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Structured Abstract

Objective:

Next-generation audiovisual (AV) hearing-aids stand as a major enabler to realise
more intelligible audio. However, high data rate, low latency, low computational
complexity, and privacy are some of the major bottlenecks to the successful
deployment of such advanced hearing-aids. To address these challenges, we
propose a novel framework based on an integration of 5G Cloud-Radio Access
Network (C-RAN), Internet of Things (IoT), and strong privacy algorithms to
fully benefit from the possibilities these technologies have to offer.

Background:

Existing audio-only hearing-aids are known to perform poorly in noisy situations
where overwhelming noise is present. Current devices make the signal more
audible but remain deficient in restoring intelligibility. Thus, there is a need for
hearing aids that can selectively amplify the attended talker or filter out acoustic
clutter.

Methods:
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The proposed 5G IoT enabled AV hearing-aid framework transmits the encrypted
compressed AV information and receives encrypted enhanced reconstructed
speech in real-time to address cybersecurity attacks such as location privacy
and eavesdropping. For security implementation, a real-time lightweight AV
encryption is proposed, based on a piece-wise linear chaotic map (PWLSM),
Chebyshev map, and a secure hash and S-Box algorithm. For speech enhancement,
the received secure AV (including lip-reading) information in the cloud is used
to filter noisy audio using both deep learning and analytical acoustic modelling.
To offload the computational complexity and real-time optimization issues,
the framework runs deep learning and big data optimization processes in the
background, on the cloud.

Results:

The effectiveness and security of our proposed 5G-IoT-enabled AV hearing-aid
framework are extensively evaluated using widely known security metrics. Our
newly reported, deep learning-driven lip-reading approach for speech enhance-
ment is evaluated under four different dynamic real-world scenarios (cafe, street,
public transport, pedestrian area) using benchmark Grid and ChiME3 corpora.
Comparative critical analysis in terms of both speech enhancement and AV en-
cryption demonstrate the potential of our envisioned technology to deliver high
quality speech reconstruction and secure mobile AV hearing aid communication.

Conclusion:

We believe our proposed 5G IoT enabled AV hearing aid is an effective and feasible
solution and represents a step change in the development of next generation
multimodal digital hearing aids. The ongoing and future work includes more
extensive evaluation and comparison with benchmark lightweight encryption
algorithms and hardware prototype implementation.
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1 Introduction
Hearing impairment is a hidden disability with no painful symptoms. People
with serious hearing-loss find themselves socially isolated and depressed with
more negative consequences including headaches, muscle tension, increased stress,
insecurity, and sadness [1]. Hearing aids are the most widely used devices for
the majority of hearing impairments. The global hearing aid industry, estimated
at around US $6.97 billion in 2017, is expected to grow at 7 percent (compound
annual growth rate) by 2022, reaching USD 9.78 Billion, according to the market
research firm MarketsandMarkets [2]. However, existing hearing aids often
perform poorly for speech in noise. Current devices make the signal more audible
but remain deficient in restoring intelligibility i.e., no improvement in Signal-to-
noise ratio (SNR). Thus, the existing audio-only hearing-aids are not robust to
reverberation; therefore intelligibility wins at the cost of higher cognitive load in
a noisy environment [3][4].

In recent literature, extensive research has been carried out to develop robust
speech enhancement frameworks [5][6][7] [8][9]. However, only a few speech
enhancement algorithms have been shown to reliably increase the intelligibility
of speech in noise, especially in extreme noisy conditions such as a cocktail party.
A limited number of research developments in this field have been implemented
into commercially available hearing-aids. For example, spectral subtraction can
be very effective in stationary conditions, but the processed speech remains
unintelligible. In case of multiple microphones availability, beamforming algo-
rithms could potentially lead to improvements in speech intelligibility. However,
such approaches are difficult to employ in unpredictable noisy situations. Re-
cent advances have enabled high data rate and low-latency wireless solutions,
which have primarily reformed the innovation direction of the hearing industry.
Nevertheless, even sophisticated commercial HAs e.g., latest low-latency and
low-cost Bluetooth-enabled HAs, are based on audio-only processing, which
remain ineffective in noisy situations. Consequently, existing audio-only hearing
aid approaches achieve benefit by simply amplifying the signal, which offers little
benefit for understanding speech in high levels of noise [10].

Human performance in noisy environments is known to be dependent on
both aural and visual cues, which are combined by sophisticated multi-level
integration strategies to improve intelligibility. The multimodal nature of speech
is well established in literature, and it is well understood how speech is produced
by the vibration of vocal folds and the configuration of articulatory organs. The
correlation between the visible properties of articulatory organs (e.g., lips, teeth,
tongue) and speech reception has been previously shown in numerous behavioural
studies [11][12][13][14]. Therefore, clear visibility of some articulatory organs
could be effectively utilized to extract a clean speech signal out of a noisy audio
background. The main advantage of using visual cues to extract clean audio
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features is their inherent noise immunity [15].
Nevertheless, embracing the multimodal nature of speech presents both

opportunities and challenges for hearing assitive technology. The real-time
implementation of AV hearing-aids demands high datarate, low latency, low
computational complexity, and high security. To address these requirements, IoT
stands as a major enabler. However, the growth of IoT raises new radio resource
management (RRM) challenges in resource constrained wireless communication
systems. Existing wireless systems remain deficient in complying with the huge
connectivity requirements of IoT. In contrast, 5G wireless networks address
this limitation by exploiting emerging wireless technologies including mmWave,
massive MIMO, and C-RAN [16]. In addition, researchers have recently proposed
several potential data delivery approaches. For example, the authors in [17]
present an overview and highlight the importance of 5G small cell technology
in providing high data rate and further improving coverage and capacity in
a cost effective manner. Other recently proposed relevant approaches include
[18][19][20]. Similarly, researchers have proposed new approaches to address
security issues such as [21] where authors proposed a confidential smart-sensing
framework in the IoT era with authentication, confidentiality and integrity
features.

