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Abstract— This paper describes the applicability of the so-

called ‘grouping genetic algorithm’ to a well-known version of 
the university course timetabling problem. We note that there 
are, in fact, various scaling up issues surrounding this sort of 
algorithm and, in particular, see that it behaves in quite different 
ways with different sized problem instances. As a by-product of 
these investigations, we introduce a method for measuring 
population diversities and distances between individuals with the 
grouping representation. We also look at how such an algorithm 
might be improved: firstly, through the introduction of a number 
of different fitness functions and, secondly, through the use of an 
additional stochastic local-search operator (making in effect a 
grouping memetic algorithm). In many cases, we notice that the 
best results are actually returned when the grouping genetic 
operators are removed altogether, thus highlighting many of the 
issues that are raised in the study. 
 

Index Terms—Diversity, fitness-functions, grouping-problems, 
timetabling. 

I. INTRODUCTION 

N THE CONTEXT OF A UNIVERSITY, a typical timetabling 
problem generally involves assigning a set of events 
(lectures, exams, tutorials, lab sessions and so on) to a 

limited number of timeslots and rooms in such a way as to 
satisfy a set of constraints. The two most common forms of 
this problem are exam-timetabling problems and course-
timetabling problems, and in reality, the constraints imposed 
upon these can often be quite similar. However, the crucial 
difference between them is usually considered to be that in 
exam timetables, multiple events can take place in the same 
room at the same time (as long as the seating capacity is not 
exceeded), whilst in course-timetabling problems, we are 
generally only allowed one event in a room per timeslot.  

In automated timetabling, the constraints for both types of 
timetabling problem generally tend to be separated into two 
groups: the hard constraints and the soft constraints. Hard 
constraints have a higher priority than soft, and will usually be 
mandatory in their satisfaction. Indeed, timetables will usually 
only be considered feasible if and only if all of the hard 
constraints of the problem have been satisfied. Soft 
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constraints, meanwhile, are those that we want to obey if 
possible, and more often than not they will describe what it is 
for a timetable to be good with regards to the timetabling 
policies of the university concerned, as well as the experiences 
of the people who will have to use it. Perhaps the most 
common hard constraint encountered in timetabling is the 
‘event-clash’ constraint. This specifies that if one or more 
person (or some other resource of which there is only one) is 
required to be present at two distinct events, then these events 
conflict, and therefore must not be placed into the timetable in 
such a way that they overlap in time (as obviously such an 
assignment will result in this person(s)/resource(s) having to 
be in two places at once). This particular constraint can be 
found in almost all university timetabling problems and its 
presence will often cause people to draw parallels between 
this problem and the well-known graph colouring problem 
(which we will look at in more detail in section II B). Beyond 
this example constraint, however, a great many other sorts of 
constraints – hard and soft – can be considered in timetabling. 
These can involve factors such as event orderings, lecturer 
and student preferences, the spreading of events, rooming 
constraints, and so on. Indeed, in the real world most 
universities will tend to have their own idiosyncratic set of 
constraints. A good review of the various different constraints 
that can often be encountered in practice is given by Corne, 
Ross, and Fang in [1]. 

Given the wide diversity of constraints that can be imposed 
on timetabling problems, it should be appreciable that from a 
research point-of-view, it can often be quite difficult to 
formulate meaningful and universal generalisations about the 
field. Further difficulties can also arise when we want to make 
comparisons between different timetabling algorithms, as 
often – but perhaps quite understandably – authors will prefer 
to design algorithms for their own university’s timetabling 
problem, rather than comply with some set of benchmark 
instances. However, one important generalisation that we can 
make about timetabling at universities is that the problem is 
NP-complete in almost all variants. Indeed, in various forms it 
has been shown to be equivalent to graph colouring, bin 
packing, and three-dimensional matching in [2], and also 3-
SAT in [3].  

Many algorithms that have been proposed for solving 
timetabling problems have used strategies derived from graph 
colouring. (See, for example, a very early example by White 
and Chan in [4]; the more recent backtracking algorithm of 
Carter, Laporte, and Lee in [5]; and also the work of Erben in 
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[6]). Others, meanwhile, have chosen to use methods such as 
linear algorithms [7], integer programming [8], and constraint-
based techniques [9] for their timetabling problems. 

Over the last decade-or-so, there has also been a large 
interest in the application of metaheuristics towards 
timetabling problems. For instance, many authors, such as 
Abramson, Krishnamoorthy, and Dang [10, 11]; Elmohamed, 
Fox and Coddington [12]; and Thompson and Dowsland [13] 
have chosen to apply simulated annealing to their timetabling 
problems. In the latter paper, for example, the authors first 
employ graph colouring heuristics to construct a feasible 
timetable, and then use various specialised neighbourhood 
operators (such as Kempe-chain interchanges) in conjunction 
with simulated annealing to then try and satisfy the soft 
constraints of the problem.  

Other authors such as Schaerf [14], Costa [15], and Hertz 
[16] have chosen to use the tabu search metaheuristic for 
timetabling. In particular, Schaerf reports that good results can 
be gained when phases of tabu search are broken up by 
periods of local-search, making use of various neighbourhood 
operators. In this case, the best results from each stage are 
passed into the next stage, until no further progress can be 
made. In this study the author also makes use of a weighted-
sum evaluation function, using weights in order to penalise 
violations of hard constraints more heavily than violations of 
soft constraints. These weights can be changed during the run 
however, if it is felt that the search is focusing too closely on 
one particular region of the search space. (Similar techniques 
are also used in conjunction with a local-search algorithm by 
Schaerf in [17].) 

There have also been many applications of evolutionary and 
memetic-style algorithms to various different timetabling 
problems1, as in the work of Colorni, Dorigo, and Maniezzo 
[19, 20]; Abramson and Abela [21]; Corne, Ross and Fang 
[1]; Paechter et al. [22]; Erben [6]; and Burke et al. [23-26]. 
In the work of Paechter et al., for example, an evolutionary 
algorithm for course timetabling using an indirect 
representation is presented, whereby each chromosome 
contains instructions on how to build timetables of a given 
instance. Also included is a memetic search operator that 
attempts to locally improve each timetable, with any 
improvements that are found then being written back to the 
chromosome. The authors also use specialised crossover 
operators for this representation, as well as heuristic mutation 
operators. A different sort of evolutionary approach – this 
time for exam timetabling – has also been proposed by Burke, 
Elliman and Weare in [23, 24]. In this approach, all candidate 
solutions produced during a run are kept feasible because, 
rather than break any hard constraints, extra timeslots are 
opened to accommodate events that have no feasible place in 
the current timetable. One of the aims of the algorithm, 
therefore, is to reduce the number of timeslots being used 
down to a reasonable level, whilst also taking into 

 
1 See the survey of Ross, Hart and Corne [18] for a good overview of 

evolutionary computation and timetabling. 

consideration the imposed soft constraints. Thus, specialist 
genetic operators are introduced in order to try and 
accomplish this. 

Recently, an interesting application of the ant colony 
metaheuristic to timetabling has also been made by Socha, et 
al. in [27] and [28]. At each step of this algorithm, each of the 
ants constructs a complete assignment of events to timeslots 
using heuristics and pheromone information (the latter which 
is present due to previous iterations of the algorithm). 
Timetables are then improved using a local-search procedure, 
and results are written back to the pheromone matrix for use 
in the next iteration. 

It is also worth noting that as well as the more ‘mainstream’ 
metaheuristic paradigms, various other stochastic-based 
algorithms have also been proposed for timetabling problems, 
such as hyper-heuristics [29], a GRASP procedure [30], multi-
objective techniques [31, 32], and a number of hybrid 
algorithms [33-36]. Some good survey papers about the field 
of automated timetabling can also be found in [37-41]. There 
are also some publicly available problem instances available 
for exam timetabling at [42] and course timetabling at [43] 
and [44]. It is the latter two references that contain the 
problem instances that will be considered in this study. 

II. PROBLEM ANALYSIS 

A. The Basic Problem 
The version of the university course timetabling problem 

(UCTP) that we study here was originally formulated for the 
Metaheuristics Network [45] and was also subsequently used 
for the International Timetabling Competition in 2002 [43]. 
We have chosen this particular problem because it has been 
fairly widely studied in the last few years and, as a result, it 
has become somewhat of a benchmark problem in this field. 
Note also that although this problem is actually based on real-
world timetabling problems, it is slightly simplified. Although 
this is not ideal, it is arguable that this sort of problem is 
perhaps more suited for algorithm analysis and comparison, as 
it does not feature the various idiosyncratic and institution-
specific constraints usually found in practical problems. 

Each problem instance consists of the following 
information: firstly, we are given a set of rooms, each with an 
associated seating capacity. Secondly, we are given a set of 
events, each with a pre-specified set of attending students. 
Pairs of events are said to conflict if there is one or more 
student(s) required to attend them both. Finally, we are given 
a set of room features (that can represent things such as data 
projectors, IT equipment etc). Each event requires a subset of 
these features and each room satisfies a subset of these 
features.  

The primary aim of this problem is to assign every event a 
room and one of a fixed-number of timeslots (in this case 
forty-five, comprising five days of nine timeslots) in such a 
way that none of the following hard constraints are violated: 

 

1. No student is required to attend more than one event at 
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any one time (or in other words, conflicting events should 
not be assigned to the same timeslot); 

2. Only one event is put in any room in any timeslot (i.e. no 
double-booking of rooms); 

3. All of the features required by the event are satisfied by 
the room, which has an adequate capacity. 

 

A timetable that schedules all events and obeys all of these 
constraints is considered feasible. The total number of 
possible assignments (timetables) is (t*r)e

 (where t = the 
number of timeslots, r = the number of rooms, and e = the 
number of events). In anything but trivial cases, the vast 
majority of these assignments will probably contain some 
level of infeasibility. 

B. Comparison to Graph Colouring 
It is worth noting immediately (as it will certainly help with 

various explanations later on), that the presence of the first 
hard constraint above makes this problem similar to the well-
known graph colouring problem. In order to convert one 
problem to the other, individual events are considered nodes, 
and edges are added between any two nodes that represent 
conflicting events. In very basic timetabling problems (e.g. 
[46]) the task is to simply colour the graph in as many colours 
as there are available timeslots. However, in our case, the 
presence of the second and third hard constraints adds extra 
complications: now it does not merely suffice for collections 
of non-conflicting events to be grouped together into 
timeslots; instead, we must also ensure that every event in a 
timeslot can be assigned to its own feasible room. From a 
graph-theoretic point-of-view, this means that many feasible 
colourings might still actually represent infeasible timetables 
(see fig. 1 for a simple example). 
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Fig. 1.  In this small example both graphs represent optimal colourings. 
However, in the case of this timetabling problem, if only two rooms were 
available per timeslot, then graph (a) could definitely not represent a feasible 
solution, as either event 2, 3 or 4 could not be assigned a room. Graph (b), on 
the other hand, could represent a feasible timetable although, of course, this 
would also depend on room capacities and features of the problem instance. 

