increase the C:N by storing organic matter such as leaves and 413 

propagules in their burrows (Andreetta et al. 2014), and therefore creating the redox 414 

conditions that favor the N2 fixation (Booth et al. in press). However, this is not the case 415 

in our study since central Red Sea mangroves are mainly colonized by fiddler and sand 416 

bubble crabs with relatively few occurrences of sesarmid crabs, which are mainly located 417 

in the south (Price et al. 1987). However, further research is needed to corroborate the 418 

suggestion that the feeding behavior of crabs may contribute to reduce N2 fixation, for 419 

instance by microscopy or compound specific analysis. 420 

Our experimental assessment does not capture ecosystem N2 fixation, as we disturbed 421 

the sediments to ensure a good distribution of acetylene, and some components of N2 422 

fixation in the mangrove system, such as activity associated with mangrove roots (Alfaro-423 

Espinoza and Ullrich 2015) or leaf litter (Pelegri, Rivera-Monroy, and Twilley 1998), 424 

were not included as it would have biased the comparison between juvenile and mature 425 

stands. Moreover,	ARA has some methodological limitations to be considered, although it 426 

has been extensively used to measure N2 fixation rates in coastal vegetated sediments, 427 

including mangrove (e.g. Romero et al. 2012), seagrass (e.g. Welsh 2000; Garcias-Bonet 428 

et al. 2018; Garcias-Bonet et al. 2019b) and salt marsh (Murphy, Boyer, and Carpenter 429 

2017) sediments. Specifically, addition of acetylene has been shown to affect the 430 

microbial community composition (Fulweiler et al. 2015). Therefore, the N2 fixation rates 431 

reported here need to be carefully interpreted.  432 

5. Conclusions 433 

Sediment N2 fixation rates in central Red Sea mangrove ecosystems are within the 434 

low range among those reported for mangrove ecosystems, with almost undetectable N2 435 
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fixation in sediments of juvenile mangrove stand. We identified temperature and crab 436 

density as important interacting drivers of N2 fixation, pointing out a complex regulation 437 

of N2 fixation in mangrove ecosystems. Rapid warming of the Red Sea (Chaidez et al. 438 

2017) may, thus, further reduce N2 fixation, thereby aggravating the nutrient-limiting 439 

conditions of Red Sea mangroves.   440 
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Table 1. Generalized linear model adopted to assess the effect of each factor and their 703 

interaction on sediment N2 fixation rates. Df: degree of freedom, Rs.Df: residual degree 704 

of freedom, Rs.Dev: residual deviance; p: p statistic. The statistically significant results 705 

are shown in bold. 706 

 707 
  708 

Terms   Df Deviance Rs.Df. Rs.Dev p 

Temperature   1 1.75094 38 6.1633 < 0.0001 

Age   1 3.10967 37 3.0537 < 0.0001 

Crab  1 2.10009 36 0.9536 < 0.0001 

Temperature ´ 
Age 

 1 0.04009 35 0.9135 0.162441 

Temperature ´ 
Crab 

 1 0.09976 34 0.8137 0.027556 

Age ´ Crab  1 0.20814 33 0.6056 0.01458 
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Figures 709 

Fig. 1. N2 fixation rates in juvenile (a, b) and mature (c, d) mangrove sediments with high 710 

crab-density (black bars) and low crab-density (gray bars) at 28oC and 35oC. 711 
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Fig. 2. Relation of N2 fixation rates at 28oC in mangrove sediments with high and low-715 

crab density with sediment organic matter (a, b), organic carbon (c, d) and nitrogen (e, f) 716 

content, showing linear regressions (dashed line). N2 fixation rates in mature mangrove 717 

sediments are represented as black dots and in juvenile mangrove sediments are 718 

represented as white dots. 719 
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Fig. 3. Relation of sediment N2 fixation rates at 28oC with sediment C isotopic (δ13C) 721 

signature (a) and sediment N isotopic (δ15N) signature (b). Mature mangrove sediments 722 

with high-crab density are represented as black dots, mature mangrove sediments with 723 

low-crab density are represented as black squares, juvenile mangrove sediments with 724 

high-crab density are represented as white dots, and juvenile mangrove sediments with 725 

low-crab density are represented as white squares. Error bars indicate SEM. 726 
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Supplementary figures 730 

Figure S1. Box plot showing crab density in high crab-density (High) and low crab-731 

density (Low) plots in juvenile and mature mangrove stands at two different sampling 732 

times: in November/December 2016 when seawater temperature was 35°C and in 733 

January/February 2017 when seawater temperature was 28°C. Boxes extend from the 25th 734 

to 75th percentiles and lines inside boxes represent median values. 735 
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Figure S2. Sediment OM content (a), organic C content (b), N content (c), isotopic C 743 

composition (d) and isotopic N composition (e) in mature with high-crab density (M 744 

High), mature with low crab-density (M Low), juvenile with high crab-density (J High) 745 

and juvenile low crab density (J Low) mangrove sediments in January/February 2017 746 

when seawater temperature was 28°C. Boxes extend from the 25th to 75th percentiles, 747 

lines inside boxes represent median values, and whiskers span from minimum to 748 

maximum values. Letters indicate significant differences among groups based on 749 

ANOVA analysis and Tuckey’s post-hoc tests. 750 
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Figure S3. N2 fixation rates in juvenile (upper panels) and mature (bottom panels) 752 

mangrove sediments versus crab density at 28oC and 35oC. Black line is the regression 753 

obtained with the function geom_smooth() of the package ggplot2 in R and the gray area 754 

is the 95% interval of confidence. 755 
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Supplementary Table 759 

Raw data available in Supplementary Table S1 760 
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