In this paper, we propose a novel integration of AV speech enhancement
technology, 5G, IoT, and strong privacy algorithms. The AV speech enhancement
technology is comprehensively presented in our previous works [22][23]. For
communication, 5G C-RAN [16] is proposed, which is a widely accepted IoT
solution for high data rate, coverage, capacity, and energy efficiency [16]. For
security, the lightweight chaotic encryption is proposed and evaluated in this
paper. The proposed 5G IoT enabled AV hearing-aid framework is envisioned to
address challenges such as cybersecurity attacks (location privacy, eavesdropping),
interference between medical IoT devices (that can cause hearing-aids to operate
incorrectly with potentially life threatening consequences), low-cost wireless
technology design, low power consumption, limited battery, and high datarate
requirement. Inspired by our previous work [24], the novel wireless hearing-aid
framework offloads computational complexity and real-time optimization issues
by running deep learning and big data optimization algorithms in the background
on the cloud. The hearing-aid transmits the encrypted compressed audio/visual
information to the cloud and receives encrypted enhanced reconstructed speech
in real-time. The hearing-aid connects to an indoor 5G wireless access point and
back/fronthaul core network that serves as the communication infrastructure of
the system.

The rest of the paper is organized as follows: Section 2 presents the proposed
5G IoT enabled AV-hearing aid framework. Section 3 presents the proposed real-
time lightweight chaotic encryption algorithm. Section 4 explains the proposed
speech enhancement framework including the designed enhanced visually derived
Wiener filter (EVWF) and long-short term memory (LSTM) based lip-reading
regression model. In Section 5, the used AV datasets and feature extraction
methodologies are presented. Section 6 presents the performance evaluation
of the proposed AV encryption and speech enhancement algorithms. Finally,
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Section 6 concludes this work.

2 5G IoT enabled Audio-Visual Hearing-Aid Frame-
work

Modern digital hearing aids are marvels of sophisticated engineering. To hear
modern audio, a low-latency and high datarate wireless solution is needed, that
would enable in-ear hearing devices to connect seamlessly [25]. In this article, a
novel 5G IoT enabled audiovisual hearing-aid framework is proposed to acquire
desired high quality processed speech in noisy environments. An example of
state-of-the-art 5G IoT architecture is shown in Figure 1. The IoT enabled
devices, supporting a wide variety of applications, to connect to the Internet,
whilst utilizing gateway for connectivity. For gateway design, different access
technologies such as WiFi and 4G LTE could be used. However, they are both
incapable of supporting thousands of connected IoT devices. WiFi suffers from
packet collision and limited quality of service (QoS), whereas 4G LTE suffers
from high delay and high packet loss for large number of users [16]. In addition,
the wireless systems operating in unlicensed frequency bands require additional
network equipment, resulting in extra operation and capital expenditures. The
unlicensed solutions are also prone to congestion with an exponential increase in
IoT deployment. In contrast, next generation 5G wireless networks [26][27] are
capable of providing higher datarates, enhanced mobile coverage, improved user
experience at relatively lower cost and dense connectivity [28]. Furthermore,
to address aggravating detrimental greenhouse (CO2) gas emissions due to
ultra-dense 5G wireless networks and increased network’s energy consumption,
5G C-RAN is a widely accepted solution that enables improved environmental
sustainability, OPEX, resource management, and energy efficiency [16].

Figure 1: 5G IoT Architecture
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Figure 2: Proposed 5G IoT enabled Audio-Visual Hearing-Aid Framework

Figure 3: Proposed Lip-Reading Driven Deep Learning Approach for Speech
Enhancement

The proposed 5G IoT enabled AV hearing-aid framework is depicted in Figure
2. It is to be noted that the computational complexity and real-time processing
issues due to deep learning and big data optimization algorithms are addressed
by running them in the background on the cloud. The mobile hearing-aid only
transmits the encrypted compressed AV information and receives encrypted
enhanced reconstructed speech in real-time. For end-to-end communication, an
indoor 5G wireless small sized cell and back/fronthaul core network are proposed
as the communication infrastructure of the system [29]. For IoT gateway, we
propose the use of an efficient IoT gateway over a 5G wireless system, developed
and tested in [16]. Specifically, we propose the use of an efficient IoT gateway
over 5G wireless, which exploits small cells (with only 200 m radius), aggressive
modulation and coding schemes (MCSs), massive MIMO, and high-frequency
mmWave band (ranging from 3 to 300 GHz). It is to be noted that a small
fraction of available mmWave spectrum is capable of supporting 100x more data
rate and user capacity as compared to the state-of-the-art cellular spectrum [7,
8]. The proposed use of 5G CRAN with existing cloud computing services has
the capacity to support thousands of connected devices in real-time.
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The developed IoT gateway in [16] promises an uplink latency of 10ms and
5ms with and without compression respectively. In addition, it ensures minimum
interference between medical IoT devices with low power consumption. The
novelty of these gateways lie in efficient uplink IoT traffic classification and
optimal uplink data (traffic) compression strategies. This helps in relaxation
of the uplink traffic burden and results in efficient utilization of uplink wireless
resources. More details on 5G-CRAN and front/backhaul connectivity are
comprehensively presented in [16]. Ongoing and future work includes software
integration of the proposed AV mobile hearing aid with 5G-CRAN and cloud
computing as well as its hardware prototype implementation for real-time testing.