C. Soft Constraints and the Two-Stage Approach 
For this particular timetabling problem, there are also three 

soft constraints. These are as follows: 
 

1. No student should attend an event in the last timeslot of a 
day; 

2. No student should sit more than two classes in a row; 
3. No student should have a single class in a day. 

 

Looking at the majority of studies carried out on this 
problem, it would seem that a popular method for dealing with 
both the hard and soft constraints is to employ a two-stage 
algorithm, the methodology of which can be summarised as 
follows: in the first stage, the soft constraints are disregarded 

and only the hard constraints of the problem are considered 
(i.e. only a feasible timetable is sought); next, assuming 
feasibility has been found, attempts are then made to try and 
reduce the number of soft constraint violations, using 
operators that only allow feasible areas of the search space to 
be navigated. The popularity of this approach could partly be 
due to the substantial work of Rossi-Doria et al. [35] who, in 
an early study of this problem, concluded that the performance 
of any one metaheuristic with respect to satisfying hard 
constraints and soft constraints might be different: that is, 
what might be a good approach for finding feasibility may not 
necessarily be so effective when considering the soft 
constraints. 

Indeed, the merit of this two-stage approach was reinforced 
when the International Timetabling Competition [43] was run 
in 2002 and people from all over the world were invited to 
design algorithms for this problem. As it turned out, the best 
algorithms presented (according to the competition criteria) 
made use of this two-stage approach, utilising various 
constructive heuristics to first find feasibility, followed by 
assorted local improvement algorithms (such as simulated 
annealing, tabu search, and local-search) to then deal with soft 
constraint violations. Since then, a number of papers 
stemming from this work have been published and excellent 
results have been claimed using this basic two-stage approach. 
(These include the hybrid algorithm of Chiarandini et al. [33]; 
the simulated annealing-based methodology of Kostuch [36]; 
the tabu search-based methodologies of Arntzen and 
Løkketangen [47] and Cordeau et al. [48]; and the ‘Great 
Deluge’ approach of Burke et al. [49].) 

It must be noted, however, that the problem instances 
(available at [43]) used for the competition and subsequent 
works are actually quite easy to solve with regards to finding 
feasibility, because they were created mainly with soft 
constraints in mind. This was because the competition rules 
stated that for entrants to qualify, their algorithms had to find 
feasibility on all instances (those that could not achieve this 
were disqualified). Naturally, this has meant that the majority 
of work so far has pertained to soft constraint satisfaction. 
However, this still leaves a major issue of concern: How can 
we ensure that we have a good chance of finding feasibility 
when ‘harder’ instances of this problem are encountered? 
Indeed, the problem of finding a feasible timetable is, of 
course, NP-hard and should not be treated lightly. Thus we 
believe that there are justifications and needs for a more 
powerful search algorithm that specialises in finding feasible 
timetables, which can also cope across a wide range of 
problem instances. An algorithm looking to achieve just this is 
one of the main aims of this paper. 

D. Grouping Genetic Algorithms and the UCTP 
Grouping genetic algorithms (GGAs) may be thought of as 

a special type of evolutionary algorithm specialised for 
grouping problems. Such problems are those where the task is 
to partition a set of items U into a collection of mutually 
disjoint subsets (or groups) ui of U, such that: 



. 
 

4

 iu U∪ = and i ju u∩ = ∅ , i j≠ .  (1)  

As well as this, in grouping problems there are also usually 
some problem-specific constraints that define valid and legal 
groupings, and examples include such well-known problems 
as graph colouring, the frequency assignment problem, bin 
balancing, and the bin packing problem. Indeed it was the 
latter problem that was first addressed via a GGA by their 
creator, Emanuel Falkenauer, in [50].  

In [50] and [51], Falkenauer convincingly argues that when 
considering grouping problems, the so-called ‘traditional’ 
genetic operators and representations can actually be highly 
redundant, not least due to the fact that the operators are item-
oriented rather than group-oriented. The upshot is a general 
tendency for these operators to recklessly break up the 
building blocks that we might otherwise want promoted. As 
an example, consider the traditional item-based encoding 
scheme, where a chromosome such as 31223 represents a 
solution where the first item is in group three, the second is in 
group one, the third is in group two, and so on. (This has been 
used, for example, with timetabling in [1] and [35].) First of 
all, when used with a grouping problem, such a representation 
goes against the principle of minimum redundancy (see [52]) 
because, given a candidate solution using n groups (in the 
chromosome above, for example, n = 3), there are actually 
another (n!)–1 possible chromosomes that will represent the 
same grouping of items. This means that the size of the search 
space will be much larger than it needs to be. Next, if we were 
to make use of a ‘traditional’ recombination operator with this 
encoding, we would generally see context dependant 
information being passed out of context and, as a result, the 
offspring would rarely resemble either of their two parents 
(with respect to the solutions that they represent). For 
example, let us apply a standard two-point crossover to two 
chromosomes: 3|12|22 crossed with 1|23|12 would give, as 
one of the offspring, 32322. Firstly, this offspring no longer 
has a group 1 and, depending on the problem being dealt with, 
this may mean that it is invalid. Secondly, it could be agued 
that this operation has resulted in nothing more than a near 
random jump in the search space, going against the general 
aim of a recombination operator. 

Similar observations can also be made with a standard 
mutation operator with this encoding and also with the typical 
genetic operators that work with permutation based encodings, 
such as the partially mapped crossover of Goldberg [53] (see 
[51], pages 85-96, for a more detailed description).  

These arguments lead to the following conclusion: When 
considering grouping problems, it is essentially the groups 
themselves that are the underlying building blocks of the 
problem and not, for example, the particular states of any of 
the items individually. Thus, representations and genetic 
operators that allow these groups to propagate effectively 
during the evolutionary process are a promising approach. 
With this in mind, a standard GGA scheme has been proposed 
by Falkenauer in [50] and [51], and there have since been 
applications of this basic technique to the bin balancing (or 

equal-piles) problem [54], graph colouring [6, 55], edge 
colouring [56] and exam-timetabling [6], each with varying 
degrees of success.  

It is fairly clear from the problem description in this section 
that the UCTP considered here also constitutes a grouping 
problem. In this case, the ‘items’ are the events themselves, 
and the ‘groups’ are defined by the timeslots. Thus, in order 
for a timetable to be feasible, the events need to be grouped 
into t timeslots (we remember that, in this case, t = 45) such 
that all of the hard constraints are satisfied. 

In the next section we will describe an EA that uses this 
grouping theme to tackle the UCTP. The remainder of this 
paper is then set out as follows: in section IV we will provide 
some general details of the experimental set-up used in this 
study and, using this framework, will go on to look at the 
effects that the various genetic operators seem to have on the 
quality of the search in section V. Next, in section VI, we will 
go on to introduce a new way of measuring population 
diversities for this sort of representation, and will make some 
other general comments regarding this sort of algorithmic 
approach. In section VII we will then attempt to improve the 
algorithm: firstly, through the use of some new fitness 
functions and, secondly, via the introduction of a stochastic 
local-search operator (making, in effect, a grouping memetic 
algorithm). In particular, we will examine the good and bad 
effects that this operator can have, and will also consider the 
consequences of removing the grouping genetic operators 
altogether. Finally, in section VIII we will outline the main 
conclusions of this study and, in section IX, we will discuss 
some possible future research issues raised by these 
conclusions. 

III. THE ALGORITHM 

A. Representation and Solution Construction 
For this algorithm, each timetable is represented by a two 

dimensional matrix where rows represent rooms and columns 
represent timeslots [57]. Each place in the timetable (i.e. cell 
in the matrix) can be blank, or contain at most one event. Note 
that this latter detail thus allows us to disregard the second 
hard constraint of this problem. Additionally, in this approach 
we choose to not allow any event to be inserted into a place 
where it causes a violation of either of the two remaining hard 
constraints. Instead, extra timeslots are opened (i.e. columns 
are added to the matrix) in order to handle events that cannot 
be feasibly assigned to any place in the current timetable. 
(Similar schemes have also been used in other methodologies: 
see [6], [23], [24], and [27], for example.) 

As we will see, a scheme for constructing full solutions 
from empty or partial solutions is vital in this sort of 
algorithmic approach, not only for building members of the 
initial population, but also for use with the grouping genetic 
operators (described below). The procedure Construct for 
achieving this is outlined in fig. 2, and takes, as arguments, an 
empty or partial timetable tt and a non-empty list of currently 
unplaced events U. Using the sub-procedure Build, events are 
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then taken one by one from U (according to some heuristics, 
defined in Table I), and inserted into places in the timetable 
that are between timeslots x and y and that are feasible. Events 
for which there are no feasible places are ignored. Eventually 
then, U will be empty (in which case we will have a complete 
timetable that may or may not be using the required number of 
timeslots), or it will only contain events that cannot be 
inserted anywhere in the current timetable. In the latter case, a 
number of new timeslots are opened, and the process is 
repeated on these new timeslots. The number of timeslots that 
are opened is calculated in line 6 of the Build procedure in fig. 
2. Note that the result of this calculation represents a lower 
bound, because we know that a maximum of r events can be 
assigned to one particular timeslot, and therefore at least 

| | /U r⎡ ⎤⎢ ⎥  extra timeslots will be needed to accommodate the 
remaining events in U. 

In order to form an initial population, the construction 
procedure is called for each individual. At each step, an event 
is chosen according to heuristic H1 with ties being broken by 
H3

2. Next, a place is chosen for the event using heuristic H4, 
with ties being broken by H5 and further ties with H6. By 
using H4, we are making the seemingly sensible choice of 
choosing the place that will have the least effect on the future 
place options of the remaining unplaced events. Meanwhile, 
the use of heuristics H3 and H6 (random choices) in the initial 
population generator provides us with enough randomisation 
to form a diverse initial population.  

 

 
 

Fig. 2.  The Construction Procedure: describing how a partial or empty 
timetable is converted back into a complete timetable. In this pseudo-code tt 
represents the current timetable and U is a list of unplaced events of length |U|. 
Additionally, t represents the target number of timeslots, len(tt) indicates how 
many timeslots are currently being used by tt, and r indicates the number of 
rooms. 
 

(As an aside, it is worth mentioning that we also 
implemented and tested a second construction scheme that 
worked by opening timeslots in tt one by one, on the fly as 
soon as any event in U, due to preceding insertions, became 

 
2 Note that H1 is somewhat akin to the rule for selecting which node to 

colour next in Brélaz’s classical Dsatur algorithm for graph colouring [58], 
although this particular heuristic also takes the issue of room allocation into 
account. This basic rule therefore selects events based on the state of the 
current timetable, prioritising those with the least remaining feasible options. 

unplaceable. However a detailed comparison of the two 
schemes revealed that the quality of the individual timetables 
produced by this second method was usually worse, and the 
cost of this process was significantly higher. This second issue 
is particularly important because, as we will see in the next 
section, a reconstruction scheme is also an integral part of the 
grouping genetic operators. We believe that this greater extra 
expense is due to the fact that, whilst looking for places for 
events in U, the whole timetable (which would be continually 
growing) needs to be considered, whilst in our construction 
scheme, while U remains non-empty, the problem is actually 
being split into successively smaller sub-problems.) 

 
 

TABLE I. 
 THE VARIOUS EVENT AND PLACE SELECTION HEURISTICS USED WITH THE 

CONSTRUCTION PROCEDURE IN FIG 2 
 

Heuristic Description 
H1 Choose the event with the smallest number of 

possible places to which it can be feasibly 
assigned in the current timetable. 

H2 Choose the event that conflicts with the 
highest number of other events. 

H3 Choose an event randomly. 
H4 Choose the place that the least number of other 

unplaced events could be feasibly assigned to 
in the current timetable. 

H5 Choose the place in the timeslot with the most 
events in. 

H6 Choose a place randomly. 

B. The Genetic Operators 
Because, in this case, we have decided to consider the 

individual timeslots as the principal building blocks of the 
problem (section II), it follows that appropriate genetic 
operators should be defined so that these ‘groups of events’ 
can be propagated effectively during the evolutionary process. 
We chose to use the standard GGA recombination 
methodology (proposed in [50, 51]) modified to suit our 
particular needs and representation.  

Fig. 3 depicts how we go about constructing the first 
offspring timetable using parents p1 and p2 with four randomly 
selected crossover points. A second offspring is constructed 
by switching the roles of the parents and the crossover points. 
What is important to note about this operator is that it allows 
the offspring to inherit complete timeslots (the structures that 
we consider to be the underlying building blocks of the 
problem) from both parent timetables. 

Note that as a result of stage-two of recombination, there 
will be duplicate events in the offspring timetable. This 
problem could be corrected, for example, by going through 
the timetable, and removing all duplicate events from the 
timeslots that came from p1. However, although such an 
operation would result in a valid and complete offspring 
timetable, it is likely that the offspring would actually be poor 
in quality because it would almost certainly be using more 
timeslots than either of the two parents, thus going against the 
general aim of the algorithm. We therefore choose to use the 

Construct (tt, U)                                                .    
1. if (len(tt) < t)  
2.     Open (t – len(tt)) new timeslots; 
3. Build (tt, U, 1, len(tt)); 
 
Build (tt, U, x, y)                                               . 
1. while (∃ events in U with places in tt      
               between timeslots x and y) 
2.     Take an event e from U that has feasible 
        places in tt; 
3.     Pick one of these places and insert e; 
4. if (U = ∅) end; 
5. else 
6.     Open ⎡ ⎤| | /U r  new timeslots; 
7.     Build (tt, U, y, len(tt)); 
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additional step of adaptation [59] to try to circumvent this 
issue. This process is described in stage-three of fig. 3 and, 
indeed, the same procedure has also been used with GGAs 
applied to bin packing in [50] and [51], and graph colouring in 
[6] and [55]. Finally, in stage-four of recombination, events 
that become unplaced as a result of the adaptation step are 
reinserted using the construction procedure (fig. 2) with 
heuristic H1 being used to define the order in which events are 
reinserted (breaking ties with H2 and any further ties with H3). 
Places for events are then selected using the same heuristics as 
the initial population generator.  

Our mutation operator also follows a typical GGA scheme: 
a small number of randomly selected timeslots are removed 
from the timetable and the events contained within these are 
reinserted using the construction procedure. (The number of 
timeslots to remove is defined by the parameter mr, such that 
between one and mr distinct timeslots are randomly chosen to 
be removed.) Because we want the mutation operator to serve 
its normal purpose of adding diversity to the search, the order 
that the events are reinserted is completely randomised (by 
only using heuristic H3), with places being chosen using 
heuristic H4, breaking ties with H6. 

Finally, we also make use of an inversion operator. 
Similarly to the other GGAs already mentioned, this works by 
selecting two timeslots in a timetable at random, and then 
simply reversing the order of the timeslots contained between 
these. Note that inversion does not, therefore, alter the number 
of timeslots being used, or indeed the packings of events into 
these timeslots. However, it may assist recombination if 
promising timeslots are moved closer together, as this will 
improve their chances of being propagated together later on.3  

 

 p1 

 p2 

 a  b 

 c  d 

(1) Point Selection. 
Randomly select crossover 
points a, b, c, and d such 
that a != b and c !=d. 

(2) Injection. Inject 
copies of the timeslots 
between points c and d
into a copy of p1 at 
point a. 

(3) Removal of Duplicates using 
Adaptation. Remove all timeslots from the 
parts that came from p1 (i.e. the white part) 
that contain duplicate events. Keep track of 
any items that become unplaced. 

+ 

(4) Reconstruction. 
Reinsert any unplaced 
events using the 
construct procedure. 

 
Fig. 3.  The four stages of recombination: point selection, injection, removal 
of duplicates using adaptation, and reconstruction. Note that in order to 
construct the second offspring, copies of the timeslots between points a and b 
in p1 are injected into a copy of p2 at point c.  

C. A Preliminary Fitness Measure 
Finally, in this algorithm, we need a way of measuring a 

 
3 It is probably worth noting that we could have actually implemented a 

uniform grouping crossover operator here as opposed to the two-point variant 
explained above. However, in this case we decided to keep all the genetic 
operators within the GGA design-guidelines specified by Falkenauer in [51]. 

timetable’s quality. In our case, since we are only interested in 
finding feasibility, a suitable measurement need only reflect 
the timetable’s distance-to-feasibility. In general timetabling, 
this can be measured by taking various factors into 
consideration such as the number of broken constraints, the 
number of unplaced events, and so on. Of course, what is 
chosen should depend on the representation being used, and 
on user and/or algorithmic preference. As we stated earlier, in 
this algorithm we explicitly prohibit the violation of hard 
constraints and, instead, open up extra timeslots as and when 
needed. We could therefore simply use the number of extra 
timeslots as a distance-to-feasibility measure. However, such a 
method is likely to hide useful information because it would 
not tell us anything about the number of events packed into 
these extra timeslots. We therefore use a more meaningful 
measure that we calculate by carrying out the following steps. 
Let t represent the target number of timeslots and s represent 
the current number of timeslots being used in a timetable: 

 

1. Calculate the number of extra timeslots t' being used by 
the timetable (where t' = s – t) 

2. Identify the t' timeslots with the least events in them 
3. Total up the number of events in these t' timeslots.  
 

We may also think of this measure as the minimum number of 
events that would need to be removed from the timetable in 
order to bring the number of timeslots down to the required 
amount. Obviously, a fully feasible timetable has a distance-
to-feasibility of zero. 

IV. EXPERIMENTAL SET-UP 
As it turned out, our initial tests showed that many existing 

benchmark instances (on the web and otherwise) could be 
easily solved by this algorithm. For example, feasible 
solutions were usually found in initial populations when using 
the instances at [43].4 Although this highlights the strength of 
our construction scheme, unfortunately it tells us very little 
about the other characteristics of the algorithm. We therefore 
set about making some new problem instances. These were 
created with no reference to this algorithm, but were 
deliberately intended to be troublesome for finding feasibility. 
This was achieved by simple experiments whereby instances 
were created and run on two existing constructive algorithms, 
reported in [47] and [60]. Only instances that both of these 
algorithms struggled with were considered for inclusion in the 
instance set. Indeed, given excess time, these two algorithms 
were generally unable to place around 20% to 40% of the 
events. All in all, we made three sets of twenty instances: the 
small set, the medium set and the large set, with sizes of 
approximately 200 events and 5 rooms, 400 events and 10 
rooms, and 1000 events and 25 rooms respectively.  Further 
details, including a description of how the instances were 
generated, plus the instances themselves, can be found online 
at [44]. Note that all instances have at least one solution where 

 
4 Note, however, as we mentioned in section II, these benchmark instances 

were created with soft constraints in mind. 
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Figs. 4 (a), (b), (c), and (d). (Top left, top right, bottom left, and bottom right respectively).  Showing the behaviour of the algorithm with and without 
recombination over time (except for (b), which is with respect to evaluations). The meaning of ‘primitive recombination’ is explained in the text. Figs (a) and (b) 
show runs with the medium instances, (c) with the small instances, and (d) with the large instances. Each line represents, at each second, the distance to 
feasibility of the best solution in the population, averaged across 20 runs on each of the 20 instances (i.e. 400 runs) using mr = 2, ir = 4, and ρ = 50.  

the events can be feasibly packed into the target number of 
forty-five timeslots.  

We also imposed certain time limits on our algorithm that 
we considered to be fair for these sizes of problem. These 
were 30, 200 and 800 seconds of CPU time for the small, 
medium and large sets respectively, on a PC under Linux, 
using 1GB RAM and a Pentium IV 2.66Ghz processor.  

For all experiments, a steady-state population (of size ρ) 
using binary tournament-selection was used: at each step of 
the algorithm, two offspring are produced by either 
recombination or replication5 (dictated by a recombination 
rate rr). Next, the offspring are mutated (according to the 
mutation rate mr – see section III), and finally reinserted into 
the population, in turn, over the individuals with the worst 
fitness. If there is more than one least-fit individual, a choice 
between these is made at random. Additionally, at each step a 
few (ir) random individuals in the population are selected to 
undergo inversion. 

V. THE EFFECTS OF RECOMBINATION 
For our first set of experiments, we looked at the general 

 
5 An offspring made via replication is simply a copy of its first parent. 

effects of the recombination operator by comparing runs using 
recombination (with a rate rr = 1.0) against runs that used 
none (rr = 0.0). Results are depicted in figures 4(a)-(d). If we 
look first at the results for the medium instances in fig. 4(a), 
we can see that after an initial lag period of around 20 seconds 
(where using no recombination provides quicker movements 
through the search space) a use of our recombination operator 
benefits the search significantly.6 

Note however, that such a simple comparison on its own is 
not completely fair because, as the reader may have noticed, 
the heuristics used for reconstruction with our recombination 
operator are different to those used with mutation (and 
therefore it might be the heuristics doing the work, and not the 
fact that the recombination operator is successfully combining 
useful parts of different solutions). Thus, we also include a 
third line that again uses recombination with a rate 1.0, but 
also uses the more primitive reconstruction heuristics used by 
the mutation operator (this line is labelled ‘primitive 
recombination’ in the figures). In fig. 4(a) we can see that, in 
this case, the presence of this primitive recombination 
 

6 In this paper, we use the word ‘significant’ to indicate that a Wilcoxon 
signed-rank test showed that results found at the time limit came from a 
different underlying distribution with probability ≥ 95%. 
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operator actually seems to hinder the search with regards to 
time. However, it might also make sense to observe this 
behaviour from a second perspective: in timetabling, due to 
the large number of possible constraints that can be imposed 
on a particular problem, it can often be the case that the 
evaluation function might actually become the most costly 
part of the algorithm, particularly when soft constraints are 
also being considered. If we now look at these same runs, but 
with regards to the number of evaluations7 (fig. 4(b)), we can 
see that according to this criterion, use of this more primitive 
recombination, up until around 150,000 evaluations, is clearly 
beneficial. We also see once more that the more advanced 
recombination operator provides the best search. This 
difference was also significant. 

With the small and large instance sets, meanwhile, we 
noticed different behaviours. In the case of the small 
instances, the algorithm generally performed well across the 
set, and seemed quite insensitive to the various parameter 
settings (and whether recombination was being used or not). 
Indeed, although fig. 4(c) indicates a slightly better search 
when using recombination, this difference was small and not 
seen to be significant. As a matter of fact, in our trials, optimal 
solutions were regularly found to over half of the instances 
within the time limit, making it difficult to draw any 
interesting conclusions other than the fact that performance of 
the algorithm with these instances was generally quite good. 