For real-time lightweight audio-visual encryption, piece-wise linear chaotic
map (PWLCM), Chebyshev map, secure hash algorithm and novel S-Box al-
gorithms are utilized. In the literature, conventional encryption approaches
such as advanced encryption standard (AES) and Rivest–Shamir–Adleman
(RSA)/Elliptic Curve (signing) are suitable for high processing power systems but
incompatible with embedded low power sensor networks. Therefore, lightweight
cryptography can potentially address real-time encryption challenges [30]. In
our proposed scheme, the encrypted audio and video signals are exploited in
the cloud by the designed novel lip-reading driven speech enhancement system,
depicted in Figure 3. The proposed speech enhancement approach leverages the
complementary strengths of both deep learning and analytical acoustic modelling
(filtering based approach) that operates at two levels. In the first level, a novel
deep learning based lip-reading regression model is employed. In the second level,
lip-reading approximated clean-audio features are exploited, using an EVWF,
for estimating the clean audio power spectrum. Finally, the Wiener filter is
applied to the magnitude spectrum of the noisy input audio signal, followed by
the inverse fast Fourier transform (IFFT), overlap, and combining processes to
produce an enhanced magnitude spectrum. More details are presented in Section
4. The proposed AV speech enhancement framework finally transmits enhanced
encrypted speech to the mobile hearing-aid.

3 Proposed Real-Time Lightweight Chaotic En-
cryption

In the proposed scheme, PWLCM, Chebyshev map, SHA and novel S-Box
algorithms are effectively used for real-time lightweight encryption. The applied
transformations are briefly explained in the subsequent sections.

3.1 Applied Transformations
3.1.1 PWLCM

As outlined in Shannon’s novel paper [31], a good encryption scheme is composed
of two stages: (i) Confusion and (ii) Diffusion. In the confusion stage, a
correlation between key and ciphertext is made complex. Diffusion means
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that a minor change in plaintext should change the corresponding ciphertext
significantly. The proposed algorithm uses PWLCM in the confusion process.
The PWLCM can be written as:

yn+1 = f(yn, λ) =


yn
λ , if yn ∈ [0, λ]
1−yn
1−λ , if yn ∈ (λ, 0.5]

F (1− yn), if yn ∈ (0.5, 1],

(1)

where, yn are pseudo-random chaotic values, yn ∈ (0, 1), and λ is the control
parameter. Both λ and y0 serve as an initial condition and called as key for
chaotic pseudo-random number generation.

3.1.2 Chebyshev Map

In [32], Huang et al., proposed a novel key generator method using the Chebyshev
map. The Chebyshev map can be defined mathematically as [32, 33]:

Tk(x) = cos(k × arc cos(x)), (2)

where k = 0, 1, 2, ...,N and x ∈ [−1, 1]. Huang suggested k = 4 for less
computation and better use of Chebyshev which has been used in the proposed
scheme, the Chebyshev function is given as:

f(xi) = 8x4i−1 − 8x2i−1 + 1, i = 1, 2, ....N (3)

3.1.3 Logistic-Sine Map

To overcome the drawbacks of a one-dimensional (1D) Logistic map, Zhou et
al., in [34] proposed a novel method of chaotic maps combination. For a larger
chaotic map, the authors combined two exiting 1D Logistic and Sine maps. A
logistic-sine map is mathematically defined as [34]:

zn+1 = (rzn(1− zn) + (4− r)sin(πzn)
4

)mod(1), (4)

3.1.4 Secure Hash Algorithm (SHA)

SHA generates a fixed length value known as a hash code, by applying some
function to the plaintext message. In the literature, SHA has different variants
depending on the size of the output e.g, SHA-1, SHA-256 and SHA-512 for
128, 256, and 512 bits outputs, respectively. In the proposed scheme, we used
SHA-512 such that H(m) = h(512 bits). The Secret Key in the proposed scheme
is dependent on SHA-512. A minor change in plaintext generates a completely
different hash and different initial key parameters.
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3.1.5 Affine Transformation

Affine transformation is a one to one mapping that transforms a unique plaintext
into a unique symbol. The following affine transformation is used in the proposed
scheme:

AT (w) =



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


×



w7

w6

w5

w4

w3

w2

w1

w0


⊕



0
1
1
0
0
0
1
1


(5)

where wi are coefficients of w i.e multiplicative inverse modulo (w8 + w4 + w2 +
w1 + 1).

3.2 Image Encryption Scheme
The flow chart for the grayscale images using PWLCM, Chebyshev, SHA-512 and
affine transformation is shown in Figure 4. The detailed steps of our proposed
cryptosystem are as follows:

• Step 1: Convert colour image Ic of size A×B to gray-scale image Ig and
save result in ψ.

• Step 2: Apply SHA-512 on gray-scale plaintext image ψ and save hex-
adecimal hash value in variable θ.

• Step 3: Select first and last 12 hash values and save in κ1 and κ2.

• Step 4: Convert hexadecimal values saved in κ1 and α1 to decimal values
and store result in κ1, and β2, respectively.

• Step 5: Generate SHA-based initial conditions for PWLCM and Chebyshev
using following equations:

y0 =
κ1
248

(6)

x0 =
κ2
248

(7)

• Step 6: Iterate PWLCM A times and store chaotic values in α. Randomly
permute rows of gray-scale image Ig using the sequence α and save values
in Irp.

• Step 7: Iterate Chebyshev map B times and store chaotic values in β.
Randomly permute columns of Irp using the sequence α and save values
in Ipermuted
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Figure 4: Proposed image encryption algorithm.

• Step 8: Iterate Logistic-sine map A×B times and store random values
in γ.

• Step 9: Apply following operations on γ:

R1 = Mod(γ × 1014, 256), (8)

R2 = floor(R1). (9)

• Step 10: Rearrange row-vector R2 in matrix form R and Bit-wise XOR
random matrix R with Ipermuted to get φ.

• Step 11: Apply affine transformation on φ and store values as a ciphertext
image C.

For decryption, encryption steps are followed in reverse order.
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3.3 Audio Encryption Scheme
The flow chart for the audio signal using PWLCM, Chebyshev, SHA-512 and
affine transformation is shown in Figure 5. The detailed steps of our proposed
cryptosystem are as follows:

Figure 5: Proposed audio encryption algorithm.

• Step 1: Convert 1D audio signal into 2D of size A×B and save result in
ψ.

• Step 2: Apply SHA-512 on ψ and save hexadecimal hash value in variable
θ.

• Step 3: Select first and last 12 hash values and save in κ1 and κ2.

• Step 4: Convert hexadecimal values saved in κ1 and α1 to decimal values
and store results in κ1, and β2, respectively.

• Step 5: Generate SHA-based initial conditions for PWLCM and Chebyshev
using equations (6-7)
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• Step 6: Iterate PWLCM A times and store chaotic values in α. Randomly
permute rows of audio vector Ag using the sequence α and save values in
Irp.

• Step 7: Iterate Chebyshev map B times and store chaotic values in β.
Randomly permute columns of Arp using the sequence α and save values
in Apermuted

• Step 8: Iterate Logistic-sine map A×B times and store random values
in γ.

• Step 9: Apply operations given in equations (8-9) to γ.

• Step 10: Rearrange row-vector R2 in matrix form R and Bit-wise XOR
random matrix R with Apermuted to get φ.

• Step 11: Apply affine transformation on φ and store values as a ciphertext
audio C.

For decryption, encryption steps are followed in reverse order.

4 Speech Enhancement Framework
The state-of-the-art VWF and designed EVWF are depicted in Figure 6 (a) and
(b) respectively. The authors in [15] presented a hidden Markov model-Gaussian
mixture model (HMM/GMM) based two-level state-of-the-art VWF for speech
enhancement. However, the use of HMM/GMM models for the estimation of
clean audio features from visual features, and cubic spline interpolation for the
approximation of high dimensional clean audio power spectrum from estimated
low dimensional audio features, are not optimal choices. The HMM/GMM
model suffers from poor generalization and the cubic spline interpolation method
fails to estimate the missing power spectral values that lead to poor audio
power spectrum estimation. In contrast, the designed EVWF addressed the
limitations of the state-of-the-art VWF [15] by employing an inverse filter-bank
transformation (i.e. a pseudoinverse of the approximated audio features) for
audio power spectrum estimation, as compared to the cubic spline interpolation
method. In addition, the use of LSTM addressed the generalization and accurate
clean speech coefficient estimation issues. The designed EVWF also eliminates
the need for voice activity detection (VAD) and noise estimation. More details
are comprehensively presented in our previous work [23]

4.1 Lip Reading Model
The designed LSTM based lip-reading model consists of an input layer, two
LSTM layers, and an output dense layer. In the designed LSTM model, prior
visual features were fed into the stacked LSTM layers to exploit the existing
temporal correlation. The lower LSTM layer used 250 cells for encoding the input

10



(a) State-of-the-art visually-derived Wiener
filtering [15].

(b) Proposed enhanced visually-derived
Wiener filtering

Figure 6: State-of-the-art visually-derived Wiener filtering (a) and proposed
enhanced visually-derived Wiener filtering (b)

visual information and passed its hidden state to the second LSTM layer, which
has 300 cells. The output of the second LSTM layer was then fed into the fully
connected (dense) layer which has a total of 23 neurons with linear activation
function. The designed LSTM model was trained with an objective to minimise
the mean squared error (MSE) between the predicted and the actual audio
features, using a stochastic gradient decent algorithm and RMSProp optimiser.
More dataset, pre-processing, and training/testing details are comprehensively
presented in our previous works [22][23].

5 Dataset and Audio-Visual Feature Extraction
For AV encryption and speech enhancement, Grid [35] and ChiME3 [36] corpora
are used. The proposed system is evaluated under four different dynamic real-
world scenarios (cafe, street, public transport, pedestrian area). It is to be noted
that the utterances from all the scenarios were mixed to develop a contextual
AV speech enhancement framework. The visual only speech enhancement signifi-
cantly outperforms audio-only approaches at low SNRs. However, visual cues
become less effective at high SNRs. Therefore, to effectively account for different
noisy conditions, a more optimal, context-aware audio-visual system is required,
that leverages the complementary strengths of both visual and noisy audio cues
contextually. For noisy utterance generation, clean videos from Grid corpus were
mixed with ChiME3 noises for different SNR levels ranging from -12 to 12dB.
For preprocessing, sentence alignment and prior visual frames were used to stop
the model from learning redundant information and improve mapping between
visual and audio features (exploiting their temporal information).