Finally, with the large instances, yet another type of 
behaviour was observed. Looking at fig. 4(d), we can see that 
the use of recombination in these cases seems to drastically 
slow the search. Indeed, no benefits of recombination can 
actually be seen until around 500 seconds. Clearly, if we were 
using shorter time limits, the operator might therefore hinder 
rather than help. Secondly, if we look at the scale of the y-axis 
in fig. 4(d), we can see that, in fact, only small improvements 
are actually being achieved during the entire run; indeed, 
considering all problem instances used in the tests are known 
to have at least one optimal solution (with respect to the hard 
constraints) these improvements are disappointing.  

The above observations immediately suggest that instance 
size is an important factor in the run characteristics of this 
algorithm in terms of both timing implications and general 
progress made through the search space. In the next section 
we will present some ideas as to why this might be so. 

VI. SCALING-UP ISSUES WITH THE GGA 

A. Measuring Diversity 
Before describing some of the possible scaling-up issues of 

this algorithm, it is first necessary to introduce a diversity 
measure for the grouping representation. Because the concepts 
that will be described in this section apply to grouping 
problems as a whole, we will use the more generic terms 
‘groups’ and ‘items’ in our descriptions, as opposed to 

 
7 In this paper, each time a new individual is produced, we consider this as 

one evaluation.  

‘timeslots’ and ‘events’, which, of course, only apply to 
timetabling problems. 

As we have discussed, the grouping representation admits 
two important properties: chromosomes are variable in length 
(in that they can contain varying numbers of groups), and the 
ordering of the groups within the chromosomes is irrelevant 
with regards to the overall solution being represented. 
Unfortunately, these characteristics mean that many of the 
usual ways of measuring population diversity, such as 
Hamming distances [61] or Leung-Gao-Xu diversity [62], are 
rendered inappropriate. Additionally, in the case of this 
timetabling problem, we believe that it would be misguided to 
use diversity measures based on population fitness 
information (such as the standard deviation etc.), because in 
our experiences it can often be the case that minor changes to 
a timetable might actually result in large changes to its fitness 
and, inversely, two very different timetables can often have a 
similar fitness.  

We believe that a suitable diversity measure for this 
representation, however, can be obtained from the ‘substring-
count’ method of Mattiussi, Waibel, and Floreano, recently 
presented in [63]. In the grouping representation, it is worth 
considering that each group can only occur at most once in 
any particular candidate chromosome (otherwise the solution 
would be illegal because it would contain duplicates). Given a 
population P, a meaningful measurement of diversity might 
therefore be calculated via the formula: 

                            ( )
m

div P
n

ρ= ⎛ ⎞
⎜ ⎟
⎝ ⎠

                                   (2) 

where ρ is the population size, m is the number of different 
groups in the population, and n is the total number of groups 
in the population. Using this measurement, a homogenous 
population will therefore have a diversity of 1.0, whilst a 
population of entirely distinct individuals (where none of the 
individuals have an equivalent grouping of items) will have a 
diversity of ρ. 

Additionally, in agreement with Mattiussi, Waibel, and 
Floreano, using these ideas we are also able to define a 
distance measurement for a pair of individuals, p1 and p2, via 
the formula: 

                         1 2( , ) 2 1
x

dist p p
y

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

                          (3) 

where x represents the number of different groups in p1 and 
p2, and y is the total number of groups in p1 and p2. Thus, two 
homogenous timetables will have a distance of zero and two 
maximally distinct individuals will have a distance of one. 

B. Diversity, Recombination and Group Size 
In our experiments, we often noticed that evolution was 

slow at the beginning of a run, but then gradually sped up as 
the run progressed. These characteristics were particularly 
noticeable with the larger instances where we saw new 
individuals being produced at a somewhat unsatisfactory rate 
for quite a large proportion of the run. Investigations into this 
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matter revealed that this was due to the fact that the 
recombination operator usually tended to be more costly at the 
start of a run and then gradually became less expensive as 
evolution progressed. Further investigations revealed that this 
added expense seemed to be influenced by two factors: 
population diversity, and the sizes of the groups in the 
candidate solutions. 

Fig. 5 shows three examples of the grouping recombination 
operator in order to illustrate these concepts. In fig. 5(a), the 
distance between candidate solutions p1 and p2 is 
comparatively small (i.e. 2*(6/8)–1 = 0.5) and only one of the 
seven items becomes unplaced during the recombination 
operation. In fig. 5(b) however, although the number of 
groups and items being injected is the same as fig. 5(a), the 
distance between p1 and p3 is larger (i.e. 2*(8/8)–1 = 1.0); 
consequently, the duplicate items resulting from the injection 
are spread across more of the groups, meaning that a greater 
number of the groups coming from p1 need to be eliminated. 
This also means that more items have to be dealt with by the 
reconstruction process, making the overall procedure more 
expensive. 

Next, in fig. 5(c) we demonstrate the effects that larger 
groups have on the recombination operator. In this case, the 
size of the problem may be considered the same as the 
previous two examples, because we are still only dealing with 
seven items. However, this time the size of the groups is larger 
and, as can be seen, the injection of a group from p5 into p4 
causes a high proportion of the items to become unplaced 
during stage three of recombination. 

In fact, figs. 5(b) and 5(c) depict cases of what we will term 
a unilateral recombination: after the injection stage, all of the 
groups coming from the first parent have contained a 
duplicate and have therefore been eliminated. Thus, the 
resultant offspring does not actually end up containing 
building blocks from both parents (as is usually desirable), but 
will instead be made up of some groups from the second 
parent, with the rest having to be formed, from scratch, by the 
reconstruction process. In this sense, it might be considered 
more of a macro-mutation operator than anything else. 

In order to further illustrate these concepts, consider figures 
6(a)-(c), which show details of an example run of our GGA 
with a small, medium, and large problem instance 
respectively. In all three figures it can be seen that as 
evolution progresses, the level of diversity in the populations 
generally falls. This, of course, is typical of an evolutionary 
algorithm. We also see in these figures that the proportion of 
items (events) becoming unplaced during recombination 

mirrors this fall very closely, thus highlighting the strong 
relationship of the two measurements. However, the other 
noticeable characteristic in these figures is the way in which 
high levels of both of these measures are sustained for longer 
periods when the instance sizes (and therefore the number of 
events/items per timeslot/group) are larger. Looking at fig. 
6(c), for example, we can see that no real drop in either 
measurement actually occurs until around 180,000 evaluations 
and, up until this point, over half of the items (events) are 
becoming unplaced, on average, with every application of the 
recombination operator. 

We believe that this latter phenomenon is caused by the fact 
that because in this case the groups are larger, the potential for 
losing the groups coming from the first parent is increased (as 
illustrated in fig. 5(c)). We may therefore view this as a more 
destructive recombinative process. Of course, not only does 
this make the operation more expensive (because a greater 
amount of reconstruction has to be performed), it also means 
that it is more difficult for the GGA to successfully combine 
and pass on complete groups from one generation to the next. 
Thus, it would seem that, in these cases, the recombination 
operator is indeed becoming more of a macro-mutation 
operator, and a key component of the evolutionary algorithm 
might be being compromised.  

It is also worth noting that in cases where the recombination 
operator is behaving in a more destructive manner, this will 
generally mean that more groups in an offspring will occur as 
a result of the reconstruction process (as opposed to being 
inherited from an ancestor). Unfortunately, however, this may 
well add extra diversity to the population, thus exacerbating 
the problem even further. 

C. Group Size and Chromosome Length 
As a final point, if we refer back to fig. 3 (which 

demonstrates the standard GGA recombination operator 
applied to this timetabling problem), we note that the total 
number of possible values that can be chosen for crossover 
points c and d (that is, the total number of group-combinations 
that can be selected for injection from the second parent into 
the first parent) is exactly: 

 
( 1)

2

s s −
 (4) 

where s represents the length of the second parent p2. 
Additionally, the total number of possible group-combinations 
that can be selected for removal by the mutation operator is: 
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Fig. 5.  Demonstrating how diversity and group size can influence (1) the amount of reconstruction needed, and (2) the number of groups that are lost, using the 
standard grouping recombination operator. 
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where m is the number of groups chosen to be removed 
from the chromosome, and s represents the length of the 
chromosome being mutated. 

However, unlike in many forms of evolutionary 
computation where chromosome length is defined by the size 
of the problem instance being dealt with (e.g. [1], and [64])8; 
with this sort of algorithm and representation, chromosome 
length is actually defined by the number of groups being used. 
Of course, this means that when dealing with instances that 
use larger groups of items, chromosomes will be 
proportionately shorter, and the values returned by equations 
(4) and (5) will, in turn, be lower.  

The implications of these facts are particularly apparent 
with this timetabling problem. Here, the number of timeslots 
being used defines chromosome length, and it is the number 
of events and rooms that defines problem size. However, 
given that our aim is to feasibly arrange the events into forty-
five timeslots, this means that the lengths of the chromosomes 
will remain more or less constant, regardless of the problem 
size. Unfortunately, in practice this means that an increase in 
instance size will not only cause the timeslots to be larger 
(resulting in the unfavorable situations described in the 
previous subsection), it also implies that the potential for the 
genetic operators to provide sufficient exploration of the 
search space might also be more limited. 

VII. IMPROVING THE ALGORITHM 
Having now introduced a GGA for the UCTP, and having 

also highlighted some general issues relating to this type of 
approach, in this section we will now look at two separate 
ways that we might go about improving the algorithm: firstly, 
through the use of some new fitness functions and, secondly, 
via the introduction of an additional local-search operator 
[65]. 

 
8 In grouping problems, for example, problem size will generally be 

defined by the number of items. 

A. Fitness Function Analysis 
A central aspect of any evolutionary algorithm is the way in 

which candidate solutions in the population are evaluated 
against each other. Ideally, a good fitness function must 
convey meaningful information about the quality of a 
candidate solution and should also encourage the search into 
promising areas of the solution space. For many problems in 
operational research, a suitable measure is suggested naturally 
by the problem at hand (e.g. the travelling salesman problem 
[64]). In others, it is not so easy. For example, in [51] 
Falkenauer looks at the bin packing problem and suggests that 
while the most obvious way of measuring a candidate 
solution’s fitness is to just calculate the number of bins being 
used (with the aim of minimisation), this is actually unsuitable 
because it will likely lead to a very inhospitable fitness 
landscape where ‘a very small number of optimal points in the 
search space are lost in the exponential number of points 
where this purported cost is just one above this optimum. 
Worse, these slightly sub-optimal points [all] yield the same 
cost.’ This could, for example, lead us to a situation where we 
might have a diverse population, but all members appear to 
have the same fitness. In this situation, not only would 
selection pressure be lost, but also if all the scores were indeed 
one away from the optimum, any move from near-feasibility 
to full-feasibility would be more or less down to chance. 

In section III C, we mentioned two possible ways of 
measuring solution quality with this problem, and then used 
one of these (our so-called distance-to-feasibility measure) to 
perform the experiments in section V. However, there is no 
reason why we need to use either of these during evolution. 
Indeed, both measurements are fairly coarse-grained and 
might well lead us to the undesirable situations described in 
the previous paragraph. We therefore designed and tested four 
further fitness functions. These, plus the original two are 
defined as follows. For simplicity’s sake, all have been made 
maximisation functions.  
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Figs. 6 (a)-(c) (Left to right.):  Example runs with a small, medium, and large instance respectively, demonstrating (1) the close relationship between diversity 
and the amount of reconstruction needing to be done with the recombination operator, and (2) the differing ways that the two measures vary during the runs as a 
result of the different sized timeslots/groups. (All runs using rr = 1.0, ir = 4, mr = 2, ρ = 50.) . In the figures, the amount of reconstruction being done with the 
recombination operator is labelled Proportion (%) – this refers to the percentage of events that are becoming unplaced, on average, with each application of the 
recombination operator. 
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Here, s represents the number of timeslots being used by a 
particular timetable, t is the target number of timeslots, r is the 
number of available rooms per timeslot, and d represents the 
distance-to-feasibility measure already defined. Additionally, 
we also define some new measures: Ei represents the number 
of events currently assigned to timeslot i; Si tells us how many 
students are attending events in timeslot i; and, finally, Ci tells 
us the total conflicts-degree of timeslot i (that is, for each 
event in the timeslot, we determine its degree by calculating 
how many other events in the entire event set it clashes with, 
and Ci is simply the total of these values). 

Function f3 is basically the same as Eiben et al.’s fitness 
function for graph colouring in [55]. It uses the observation 
that if two timetables have the same value for d, then the one 
that uses the least number of extra timeslots is probably better 
and, similarly, if two timetables have the same number of 
extra timeslots, then the one with the smallest value for d is 
probably better.  

Functions f4, f5, and f6, meanwhile, judge quality from a 
different viewpoint and attempt to place more emphasis on the 
individual timeslots. Thus, timetables that are made up of 
what are perceived to be promising timeslots (i.e. good 
packings of events) are usually favoured because their fitness 
will be accentuated by the squaring operations. The three 
functions differ, however, in their interpretations of what 
defines a good packing: function f4 tries to encourage 
timetables that have timeslots with high numbers of events in 
them, and is similar to the fitness function suggested by 
Falkenauer for bin packing [51]; function f5, meanwhile, uses 
the well-known heuristic from graph colouring [58] that 
recommends colouring as many nodes (events) of high degree 
as possible with the same colour (this function was originally 
proposed by Erben in [6]); finally, function f6 attempts to 
promote timetables that contain timeslots with large total 
numbers of students attending some event in them – following 
the obvious heuristic that if many big events are packed into 
one timeslot, then other smaller (and presumably less 
troublesome) events will be left for easier packing into the 
remaining timeslots. 

As a final point, it is worth noting that functions f2 and f3 
need to know in advance the target number of timeslots. If this 
is undefined, the task of calculating the minimum number of 
timeslots needed to accommodate the events of a given 
instance is equivalent to calculating the chromatic number in 
graph colouring. However, computing the chromatic number 
is itself, an NP-hard problem. In practical course timetabling, 
however, this detail is probably unimportant because it is 
typical for the university to specify the target number of 
timeslots in advance. 

B. Experimental Observations 
To investigate the effects of these six fitness functions, we 

performed tests using the same steady-state population scheme 
as before (section IV), and simply altered the fitness functions 
for each set of trials. Note then, that the only actual difference 
between the trials is the criteria used for choosing tournament 
winners, and picking the individuals to replace. Note also, that 
the computational costs of the fitness functions are roughly 
equivalent, as all require just one parse of the timetable. 

Figures 7(a)-(c) show how the algorithm responds to the six 
fitness functions over time with the different instance sets. If 
we first draw our attention to figures 7(a) and (b), we can see 
that with regards to the small and medium instances, f5, and 
then f6, clearly give the best searches (on average), with 
respect to both the speed of the search and the best solutions 
that are found, with f1 and then f2, as expected, providing the 
worst. We believe this is due to the reasons mentioned above: 
when using f5 and f6 (and to a lesser extent, f3 and f4) the 
algorithm is able to distinguish between solutions that, 
according to f1 or f2, might be valued the same. Thus, selection 
pressure is able to remain for a greater duration of the run. 
Furthermore, it would appear that the heuristic criteria that f5 
and f6 use to make these distinctions (described above), is 
indeed conducive to the search. Indeed, in both cases, the 
improvements that f5 and f6 provided were significant. 

Interestingly, we see that the algorithm responds differently 
to the fitness functions when considering the large instances 
(fig. 7(c)). As before, we see that f1 is clearly the worst, but 
we also see that the characteristics of the remaining five 
fitness functions is now more or less reversed, with f2 
providing the best performance. This could be because the 
squaring functions used with f4, f5, and f6 cannot accentuate 
the characteristics of a good timeslot as much as when used 
with the other instances (which have fewer events per 
timeslot). However, most importantly one has to look again at 
the scale of the y-axis of fig. 7(c) to appreciate that the 
algorithm, again, actually performs fairly badly with all of the 
fitness functions. Additionally, if we ignore f1, the differences 
between the other five fitness functions were not actually seen 
to be significant.  

Fig. 8 also shows some intriguing results of these 
experiments. As can be seen, when considering the medium 
and large instance sets, the number of evaluations performed 
within the time alters drastically depending on which fitness 
function the algorithm is using. (This pattern also emerges 
with the small instances, but the distinction is more difficult to 
make in the figure.) This, we believe, is due to the concepts 
described above: because the more fine-grained fitness 
functions (f4, f5, and f6) are able to distinguish between 
timetables that the other three fitness functions might see as 
identical, selection pressure remains for a greater part of the 
run. This, in turn, means that diversity falls at a higher rate for 
a longer period, resulting in a less expensive recombination 
process. For the same reason, the most coarse-grained fitness 
function f1 also performs by far the fewest evaluations within 
the time limits. Note that an overly rapid loss of diversity may 
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Figs. 7(a)-(c) (top-left, top-right, and bottom-left respectively), and figure 8 (bottom-right).  Figures 7 (a)-(c) show the effects of the six different fitness 
functions over time with the small, medium, and large instances respectively. Each line represents, at each second, the distance to feasibility of the best solution 
in the population, averaged across 20 runs on each of the 20 instances (i.e. 400 runs), using ρ = 50, rr = 1.0 (0.25 with 7(c)), mr = 2, and ir = 4.  Fig. 8 shows 
the number of evaluations performed within the time limits (specified in section IV), when using the various fitness functions, and the different sized instances.
 

sometimes be undesirable in an EA as it might lead to a 
redundancy of the recombination operator and an under-
sampling of the search space. However, in the case of this 
algorithm there is clearly a trade-off because, as noted, a high 
amount of diversity can cause recombination to be both 
expensive and destructive. With the small and medium 
instances, the trade-off seems to fall in favour of using f5 and 
f6 which, although exhibiting tendencies to lose diversity at a 
quicker rate, still both return superior results and in less time. 

As a final point, it is worth considering some practical 
implications of these fitness functions. In some real world 
timetabling problems there may be some events that every 
student is required to attend (such as a weekly seminar or 
assembly). Clearly, such an event must be given its own 
exclusive timeslot, as all other events will clash with it. 
However, fitness function f4 will, unfortunately, view this as 
an almost empty (or badly packed) timeslot and will penalise 
it, therefore possibly deceiving the algorithm. Fitness 
functions f5 and f6, however, will reward this appropriately. 
Conversely, f5 for example, as well as being shown to be less 
favourable with the larger instances, currently bases its 
judgement of a timeslot’s quality on the total degree of the 

events within it (with higher values being favoured). 
However, this criterion is only a heuristic, and it is possible 
that counter examples could be encountered. 

C. Introducing Local-Search Techniques 
It is generally accepted that EAs are very good at coarse-

grained global search, but are rather poor at fine-grained 
local-search [66]. It is therefore perfectly legitimate (and 
increasingly common) to try to enhance an EA by adding 
some sort of local-search procedure. This combination of 
techniques is commonly referred to as a memetic algorithm 
(see the work of Moscato [67, 68], for example), and the 
underlying idea is that the two techniques will hopefully form 
a successful partnership where the genetic operators move the 
search into promising regions of the search space, with the 
local-search then being used to explore within these regions. 

Looking at some other algorithms from this problem 
domain, both Dorne and Hao [69], and Galnier and Hao [70] 
have shown how good results can be found for many graph 
colouring instances through the combination of these 
techniques. In both cases, specialised recombination operators 
were used, with tabu search then being utilised to eliminate 
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cases of adjacent nodes having the same colour. Rossi-Doria 
et al. have also used similar techniques for timetabling in [35], 
where the more global operators (such as uniform-crossover) 
are complemented by a stochastic first-improvement local-
search operator which, as one of its aims, attempts to rid the 
resultant timetables of any infeasibility.  

As a matter of fact, it turns out that none of these three 
methods are actually suitable for our algorithm, because they 
are intended for eliminating violations of hard constraints, 
which in our described methodology, we explicitly disallow. 
Indeed, a suitable local-search procedure in this case should, 
instead, be able to take a timetable with no hard constraint 
violations, and somehow find a timetable that is hopefully 
better, but still with no violations. With regards to other 
grouping-based algorithms that have used of this sort of 
representation, but have also made use of an additional local-
search technique, Falkenauer’s hybrid-GGA [71], and Levine 
and Ducatelle’s ant algorithm [72] (both for bin packing) were 
both reported to return substantially better results when their 
global-search operators were coupled with a local-search 
method. Their techniques were inspired by Martello and 
Toth’s dominance criterion [73] and worked by taking some 
unplaced items, and then attempting to swap some of these 
with items already in existing bins so that (a) the bins became 
more full, but (b) the number of items in the bin stayed the 
same (i.e. each item was only replaced by a bigger item). 

However, even though such dominance criterion does not 
strictly apply in our timetabling problem, we can still try to 
define a similar operator that will attempt to improve the 
packings of events into the timeslots. Such an operator is 
defined in fig. 9 and, by taking a list unplaced events and a 
partial timetable (U and tt respectively), it operates by 
repeatedly trying to take events from U and insert them into 
free and feasible places in tt.  

 
LocalSearch (tt, U, limit)                                       .
1. Make a list V containing all the places in tt that 

have no events assigned to them; 
2. i = 0; 
3. while (U ≠ ∅ and V≠∅ and i < limit) 
4.     foreach(u∈U and v∈V) 
5.         if (u can be feasibly put into v in tt) 
6.             put u into v in tt; 
7.             remove u from U and v from V;  
8.     if (U≠∅ and V≠∅) 
9.        repeat 
10.           choose random event e in tt and v∈V; 
11.           if(e can be feasibly moved to v in tt) 
12.               move e to v; 
13.               update V to reflect changes; 
14.           i++; 
15.      until (i ≥ limit or e has been moved to v) 

 
 
Fig 9.  The local-search procedure: In this pseudo code, tt represents a partial 
timetable, U is a list of unplaced events, and limit represents the iteration limit 
of the procedure. 
 

Note that this operator will have two important effects. 

First, while not allowing the number of events contained in tt 
to decrease, if it is successful then events will be taken from U 
and added to tt, thereby improving its overall timeslot 
packings. Second, because the events and free spaces within tt 
will be randomly shuffled amongst the timeslots (lines 9-15 of 
fig. 9), diversity will be added to the population.  