5.1 Audio-Visual feature extraction
For audio feature extraction, the input audio signal was sampled at 50kHz
and segmented into N 16ms frames with 800 samples per frame and a 62.5%
increment rate. To produce a 2048-bin power spectrum, a hamming window
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(a) Original Image (b) Encrypted Image

Figure 7: Encryption Results. It is to be noted that the proposed encryption
scheme completely concealed the plaintext information.

(a) Original Image Histogram. (b) Encrypted Image Histogram.

Figure 8: Histogram Results. It is to be noted that the obtained histogram of
the encrypted image is flat which is ideally required.

and Fourier transformation was applied, followed by a logarithmic compression
to produce a 23-D log-FB signal. The visual features were extracted from
the Grid Corpus videos recorded at 25 fps. The video files were processed by
extracting a sequence of individual frames and applying a Viola-Jones lip detector
[37] and object tracker [38]. Furthermore, to ensure appropriate lip tracking,
processed utterances were manually validated. Finally, the 2D-Discrete Cosine
Transformation (2D-DCT) was applied to produce vectors of pixel intensities,
followed by interpolation. More details are presented in our previous work [22].

6 Performance Evaluation

6.1 Lip-Images Encryption and Security Analyses
In order to show the effectiveness of the encryption scheme, one test image is
selected with a particular lips position. The proposed lightweight encryption
scheme is applied to the plaintext image and the obtained results are shown
in Figure 7. It can be seen that the proposed scheme completely concealed
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the plaintext information. Moreover, the histogram results shown in Figure
8 acquired the flat histogram which is required ideally. However, the results
are not sufficient to prove complete security of the cryptosystem. Therefore, a
large number of security metrics such as correlation coefficient, entropy, contrast,
energy, number of pixel change rate (NPCR), and unified average change intensity
(UACI) defined in our previous work [39, 40, 41] are used. The degree of similarity
between adjacent pixels are generally analysed via correlation coefficient metrics.
Ideally, correlation in all directions (horizontal (HCC), vertical(VCC) and diagonal
(DCC)) should be close to zero. Entropy is another important metric which can
evaluate resistance capability against statistical attacks. For a good cryptosystem,
entropy of a gray-scale encrypted image should be 8 bits. A contrast of an
encrypted image is defined as the intensity between a pixel and its neighbour
pixels. In image encryption, higher values of contrast indicate a higher quality of
encrypted image. A sum of squared elements (SSE) in a gray level co-occurrence
matrix returns the energy of an image. The energy value of a secure encrypted
image is desired to be low. In case of complete constant pixels, the energy value
is 1. NPCR and UACI show resistance against differential attacks. Higher values
of NPCR and UACI reflect higher encryption quality. More details on how these
parameters prove the security of our encryption scheme is defined in detail in
our previous work [39, 40, 41].
The correlation plots in vertical directions are shown in Figure 9. From these,
it is evident that the distribution of adjacent pixels in a vertical direction is
uncorrelated as compared to plaintext correlation. Mathematical values of
correlations in vertical, horizontal and diagonal directions are outlined in Table
1. In the table, lower correlation values prove the robustness of the proposed
scheme. In addition, it can be seen that the histogram plot for the proposed
scheme is uniformly distributed; hence, assures resistance to statistical attacks
as compared to existing algorithms [42][43]. NPCR greater than 99% also
reveals higher security. Consequently, the security metrics demonstrate the
effectiveness and higher security of the proposed scheme. Lastly, the required
encryption/decryption time is less than 25 msec on a 60 GB RAM using MATLAB
software. Such a low processing time confirms that the proposed scheme is
lightweight and could be an effective solution for practical real-time applications.
However, further real-time optimization is an ongoing work.

6.2 Speech Enhancement Results

6.3 Lip-Reading Results
For lip-reading, multiple prior visual frames (lip images) are used (ranging from
1 visual frame to 27 prior visual frames). The simulation results are shown
in Table 2. It can be seen that by moving from 1 visual frame to 18 visual
frames, a significant performance improvement could be achieved. The LSTM
model with 1 visual frame achieved the MSE of 0.092, whereas with 18 visual
frames the model achieved the least MSE of 0.058. LSTM based learning model
exploited the temporal information (i.e. prior visual frames) efficiently and
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(a) Original Image correlation coeffi-
cient.

(b) Encrypted Image correlation
coefficient.

Figure 9: Correlation coefficients in vertical direction.

Table 1: Image security assessment. It is to be noted that the correlation
values in all directions (horizontal (HCC), vertical(VCC) and diagonal (DCC))
are low which proves the robustness of the proposed scheme. In addition,
note the resistance capability against statistical attacks and high security,
evaluated using Contrast, Energy, NPCR and UACI tests.

Security Parameter Original Frame Encrypted Frame
VCC 0.9523 0.0044
HCC 0.9711 -0.0056
DCC 0.9677 0.0089
Entropy 7.0025 7.9983
Contrast 0.1049 10.4608
Energy 0.2161 0.0156
NPCR NA 99.4566
UACI NA 33.1561
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Table 2: LSTM Training and Testing Accuracy - Comparison For Different
Visual Frames. The table presents an overall behaviour of the LSTM model
when contextual information (i.e. previous frames) is added. It is to be noted
that the LSTM model exploited the temporal correlation effectively but
saturated at 18 prior visual frames.