In our experiments, we used the local-search operator in 
conjunction with our mutation operator. As before, each time 
a mutation occurs, a small number of timeslots are randomly 
selected and removed from the timetable. The events in these 
timeslots now make up the list of unplaced events U and the 
local-search procedure is applied. If U is non-empty when the 
iteration limit is reached, then the construction scheme (figure 
2) is used to insert the remaining events. (Here, the value for 
limit – that is, the iteration limit of the procedure – was made 
proportionate to the size of the instance being solved. Thus, 
we used the parameter l such that limit = l*e; where e is the 
number of events in the problem instance.)  

D. Experimental Observations 
With regards to algorithm performance, the introduction of 

this operator now presents another trade-off: a high amount of 
local-search might not allow enough new individuals to be 
produced within the time limit (and will presumably result in 
too little global search), whilst too little local-search might 
result in an inadequate exploration of the search-space regions 
that the global operators have brought us to.  

To investigate these implications, we empirically carried 
out a large number of trials on the three instance sets, using 
various different recombination rates rr, settings for l, 
mutation rates mr, and population sizes ρ. In all trials, fitness 
function f5 from the previous section was used, as well as the 
same steady-state population scheme described in section IV. 

The first thing that we noticed in these experiments was the 
dramatic effect that the use of local-search had on the number 
of new individuals produced within the time limits. This is 
illustrated for the three instance sets in fig. 10. Here, we see 
that the introduction of local-search, even in small amounts, 
causes a dramatic decrease in the number of new individuals 
produced within the time limits. Although we believe that this 
is partly due to the obvious fact that the local-search 
procedure is adding extra expense to the mutation operator, 
we believe that the main reason is due to the fact that, because 
the local-search operator helps to maintain diversity in the 
population, this therefore causes the recombination operator to 
remain more expensive for a greater part of the run. As fig. 10 
shows, this is especially so for the medium and large 
instances. Secondly, in these experiments we also saw the 
GGA respond differently to the various parameter settings 
when dealing with the different instance sets. A short 
summary of these differences now follows (example runs can 
also be seen in figures 11(a)-(c)): 
• With the small instances, the best parameter settings 

generally involved using small populations with high 
amounts of local-search and a very small (but still present) 
amount of recombination. (The best results were gained 
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when using ρ = 5, l = 100, mr = 1 and rr  = 0.1.) 
• With the medium instances, the best parameter settings 

for the GGA involved using small populations, with small 
(but still present) amounts of local-search, and a fairly high 
rate of recombination. (The best results were given by the 
parameters ρ = 10, l = 2, mr = 1 and rr  = 0.7.) An increase 
in any of these parameters caused the search to become 
much slower, particularly for increases in l, which would 
simply maintain too much diversity in the population, thus 
keeping the recombination operator destructive and 
expensive. On the other hand, decreases in any of these 
parameters tended to cause an earlier stagnation of the 
search. 

• With the large instances, the best results of the GGA were 
gained when using big populations with small amounts of 
recombination, and no local-search. (The best results were 
given using ρ = 50, l = 0, mr = 1, and rr = 0.25.) In 
particular, runs that used both local-search and 
recombination always provided disappointing searches 
because the diversity offered by the local-search would 
generally cause the recombination operator to do more harm 
than good. Thus, the best results were generally gained when 

we ensured that many regions of the search space were 
sampled (by using larger populations) with the majority of 
the downhill movements then being attempted by the less 
destructive mutation operator. 

E. The Contribution of the GGA Operators  
Given that the above experiments have indicated that the 
inclusion of a local-search technique, whilst being able to aid 
the search in some cases, can still cause the often unhelpful 
diversity that makes the recombination operator expensive and 
destructive; the natural question to now ask is: What results 
can be gained if we abandon the genetic operators altogether, 
and simply use local-search on its own? 

We dealt with this question by implementing a new 
algorithm that operated by making just one initial timetable (in 
the same way as described in section III), and then by 
repeatedly applying the mutation operator incorporating local-
search until the time limit was reached. In the following 
explanations, this algorithm will be referred to as the ‘local-
search algorithm’, and comparisons of this and the GGA are 
provided in figs 11(a)-(c).  

Considering the large problem-instances first (fig. 11(c)), 
the presence of the local-search algorithm now allows us to 
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Fig. 10 and figs 11 (a)-(c). Figure 10 (top-left) shows the influence that various amounts of local-search have on the number of evaluations performed within 
the time limits for the different instance sets (using ρ = 50, rr = 0.5, mr = 2, and ir = 4). Figs. 11 (a)-(c) (top-right, bottom-left and bottom-right), show (1) the 
effects of various parameter settings with small, medium, and large instances respectively; and (2) a comparison between these and the local-search algorithm 
described in section VII. Each line represents, at each second, the distance to feasibility of the best solution in the population, averaged across 20 runs on each 
of the 20 instances (i.e. 400 runs). Note, because different population sizes are being used, the lines may not start at the same point on the y-axis. 
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view, in context, some of the negative effects of the GGA 
operators. As can be seen, the local-search algorithm – which, 
we note, does not use a population, recombination, or 
selection pressure – clearly gives the best results. (Statistical 
tests showed these differences to be significant.) This may 
well be due to the various issues raised in section VI – not 
least the observation that when the groups in candidate 
solutions are large, the genetic operators seem to be less 
beneficial to the overall search. Note that there are also some 
important differences between these two algorithms. Firstly, 
because the GGA requires that a population of individual 
timetables be maintained, computation time generally has to 
be shared amongst the individual members. In the case of the 
local-search algorithm this is not so. Additionally, the GGA 
operators of replication and recombination generally have to 
spend time copying chromosomes (or part of chromosomes) 
from parent to offspring, which in the space of an entire run, 
could amount to a consequential quantity of CPU time. Again, 
with the local-search algorithm, this is not necessary. 
Differences such as these might thus offer advantages to the 
local-search algorithm where more effort can be placed upon 
simply trying to improve just the one timetable. Indeed, if the 
local-search operator is not particularly susceptible to getting 
caught in local optima (as would seem to be the case here) 
then this may well bring benefits. 

Finally, moving our attention to figs. 11(a) and 11(b), we 
can see that the local-search algorithm also seems to 
outperform the GGA when dealing with the small and medium 
problem-instances. Indeed, in our experiments the differences 
in both cases were also seen to be significant, thus 
demonstrating the superiority of the local-search algorithm in 
these cases as well. This superiority, presumably, is due to the 
same factors as those described in the previous paragraphs. 
However, it is worth noting that the differences in results do 
seem to be less stark than those of the large instances, hinting 
that the GGA is perhaps able to be more competitive when the 
timeslots are smaller in size. This also agrees with the 
arguments size given in section VI. (The interested reader can 
find a complete breakdown of these results at [44].) 

VIII. CONCLUSIONS 
In this paper, we have examined a number of different 

issues regarding GGAs and their applicability to the university 
course timetabling problem. We now summarise the main 
findings of this work: 

• We have taken a well-studied version of the UCTP and 
noted that the task of satisfying the hard constraints is a type 
of grouping problem. Consequently, using the guidelines 
suggested by Falkenauer [51], we have designed a GGA for 
the problem that combines standard GGA operators with 
powerful construction heuristics. We have observed that 
recombination can aid the evolutionary search in some cases, 
whilst in others, depending on the run time available, it 
might be more of a hindrance. 

• We have introduced a way of measuring population 

diversity and distances between pairs of individuals for the 
grouping representation. We have seen that diversity and 
group size can influence (a) the overall expense of the 
recombination operator, and (b) the ease in which building 
blocks are combined and passed from one generation to the 
next. We have also noted that there may be other issues with 
this type of representation, due to the fact that larger groups 
will cause chromosomes to become proportionally shorter in 
length. While we still believe that it is indeed the groups that 
encapsulate the underlying building blocks of this type of 
problem, in this study we have thus highlighted areas where 
the propagation of these building blocks can be problematic. 

• We have examined ways that the performance of this 
GGA might be improved through the introduction of a local-
search operator and a number of different fitness functions. 
In particular, we have seen that, in some cases the more fine-
grained fitness functions (such as f5 and f6) can produce 
significantly better results, but in other instances this is not 
so. We have also seen that the introduction of a stochastic 
local-search operator to this GGA can improve results, but 
probably needs to be used with care, as in some cases its use 
can mean that (a) not enough new individuals are produced 
within the time limits, and (b) the added diversity that it 
brings can cause the recombination operator to be too 
destructive and expensive. 

• Finally, given such improvements, in the vast majority of 
cases we have seen that this GGA is still actually 
outperformed by our more straightforward local-search 
algorithm, which does not make use of a population, 
selection pressure, or the grouping recombination operator. 
The superior performance of this algorithm is particularly 
marked in the large problem-instances where, due to the 
larger groups, we believe the GGA operators display the 
least potential for aiding the search.  This backs up our 
hypotheses regarding the pitfalls of the GGA approach in 
certain cases. 

 

Due to the fact that we were obliged to make some new 
instance sets for this problem, we have been unable to provide 
comparisons of these algorithms with other approaches. 
However, these instances can be found on the web at [44] and 
we invite any other researchers interested in designing 
algorithms for timetabling to download them for use in their 
own experiments.  

IX. DISCUSSION 

Finally, we round off this paper by making some other 
general comments on the findings of this work, and offer 
some suggestions for future research.  

One of the main themes in this paper has been the 
observation that the GGA does not seem to perform well as 
the timetabling instance size (and therefore timeslot size) 
increases. From a practical point of view, this scaling-issue is 
particularly important, as it is not uncommon in universities to 
have a few thousand or more events that need to be scheduled 
into a limited number of timeslots (see the problem instances 
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used in [22], for example). On the face of it, this might present 
some unfavourable practical implications for any algorithm 
using a grouping theme. However, a worthwhile future 
endeavour could be to investigate how complete timetabling 
problems might be broken up into smaller sub-problems. For 
example, it has been noted [46] that real-world timetabling 
problems are often quite clumped in their make up: a 
computing department, for example, might have a set of 
events that forms a distinct clump largely separated from the 
events in, say, the psychology department. These departments 
could have few or no common students, may use different sets 
of rooms or might even be situated in separate campuses 
altogether. In these cases, the timetabling problems of these 
departments may have little bearing on each other and might 
even be solved independently from each other (see fig. 12).  

Interesting ideas on the subject of dealing with large 
problem instances have also been proposed by Burke and 
Newall in [26]. Here, the authors use graph colouring-type 
heuristics to break up large sets of events into a number of 
smaller sub-sets, and then use a memetic algorithm to try and 
solve each subset individually. Tests by Burke and Newall 
indicate that this method of problem decomposition can offer 
both shorter run times and improved solution quality in some 
cases. 

 
 
Fig. 12.  An example of clumping: the nodes (events) in the left sub-graph 
conflict with none of the nodes in the right sub-graph. These two graphs might 
therefore be coloured separately from each other. 
 

Another noticeable characteristic of the algorithms 
discussed here is the fact that, for the moment, no soft 
constraints are considered. This was never our aim for the 
algorithm, and indeed good algorithms that specialise in soft 
constraint violations can be found elsewhere (see, for example 
[33], [35], [36], [47], [49], and [57]). However, there might be 
additional complications if we were to attempt their inclusion. 
For instance, constraints such as ‘students should not have to 
attend more than two events in consecutive timeslots’ clearly 
depend on the ordering of the timeslots – a factor that is not 
considered here. Additionally, if we were to include soft 
constraint satisfaction in the GGA’s aims we would probably 
also need to add suitable penalty measures (possibly through 
the use of weights [1, 14, 17]) to the fitness function. 
However because the chief aim of the algorithm is to find 
feasibility, such a modification might actually have the 
adverse effect of sometimes leading the search away from 
attractive (and 100% feasible) regions of the search space. 