LSTM
Visual Frames MSEtrain MSEtest

1 0.092 0.104
2 0.087 0.097
4 0.073 0.085
8 0.066 0.082
14 0.061 0.080
18 0.058 0.078

Table 3: Speech Enhancement Results. It can be seen that at low SNR levels,
EVWF significantly outperformed benchmark SS and LMMSE based speech
enhancement methods.

SNR PESQ MOS

SS LMMSE EVWF SS LMMSE EVWF

-12dB 0.9 0.95 1.52 0.31 0.315 1.68
-6dB 1.01 1.03 1.58 0.51 0.48 1.965
-3dB 1.17 1.18 1.60 1.17 1.165 2
0dB 1.21 1.20 1.63 1.925 1.97 2.11
3dB 1.25 1.34 1.72 2.025 2.085 2.22
6dB 1.26 1.39 1.69 2.295 2.345 2.33
12dB 1.54 1.60 1.74 2.58 2.61 2.54

showed consistent reduction in MSE while going from 1 to 18 visual frames. This
is mainly because of its inherent recurrent architectural property and the ability
of retaining state over long time spans by using gates. More details, critical
analysis, and comparisons are comprehensively presented in our previous work
[22].

6.3.1 Objective Test

For objective testing and comparison with state-of-the-art audio only speech
enhancement methods (spectral subtraction (SS) and Log-Minimum Mean Square
Error (LMMSE)), perceptual evaluation of speech quality (PESQ) is used to
evaluate the quality of restored speech. PESQ is one of the most reliable methods
to evaluate speech quality. The PESQ score is computed as a linear combination
of the average disturbance value and the average asymmetrical disturbance values.
Scores range from -0.5 to 4.5, corresponding with low to high speech quality.
The PESQ scores for the proposed EVWF and state-of-the-art benchmark audio
only speech enchantment approaches are depicted in Table 3. It can be seen
that at low SNR levels, EVWF significantly outperformed both SS and LMMSE
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Table 4: Audio security assessment.

Security Parameter Encrypted Signal
NSCR 99.95%
UACI 33.39%
Correlation coefficient 0.00022
Key length 1045

based speech enhancement methods.

6.3.2 Subjective Listening Tests

The subjective listening test was conducted in terms of MOS with self-reported
normal-hearing listeners. The listeners were presented with both clean (target)
and enhanced speech, and were asked to rate the re-constructed speech on a
scale of 1 to 5. The five rating choices were: (5) Excellent (when the listener
feels an unnoticeable difference compared to the target clean speech) (4) Good
(perceptible but not annoying) (3) Fair (slightly annoying) (2) Poor (annoying),
and (1) Bad (very annoying). The EVWF performance was compared with
two state-of-the-art speech enhancement methods (SS and LMMSE). A total
of 10 listeners took part in the evaluation session. In Table 3, it can be seen
that at low SNRs (-12dB, -6dB, and -3dB), the proposed EVWF outperformed
audio-only speech enhancement methods. On the other hand, for high SNRs,
our AV approach performed comparably to the Audio only approach.

6.4 Audio Encryption and Security Analyses
The proposed lightweight chaotic encryption was applied to the enhanced audio
signal. A single bit in the original speech signal was modified and encrypted
via the same key [44]. The two ciphered speech signals, i.e., Sc1 and Sc2 were
generated and the obtained results are shown in Figure 10. It can be seen that
the proposed scheme completely concealed the audio information and decrypted
speech signal accurately. Furthermore, to check the robustness and security
strength of the proposed audio encryption scheme, security analysis tests such
as number of sample change rate (NSCR), UACI, correlation coefficient, and
key length were conducted, where low correlation values, 99.95% NSCR, and
33.3% UACI demonstrate the robustness of the proposed encryption scheme.
In addition, the key length of the proposed approach is much greater than
the minimum required length (2100) which shows resistance against brute force
attack. Table 4 presents the security analysis and effectiveness of the proposed
scheme.
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(a) Original Audio (b) Encrypted Audio

(c) Decrypted Audio

Figure 10: Audio encryption results.
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7 Conclusions and future directions
Next-generation multimodal hearing-aids stand as a major enabler for modern
digital hearing aids, capable of restoring intelligibility and reducing cognitive load
in environments with overwhelming noise. However, the real-time implementation
of such AV hearing-aids demand high data rate, low latency, low computational
complexity, and high security. In this paper, we proposed a 5G IoT enabled AV
hearing-aid framework that leverages the complementary strengths of 5G and IoT
technology to address the aforementioned challenges. As part of the envisioned
technology, two main contributions (AV speech enhancement in the cloud and
lightweight AV encryption) are reported here. Comparative critical analysis in
terms of both speech enhancement and AV encryption demonstrate the potential
of the envisioned technology to deliver high quality speech reconstruction in
extreme noisy situations, and secure mobile AV hearing aid communication.
Specifically, the comparative performance evaluation of the proposed speech
enhancement method under real noisy environments revealed that the proposed
approach significantly outperformed benchmark audio-only approaches at low
SNR, with comparable performances at high SNRs. The audio and video
encryption results revealed the effectiveness of the proposed real-time lightweight
encryption scheme in terms of both high security and processing time. The
ongoing/future work includes utilizing partial encryption [39] to further reduce
the encryption and decryption time, whilst maintaining required data security.
The partial encryption will help address high power consumption or quick battery
drainage issues. Further work will include software integration of the proposed AV
mobile hearing aid with 5G-CRAN and its hardware prototype implementation
for real-time prototyping and testing. Market assessment will also be carried out,
where the aim is to identify potential opportunities in the UK hearing industry.