On the other hand, the incorporation of other sorts of soft 
constraints might present fewer difficulties. Consider, for 
example, the first soft constraint in section II. If we were to try 
and reduce the target number of timeslots from forty-five 

down to forty, this would actually mean that candidate 
timetables would be deemed feasible when the number of 
timeslots being used fell below forty-five, but also the total 
number of violations of this soft constraint would also fall as 
the number of timeslots being used approached forty. 

Another worthwhile endeavour involving the general two-
stage timetabling approach might also be to investigate the 
actual importance of ensuring that a completely feasible 
timetable is always gained in stage one. Will an algorithm 
specialising in the elimination of soft constraints always 
perform better when presented with a fully feasible timetable? 
Or will an almost-feasible timetable perform equally well? On 
a similar theme, it might also be instructive to see if we can 
identify some features of feasible (or near-feasible) timetables 
that will give us some indication of how easy it will be to then 
satisfy the soft constraints. 

We may also see some general improvements to both of our 
proposed algorithms through a modification of the solution 
construction process, described in section III. For example, 
given a list of unplaceable events U, the current function 
opens up | | /U r⎡ ⎤⎢ ⎥  additional timeslots. As noted this defines 
a lower bound as to the number of timeslots that are needed to 
house all of the events in U. However, by opening this amount 
there is no guarantee that additional timeslots will not need to 
be opened later on. Indeed, calculating the actual number of 
timeslots needed for the events in U is the same as the NP-
hard problem of calculating the chromatic number in graph 
colouring. On the other hand, opening too few timeslots at this 
stage (which is what this calculation could do) will also be a 
disadvantage because it means the algorithm will have to 
continue to open timeslots later on, adding further to the cost 
of the process. However, some simple reasoning with respect 
to problem structure might give us further information. For 
example, if there are, say, n events in U that can only be put 
into the one same room then it is obvious that at least n extra 
timeslots will need to be opened. 

Finally, it is worth considering that many of the factors 
discussed here, in particular those relating to the scaling-up 
issues surrounding the GGA, might not just apply to this 
problem, but also to the general GGA model as a whole. For 
example, a GGA has been shown to be very successful with 
bin packing in the work of Falkenauer [51]. However, the 
problem-instances used here were only actually made up of 
very small groups (generally there were only three items per 
bin). It would thus be interesting to see how these same 
operators performed with bin packing problem-instances that 
allowed larger numbers of items to be placed into each bin, or 
indeed how other GAA applications tend to deal with these 
kinds of problem instances. 

ACKNOWLEDGEMENT 
The authors would like to thank the anonymous referees 

who provided helpful comments on earlier versions of this 
work. 



. 
 

17

REFERENCES 
[1] D. Corne, P. Ross, and H. Fang, "Evolving Timetables," in Practical 

Handbook of Genetic Algorithms, vol. 1, L. C. Chambers, Ed. Boca 
Raton, FL: CRC Press, 1995, pp. 219-276. 

[2] T. Cooper and J. Kingston, "The complexity of timetable construction 
problems," in Practice and Theory of Automated Timetabling (PATAT) I, 
(Lecture Notes in Computer Science, vol. 1153) E. Burke and P. Ross 
Eds. Berlin, Germany: Springer-Verlag, 1996. pp 283-295. 

[3] S. Even, A. Itai, and A. Shamir, "On the complexity of Timetable and 
Multi-commodity Flow Problems," SIAM Journal of Computing, vol. 5, 
pp. 691-703, 1976. 

[4] G. White and W. Chan, "Towards the Construction of Optimal 
Examination Schedules," INFOR, vol. 17, pp. 219-229, 1979. 

[5] M. Carter, G. Laporte, and S. Y. Lee, "Examination Timetabling: 
Algorithmic Strategies and Applications," Journal of the Operational 
Research Society, vol. 47, pp. 373-383, 1996. 

[6] E. Erben, "A Grouping Genetic Algorithm for Graph Colouring and 
Exam Timetabling," in Practice and Theory of Automated Timetabling 
(PATAT) III (Lecture Notes in Computer Science vol. 2079) E. Burke 
and W. Erben Eds. Berlin, Germany: Springer-Verlag, 2000, pp. 132-
158. 

[7] E. A. Akkoyunlu, "A Linear Algorithm for Computing the Optimum 
University Timetable," The Computer Journal, vol. 16(4), pp. 347-350, 
1973. 

[8] S. Daskalaki, T. Birbas, and E. Housos, "An Integer Programming 
Formulation for a Case Study in University Timetabling," European 
Journal of Operational Research, vol. 153, pp. 117-135, 2004. 

[9] B. Deris, S. Omatu, H. Ohta, and D. Samat, "University Timetabling by 
Constraint-based Reasoning: A Case Study," Journal of the Operational 
Research Society, vol. 48(12), pp. 1178-1190, 1997. 

[10] D. Abramson, "Constructing School Timetables using Simulated 
Annealing: Sequential and Parallel Algorithms," Management Science, 
vol. 37, pp. 98-113, 1991. 

[11] D. Abramson, H. Krishnamoorthy, and H. Dang, "Simulated Annealing 
Cooling Schedules for the School Timetabling Problem," Asia-Pacific 
Journal of Operational Research, vol. 16, pp. 1-22, 1996. 

[12] S. Elmohamed, G. Fox, and P. Coddington, "A Comparison of 
Annealing Techniques for Academic Course Scheduling," in Practice 
and Theory of Automated Timetabling (PATAT) II, (Lecture Notes in 
Computer Science, vol. 1408) E. Burke and M. Carter Eds. Berlin, 
Germany: Springer-Verlag, 1998. pp 92-114. 

[13] J. M. Thompson and K. A. Dowsland, "A Robust Simulated Annealing 
based Examination Timetabling System," Computers and Operations 
Research, vol. 25, pp. 637-648, 1998. 

[14] A. Schaerf, "Tabu Search Techniques for Large High-School 
Timetabling Problems," in Proceedings of the Thirteenth National 
Conference on Artificial Intelligence (AAAI'96), Portland (OR), USA: 
AAAI Press/MIT Press, 1996, pp. 363-368. 

[15] D. Costa, "A tabu search algorithm for computing an operational 
timetable," European Journal of Operational Research, vol. 76, pp. 98-
110, 1994. 

[16] A. Hertz, "Tabu search for large scale timetabling problems," European 
Journal of Operational Research, vol. 54, pp. 39-47, 1991. 

[17] A. Schaerf, "Local Search Techniques for Large High-School 
Timetabling Problems," IEEE Transactions on Systems, Man, and 
Cybernetics, Part A, vol. 29(4), pp. 368-377, 1999. 

[18] P. Ross, E. Hart, and D. Corne, "Genetic Algorithms and Timetabling," 
in Advances in Evolutionary Computing: Theory and Applications, A. 
Ghosh and S. Tsutsui Eds. New York: Springer-Verlag, 2003, pp. 755-
772. 

[19] A. Colorni, M. Dorigo, and V. Maniezzo, "Genetic Algorithms And 
Highly Constrained Problems: The Time-Table Case," in Parallel 
Problem Solving from Nature (PPSN) I (Lecture Notes in Computer 
Science, vol. 496), H. Schwefel and R. Manner Eds. Berlin, Germany: 
Springer-Verlag, 1990, pp 55-59. 

[20] A. Colorni, M. Dorigo, and V. Maniezzo, "A genetic algorithm to solve 
the timetable problem," Tech. Rep. 90-060 revised, Politecnico di 
Milano, Italy, 1992. 

[21] D. Abramson and J. Abela, "A Parallel Genetic Algorithm for Solving 
the School Timetabling Problem," Tech. Rep., Division of Information 
Technology, C.S.I.R.O., c/o Dept. of Communication & Electronic 

Engineering, Royal Melbourne Institute of Technology, PO BOX 
2476V, Melbourne 3001, Australia, 1991. 

[22] B. Paechter, R. Rankin, A. Cumming, and T. Fogarty, "Timetabling the 
Classes of an Entire University with an Evolutionary Algorithm," in 
Parallel Problem Solving from Nature (PPSN) V (Lecture Notes in 
Computer Science, vol. 1498), T. Baeck, A. Eiben, M. Schoenauer, and 
H. Schwefel Eds. Berlin, Germany: Springer-Verlag, 1998, pp 865-874. 

[23] E. Burke, D. Elliman, R. Weare "A Hybrid Genetic Algorithm for 
Highly Constrained Timetabling Problems" in Genetic Algorithms: Proc. 
of the Sixth International Conference (ICGA95), L. Eshelman Ed.  San 
Francisco, CA: Morgan-Kaufmann, 1995, pp 605-610. 

[24] E. Burke, D. Elliman, and R. Weare, "Specialised Recombinative 
Operators for Timetabling Problems," in Artificial Intelligence and 
Simulated Behaviour Workshop on Evolutionary Computing (Lecture 
Notes in Computer Science vol. 993), T. Fogarty Ed. Berlin, Germany: 
Springer-Verlag, 1995, pp 75-85. 

[25] E. K. Burke, J. P. Newall, and R. F. Weare, "A Memetic Algorithm for 
University Exam Timetabling," in Practice and Theory of Automated 
Timetabling (PATAT) I, (Lecture Notes in Computer Science vol. 1153) 
E. Burke and P. Ross Eds. Berlin, Germany: Springer-Verlag, 1996, pp 
241-250. 

[26] E. Burke and J. Newall, "A Multi-Stage Evolutionary Algorithm for the 
Timetable Problem," IEEE Transactions in Evolutionary Computation, 
vol. 3(1), pp. 63-74, 1999. 

[27] K. Socha and M. Samples, "Ant Algorithms for the University Course 
Timetabling Problem with Regard to the State-of-the-Art," in 
Evolutionary Computation in Combinatorial Optimization (EVOCop)  
III (Lecture Notes in Computer Science vol. 2611) M. Dorigo, G. Di 
Caro, and M. Sampels Eds. Berlin, Germany: Springer-Verlag, 2003, pp 
334-345. 

[28] K. Socha, J. Knowles, and M. Sampels, "A MAX-MIN Ant System for 
the University Course Timetabling Problem," in Proceedings of the 
Third International Workshop on Ant Algorithms (ANTS02) (Lecture 
Notes in Computer Science vol. 2463) M. Dorigo, G. Di Caro, and M. 
Sampels Eds. Berlin, Germany: Springer-Verlag, 2002, pp 1-13. 

[29] E. Burke, G. Kendall, and E. Soubeiga, "A Tabu-Search Hyperheuristic 
for Timetabling and Rostering," Journal of Heuristics, vol. 9(6), pp. 
451-470, 2003. 

[30] S. Casey and J. Thompson, "GRASPing the Examination Scheduling 
Problem," in Practice and Theory of Automated Timetabling (PATAT) 
IV, (Lecture Notes in Computer Science, vol. 2740) E. Burke and P. de 
Causmaecker Eds. Berlin, Germany: Springer-Verlag, 2003, pp 232-244. 