Acknowledgments
scThe authors would like to gratefully acknowledge Mandar Gogate from the
Edinburgh Napier University for his contribution in implementing LSTM driven
AV mapping, which was published in our previous work and cited here for
reference.

Funding
This research was supported by Engineering and Physical Sciences Research
Council (EPSRC) Grant No. EP/M026981/1 and deepCI grant No.DCI1012.

Compliance with Ethical Standards
This manuscript has not been published in whole or in part elsewhere, which
has also not currently being considered for publication in another journal. All

18



authors have been personally and actively involved in substantive work leading
to the manuscript, and will hold themselves jointly and individually responsible
for its content.

Conflict of Interest
The authors declare that they have no conflict of interest.

Ethical Approval
This article does not contain any studies with human participants performed by
any of the authors.

Author’s Contributions
AA and AH conceived and developed the original idea reported in this paper,
of integrating 5G, IoT, and lightweight encryption, with the lip-reading driven
hearing-aid. AA and JA performed the simulations.

References
[1] Shibli Nisar, Muhammad Tariq, Ahsan Adeel, Mandar Gogate, and Amir

Hussain. Cognitively inspired feature extraction and speech recognition for
automated hearing loss testing. Cognitive Computation, pages 1–14, 2019.

[2] Hearing Aids Market. https://www.marketsandmarkets.com/
PressReleases/hearing-aids.asp. Accessed: 2019-02-15.

[3] AJ Ruggles and IW Ekoto. Ignitability and mixing of underexpanded
hydrogen jets. International Journal of Hydrogen Energy, 37(22):17549–
17560, 2012.

[4] S Kortlang, S Ewert, H Meister, S Rählmann, J Kießling, et al. Combination
of controlled laboratory tests and structured field trials for a comprehensive
evaluation of a model-based hearing aid. Int J Audiol, 2016.

[5] Rudy Rotili, Emanuele Principi, Stefano Squartini, and Björn Schuller. A
real-time speech enhancement framework in noisy and reverberated acoustic
scenarios. Cognitive Computation, 5(4):504–516, 2013.

[6] Joyner Cadore, Francisco J Valverde-Albacete, Ascensión Gallardo-Antolín,
and Carmen Peláez-Moreno. Auditory-inspired morphological processing
of speech spectrograms: Applications in automatic speech recognition and
speech enhancement. Cognitive computation, 5(4):426–441, 2013.

19



[7] MA Ben Messaoud, Aïcha Bouzid, and Noureddine Ellouze. A new biologi-
cally inspired fuzzy expert system-based voiced/unvoiced decision algorithm
for speech enhancement. Cognitive Computation, 8(3):478–493, 2016.

[8] Ravi Kumar Kandagatla and PV Subbaiah. Speech enhancement using
mmse estimation of amplitude and complex speech spectral coefficients
under phase-uncertainty. Speech Communication, 96:10–27, 2018.

[9] Ali I Siam, Heba A El-khobby, Mustafa M Abd Elnaby, Hatem S Abdelkader,
and Fathi E Abd El-Samie. A novel speech enhancement method using
fourier series decomposition and spectral subtraction for robust speaker
identification. Wireless Personal Communications, pages 1–14, 2019.

[10] Amir Hussain, Jon Barker, Ricard Marxer, Ahsan Adeel, William Whitmer,
Roger Watt, and Peter Derleth. Towards multi-modal hearing aid design and
evaluation in realistic audio-visual settings: Challenges and opportunities.
First International Conference on Challenges in Hearing assistive Technology
(CHAT-17) Stockholm, Sweden, August 19.2017, 2017.

[11] William H Sumby and Irwin Pollack. Visual contribution to speech intelligi-
bility in noise. The journal of the acoustical society of america, 26(2):212–215,
1954.

[12] Quentin Summerfield. Use of visual information for phonetic perception.
Phonetica, 36(4-5):314–331, 1979.

[13] Harry McGurk and John MacDonald. Hearing lips and seeing voices. Nature,
264(5588):746, 1976.

[14] Michelle L Patterson and Janet F Werker. Two-month-old infants match
phonetic information in lips and voice. Developmental Science, 6(2):191–196,
2003.

[15] Ben Almajai, Milner. Visually derived wiener filters for speech enhancement.
IEEE Transactions on Audio, Speech, and Language Processing, 19(6):1642–
1651, 2011.

[16] Navrati Saxena, Abhishek Roy, Bharat JR Sahu, and HanSeok Kim. Ef-
ficient iot gateway over 5g wireless: A new design with prototype and
implementation results. IEEE Communications Magazine, 55(2):97–105,
2017.

[17] Fadi Al-Turjman, Enver Ever, and Hadi Zahmatkesh. Small cells in the
forthcoming 5g/iot: Traffic modelling and deployment overview. IEEE
Communications Surveys & Tutorials, 2018.

[18] Fadi Al-Turjman. Fog-based caching in software-defined information-centric
networks. Computers & Electrical Engineering, 69:54–67, 2018.

20



[19] Mohammed Zaki Hasan, Fadi Al-Turjman, and Hussain Al-Rizzo. Analysis
of cross-layer design of quality-of-service forward geographic wireless sensor
network routing strategies in green internet of things. IEEE Access, 6:20371–
20389, 2018.

[20] Fadi Al-Turjman. Cognitive caching for the future sensors in fog networking.
Pervasive and Mobile Computing, 42:317–334, 2017.

[21] Fadi Al-Turjman and Sinem Alturjman. Confidential smart-sensing frame-
work in the iot era. The Journal of Supercomputing, 74(10):5187–5198,
2018.

[22] Ahsan Adeel, Mandar Gogate, Amir Hussain, and William M Whitmer.
Lip-reading driven deep learning approach for speech enhancement. IEEE
Transactions on Emerging Topics in Computational Intelligence (in-press),
2019.

[23] Ahsan Adeel, Mandar Gogate, and Amir Hussain. Contextual deep learning-
based audio-visual switching for speech enhancement in real-world environ-
ments. Information Fusion (In Press), 2019.

[24] Ahsan Adeel, Hadi Larijani, and Ali Ahmadinia. Random neural network
based novel decision making framework for optimized and autonomous
power control in lte uplink system. Physical Communication, 19:106–117,
2016.

[25] Richard Einhorn. Hearing aid technology for the 21st century: A proposal
for universal wireless connectivity and improved sound quality. IEEE pulse,
8(2):25–28, 2017.

[26] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next generation 5g
wireless networks: A comprehensive survey. IEEE Communications Surveys
& Tutorials, 18(3):1617–1655, 2016.

[27] Jeffrey G Andrews, Stefano Buzzi, Wan Choi, Stephen V Hanly, Angel
Lozano, Anthony CK Soong, and Jianzhong Charlie Zhang. What will 5g
be? IEEE Journal on selected areas in communications, 32(6):1065–1082,
2014.

[28] Naga Bhushan, Junyi Li, Durga Malladi, Rob Gilmore, Dean Brenner, Alek-
sandar Damnjanovic, Ravi Sukhavasi, Chirag Patel, and Stefan Geirhofer.
Network densification: the dominant theme for wireless evolution into 5g.
IEEE Communications Magazine, 52(2):82–89, 2014.

[29] Min Chen, Jun Yang, Yixue Hao, Shiwen Mao, and Kai Hwang. A 5g
cognitive system for healthcare. Big Data and Cognitive Computing, 1(1):2,
2017.

21



[30] William J Buchanan, Shancang Li, and Rameez Asif. Lightweight cryp-
tography methods. Journal of Cyber Security Technology, 1(3-4):187–201,
2017.

[31] Claude E Shannon. Communication theory of secrecy systems. Bell Labs
Technical Journal, 28(4):656–715, 1949.

[32] Xiaoling Huang. Image encryption algorithm using chaotic chebyshev
generator. Nonlinear Dynamics, 67(4):2411–2417, 2012.

[33] Xingyuan Wang, Dapeng Luan, and Xuemei Bao. Cryptanalysis of an image
encryption algorithm using chebyshev generator. Digital Signal Processing,
25:244–247, 2014.

[34] Yicong Zhou, Long Bao, and CL Philip Chen. A new 1d chaotic system for
image encryption. Signal processing, 97:172–182, 2014.

[35] Martin Cooke, Jon Barker, Stuart Cunningham, and Xu Shao. An audio-
visual corpus for speech perception and automatic speech recognition. The
Journal of the Acoustical Society of America, 120(5):2421–2424, 2006.

[36] Jon Barker, Ricard Marxer, Emmanuel Vincent, and Shinji Watanabe. The
third ‘chime’speech separation and recognition challenge: Dataset, task and
baselines. In Automatic Speech Recognition and Understanding (ASRU),
2015 IEEE Workshop on, pages 504–511. IEEE, 2015.

[37] Paul Viola and Michael Jones. Rapid object detection using a boosted cas-
cade of simple features. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference
on, volume 1, pages I–I. IEEE, 2001.

[38] David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. In-
cremental learning for robust visual tracking. International Journal of
Computer Vision, 77(1-3):125–141, 2008.

[39] Jawad Ahmad, Muazzam A Khan, Seong Oun Hwang, and Jan Sher Khan.
A compression sensing and noise-tolerant image encryption scheme based on
chaotic maps and orthogonal matrices. Neural computing and applications,
28(1):953–967, 2017.

[40] Fadia Ali Khan, Jameel Ahmed, Jan Sher Khan, Jawad Ahmad, and
Muazzam A Khan. A novel substitution box for encryption based on lorenz
equations. In Circuits, System and Simulation (ICCSS), 2017 International
Conference on, pages 32–36. IEEE, 2017.

[41] Jan Sher Khan, Jawad Ahmad, and Muazzam A Khan. Td-ercs map-
based confusion and diffusion of autocorrelated data. Nonlinear Dynamics,
87(1):93–107, 2017.

22



[42] Jawad Ahmad and Seong Oun Hwang. Chaos-based diffusion for highly au-
tocorrelated data in encryption algorithms. Nonlinear Dynamics, 82(4):1839–
1850, 2015.

[43] Amir Anees, Adil Masood Siddiqui, and Fawad Ahmed. Chaotic substitution
for highly autocorrelated data in encryption algorithm. Communications in
Nonlinear Science and Numerical Simulation, 19(9):3106–3118, 2014.

[44] P Sathiyamurthi and S Ramakrishnan. Speech encryption using chaotic shift
keying for secured speech communication. EURASIP Journal on Audio,
Speech, and Music Processing, 2017(1):20, 2017.

23