[31] P. Cote, T. Wong, and R. Sabourin, "Application of a Hybrid Multi-
Objective Evolutionary Algorithm to the Uncapacitated Exam Proximity 
Problem," in Practice and Theory of Automated Timetabling (PATAT) V, 
(Lecture Notes in Computer Science, vol. 3616), E. Burke and M. Trick 
Eds. Berlin, Germany: Springer-Verlag, 2004, pp 294-312. 

[32] M. Carrasco and M. Pato, "A Multiobjective Genetic Algorithm for the 
Class/Teacher Timetabling Problem," in Practice and Theory of 
Automated Timetabling (PATAT) III (Lecture Notes in Computer 
Science vol. 2079) E. Burke and W. Erben Eds. Berlin, Germany: 
Springer-Verlag, 2000, pp. 3-17. 

[33] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria, "An 
effective hybrid algorithm for university course timetabling," Journal of 
Scheduling, vol. 9(5), pp. 403-432, 2006. 

[34] L. Merlot, N. Boland, B. Hughes, and P. Stuckey, "A Hybrid Algorithm 
for the Examination Timetabling Problem," in Practice and Theory of 
Automated Timetabling (PATAT) IV, (Lecture Notes in Computer 
Science, vol. 2740) E. Burke and P. de Causmaecker Eds. Berlin, 
Germany: Springer-Verlag, 2003, pp 207-231. 

[35] O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. Knowles, 
M. Manfrin, M. Mastrolilli, L. Paquete, B. Paechter, and T. Stützle, "A 
comparison of the performance of different metaheuristics on the 
timetabling problem," in Practice and Theory of Automated Timetabling 
(PATAT) IV, (Lecture Notes in Computer Science, vol. 2740) E. Burke 
and P. de Causmaecker Eds. Berlin, Germany: Springer-Verlag, 2003, pp 
329-351. 

[36] P. Kostuch, "The University Course Timetabling Problem with a 3-Phase 
approach," in Practice and Theory of Automated Timetabling (PATAT) 
V, (Lecture Notes in Computer Science, vol. 3616), E. Burke and M. 
Trick Eds. Berlin, Germany: Springer-Verlag, 2004, pp 109-125. 



. 
 

18

[37] M. Carter, "A Survey of Practical Applications of Examination 
Timetabling Algorithms," in Operations Research, vol. 34(2), pp. 193-
202, 1986. 

[38] E. K. Burke, D. G. Elliman, P. H. Ford, and R. Weare, "Examination 
Timetabling in British Universities: A Survey," in Practice and Theory 
of Automated Timetabling (PATAT) I, (Lecture Notes in Computer 
Science, vol. 1153) E. Burke and P. Ross Eds. Berlin, Germany: 
Springer-Verlag, 1996. pp 76-92. 

[39] M. Carter and G. Laporte, "Recent Developments in Practical Course 
Timetabling," in Practice and Theory of Automated Timetabling 
(PATAT) II, (Lecture Notes in Computer Science, vol. 1408) E. Burke 
and M. Carter Eds. Berlin, Germany: Springer-Verlag, 1998, pp 3-19. 

[40] A. Schaerf, "A Survey of Automated Timetabling," Artificial 
Intelligence Review, vol. 13(2), pp. 87-127, 1999. 

[41] E. Burke and S. Petrovic, "Recent Research Directions in Automated 
Timetabling," European Journal of Operational Research, vol. 140, pp. 
266-280, 2002. 

[42] M. Carter. [Online] Available: ftp://ie.utoronto.ca/mwc/testprob/ 
Accessed June 2005. 

[43] B. Paechter. [Online] Available: http://www.idsia.ch/Files/ttcomp2002/. 
Accessed June 2005. 

[44] R. Lewis. [Online] Available: 
http://www.emergentcomputing.org/timetabling/harderinstances 
Accessed June 2005. 

[45] C. Blum and C. Manfrin [Online] Available 
http://www.metaheuristics.org/. Accessed June 2005. 

[46] P. Ross, D. Corne, and H. Terashima-Marin, "The Phase-Transition 
Niche for Evolutionary Algorithms in Timetabling," in Practice and 
Theory of Automated Timetabling (PATAT) I (Lecture Notes in 
Computer Science vol. 1153) E. Burke and P. Ross Eds. Berlin, 
Germany: Springer-Verlag, 1996, pp 309-325. 

[47] H. Arntzen and A. Løkketangen, "A Tabu Search Heuristic for a 
University Timetabling Problem," in Metaheuristics: Progress as Real 
Problem Solvers (Computer Science Interfaces Series vol.. 32) T 
Ikabaki, K. Nonobe, and M. Yagiura Eds. Berlin, Germany: Springer-
Verlag, 2005, pp. 65-86. 

[48] J. Cordeau, B. Jaumard, and R. Morales, "Efficient Timetabling Solution 
with Tabu Search," [Online]. Available 
http://www.idsia.ch/Files/ttcomp2002/jaumard.pdf Accessed June 2005. 

[49] E. Burke, Y. Bykov, J. Newall, S. and Petrovic, "Time-Predefined 
Approach to Course Timetabling," Yugoslav Journal of Operations 
Research (YUJOR), vol. 13(2), 2003, pp 139-151. 

[50] E. Falkenauer, "A New Representation and Operators for GAs Applied 
to Grouping Problems," Evolutionary Computation, vol. 2, pp. 123-144, 
1994. 

[51] E. Falkenauer, Genetic Algorithms and Grouping Problems: New York, 
NY: John Wiley and Sons, 1998. 

[52] N. J. Radcliffe, "Forma Analysis and Random Respectful 
Recombination," in Proceedings of the Fourth International Conference 
on Genetic Algorithms, R. Belew and L. Booker Eds. San Marco CA: 
Morgan Kaufmann, 1991, pp. 222-229. 

[53] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and 
Machine Learning. Reading, MA.: Addison-Wesley, 1989. 

[54] E. Falkenauer, "Solving equal piles with the grouping genetic 
algorithm," in Proceedings of the 6th International Conference on 
Genetic Algorithms, L. Eshelman Ed. San Marco CA: Morgan 
Kaufmann, 1995, pp 492-497. 

[55] A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert, "Graph Coloring 
with Adaptive Evolutionary Algorithms," Journal of Heuristics, vol. 
4(1), pp. 25-46, 1998. 

[56] S. Khuri, T. Walters, and Y. Sugono, "A grouping genetic algorithm for 
coloring the edges of graphs," in Proceedings of the 2000 ACM 
Symposium on Applied computing, NY, USA: ACM Press, 2000, pp 
422-427. 

[57] R. Lewis and Ben Paechter, “Application of the Grouping Genetic 
Algorithm to University Course Timetabling”, in Evolutionary 
Computation in Combinatorial Optimisation (EVOCop) V. (Lecture 
Notes in Computer Science vol. 3448) G. Raidl and J. Gottlieb Eds. 
Berlin, Germany: Springer-Verlag, 2005, pp 144-153.  

[58] D. Brelaz, "New methods to Color the vertices of a graph," Commun. 
ACM, vol. 22, pp. 251-256, 1979. 

[59] E. Falkenauer, "Applying genetic algorithms to real-world problems," in 
Evolutionary Algorithms (The IMA Volumes of Mathematics and its 

Applications vol. 111), L. Davis, K. De Jong, M. Vose, and L. D. 
Whitley Eds. NY, USA: Springer, 1999, pp 65-88. 

[60] R. Lewis and B. Paechter, “New Crossover Operators for Timetabling 
with Evolutionary Algorithms”, in Proceedings of the Fifth International 
Conference on Recent Advances in Soft Computing (RASC 2004), A. 
Lotfi Ed. Nottingham, England, 2004, pp. 189-195 

[61] W. Morrison and K. de Jong, "Measurement of Population Diversity," in 
Selected Papers from the 5th European Conference on Artificial 
Evolution (EA) 2001 (Lecture Notes in Computer Science vol. 2310), P. 
Collet, C. Fonlupt, J.-K. Hao, E. Lutton, and M. Schoenauer Eds. Berlin, 
Germany: Springer-Verlag, 2002, pp 31-41. 

[62] Y. Leung, Y. Gao, and Z. Xu, "Degree of Population Diversity – A 
perspective on Premature Convergence in Genetic Algorithms and Its 
Marcov Chain Analysis," IEEE Trans. Neural Networks, vol. 8(5), pp. 
1165-1765, 1997. 

[63] C. Mattiussi, M. Waibel, and D. Floreano, "Measures of Diversity for 
Populations and Distances Between Individuals with Highly 
Reorganizable Genomes," Evolutionary Computation, vol. 12, pp. 495-
515, 2004. 

[64] G. Tao and Z. Michalewicz, "Inver-over Operator for the TSP," in 
Parallel Problem Solving from Nature (PPSN) V, (Lecture Notes in 
Computer Science vol. 1498), A.E. Eiben, T. Baeck, M. Schoenauer and 
H-P. Schwefel Eds. Berlin, Germany: Springer-Verlag, 1998, pp 803-
812. 

[65] R. Lewis and B. Paechter, “An Empirical Analysis of the Grouping 
Genetic Algorithm: The Timetabling Case”, in Proceedings of the 2005 
IEEE Congress on Evolutionary Computation (CEC) vol. 3, 2005, pp 
2856-2863. 

[66] X. Yao, "An Overview of Evolutionary Computation," Chinese Journal 
of Advanced Software Research, vol. Allerton Press Inc., New York, NY 
10011, pp. 12-29, 1996. 

[67] P. Moscato and M. G. Norman, "A 'Memetic' Approach for the 
Travelling Salesman Problem. Implementation of a Computational 
Ecology for Combinatorial Optimization on Message-Passing Systems," 
in Proceedings of the International Conference on Parallel Computing 
and Transputer Applications, Amsterdam, NL: IOS Press, 1992, pp 187-
194. 

[68] P. Moscato, "On Evolution, Search, Optimization, Genetic Algorithms 
and Martial Arts: Towards Memetic Algorithms," Tech. Rep. Caltech 
Concurrent Computation Program, Report. 826, California Institute of 
Technology, Pasadena, California, USA, 1989. 

[69] R. Dorne and J.-K. Hao, "A New Genetic Local Search Algorithm for 
Graph Coloring," in Parallel Problem Solving from Nature (PPSN) V, 
(Lecture Notes in Computer Science vol. 1498), A.E. Eiben, T. Baeck, 
M. Schoenauer and H-P. Schwefel Eds. Berlin, Germany: Springer-
Verlag, 1998, pp 745-754. 

[70] P. Galinier and H. J-K., "Hybrid evolutionary algorithms for graph 
coloring," Journal of Combinatorial Optimization, vol. 3(4), pp. 379-
397, 1999. 

[71] E. Falkenauer, "A hybrid grouping genetic algorithm for bin packing," 
Journal of heuristics, vol. 2, pp. 5-30, 1996. 

[72] J. Levine and F. Ducatelle, "Ant Colony Optimisation and Local Search 
for Bin Packing and Cutting Stock Problems. Journal," Journal of the 
Operational Research Society, vol. 55(12), pp. 705-716, 2003. 

[73] S. Martello and P. Toth, "Lower bounds and reduction procedures for 
the bin packing problem," Discrete Applied Mathematics, vol. 28(1), pp. 
59-70, 1990. 


