
.

1

Abstract— This paper describes the applicability of the so-

called ‘grouping genetic algorithm’ to a well-known version of
the university course timetabling problem. We note that there
are, in fact, various scaling up issues surrounding this sort of
algorithm and, in particular, see that it behaves in quite different
ways with different sized problem instances. As a by-product of
these investigations, we introduce a method for measuring
population diversities and distances between individuals with the
grouping representation. We also look at how such an algorithm
might be improved: firstly, through the introduction of a number
of different fitness functions and, secondly, through the use of an
additional stochastic local-search operator (making in effect a
grouping memetic algorithm). In many cases, we notice that the
best results are actually returned when the grouping genetic
operators are removed altogether, thus highlighting many of the
issues that are raised in the study.

Index Terms—Diversity, fitness-functions, grouping-problems,
timetabling.

I. INTRODUCTION

N THE CONTEXT OF A UNIVERSITY, a typical timetabling
problem generally involves assigning a set of events
(lectures, exams, tutorials, lab sessions and so on) to a

limited number of timeslots and rooms in such a way as to
satisfy a set of constraints. The two most common forms of
this problem are exam-timetabling problems and course-
timetabling problems, and in reality, the constraints imposed
upon these can often be quite similar. However, the crucial
difference between them is usually considered to be that in
exam timetables, multiple events can take place in the same
room at the same time (as long as the seating capacity is not
exceeded), whilst in course-timetabling problems, we are
generally only allowed one event in a room per timeslot.

In automated timetabling, the constraints for both types of
timetabling problem generally tend to be separated into two
groups: the hard constraints and the soft constraints. Hard
constraints have a higher priority than soft, and will usually be
mandatory in their satisfaction. Indeed, timetables will usually
only be considered feasible if and only if all of the hard
constraints of the problem have been satisfied. Soft

Manuscript received August 8th, 2005. Revised Jan. 2006 and June 2006.
The authors are with the Centre for Emergent Computing at Napier

University, Edinburgh, Scotland, EH10 4DQ. (Phone: 0131-455-2767; email:
{r.lewis|b.paechter}@napier.ac.uk). From September 2006, the first author
will be contactable at the Cardiff Business School, University of Wales
Cardiff, Colum Drive, Cardiff, Wales, CF10 3EU. (Phone +44(0)292-087-
4000).

constraints, meanwhile, are those that we want to obey if
possible, and more often than not they will describe what it is
for a timetable to be good with regards to the timetabling
policies of the university concerned, as well as the experiences
of the people who will have to use it. Perhaps the most
common hard constraint encountered in timetabling is the
‘event-clash’ constraint. This specifies that if one or more
person (or some other resource of which there is only one) is
required to be present at two distinct events, then these events
conflict, and therefore must not be placed into the timetable in
such a way that they overlap in time (as obviously such an
assignment will result in this person(s)/resource(s) having to
be in two places at once). This particular constraint can be
found in almost all university timetabling problems and its
presence will often cause people to draw parallels between
this problem and the well-known graph colouring problem
(which we will look at in more detail in section II B). Beyond
this example constraint, however, a great many other sorts of
constraints – hard and soft – can be considered in timetabling.
These can involve factors such as event orderings, lecturer
and student preferences, the spreading of events, rooming
constraints, and so on. Indeed, in the real world most
universities will tend to have their own idiosyncratic set of
constraints. A good review of the various different constraints
that can often be encountered in practice is given by Corne,
Ross, and Fang in [1].

Given the wide diversity of constraints that can be imposed
on timetabling problems, it should be appreciable that from a
research point-of-view, it can often be quite difficult to
formulate meaningful and universal generalisations about the
field. Further difficulties can also arise when we want to make
comparisons between different timetabling algorithms, as
often – but perhaps quite understandably – authors will prefer
to design algorithms for their own university’s timetabling
problem, rather than comply with some set of benchmark
instances. However, one important generalisation that we can
make about timetabling at universities is that the problem is
NP-complete in almost all variants. Indeed, in various forms it
has been shown to be equivalent to graph colouring, bin
packing, and three-dimensional matching in [2], and also 3-
SAT in [3].

Many algorithms that have been proposed for solving
timetabling problems have used strategies derived from graph
colouring. (See, for example, a very early example by White
and Chan in [4]; the more recent backtracking algorithm of
Carter, Laporte, and Lee in [5]; and also the work of Erben in

Finding Feasible Timetables using Group-Based
Operators

Rhydian Lewis and Ben Paechter, Members IEEE

I

.

2

[6]). Others, meanwhile, have chosen to use methods such as
linear algorithms [7], integer programming [8], and constraint-
based techniques [9] for their timetabling problems.

Over the last decade-or-so, there has also been a large
interest in the application of metaheuristics towards
timetabling problems. For instance, many authors, such as
Abramson, Krishnamoorthy, and Dang [10, 11]; Elmohamed,
Fox and Coddington [12]; and Thompson and Dowsland [13]
have chosen to apply simulated annealing to their timetabling
problems. In the latter paper, for example, the authors first
employ graph colouring heuristics to construct a feasible
timetable, and then use various specialised neighbourhood
operators (such as Kempe-chain interchanges) in conjunction
with simulated annealing to then try and satisfy the soft
constraints of the problem.

Other authors such as Schaerf [14], Costa [15], and Hertz
[16] have chosen to use the tabu search metaheuristic for
timetabling. In particular, Schaerf reports that good results can
be gained when phases of tabu search are broken up by
periods of local-search, making use of various neighbourhood
operators. In this case, the best results from each stage are
passed into the next stage, until no further progress can be
made. In this study the author also makes use of a weighted-
sum evaluation function, using weights in order to penalise
violations of hard constraints more heavily than violations of
soft constraints. These weights can be changed during the run
however, if it is felt that the search is focusing too closely on
one particular region of the search space. (Similar techniques
are also used in conjunction with a local-search algorithm by
Schaerf in [17].)

There have also been many applications of evolutionary and
memetic-style algorithms to various different timetabling
problems1, as in the work of Colorni, Dorigo, and Maniezzo
[19, 20]; Abramson and Abela [21]; Corne, Ross and Fang
[1]; Paechter et al. [22]; Erben [6]; and Burke et al. [23-26].
In the work of Paechter et al., for example, an evolutionary
algorithm for course timetabling using an indirect
representation is presented, whereby each chromosome
contains instructions on how to build timetables of a given
instance. Also included is a memetic search operator that
attempts to locally improve each timetable, with any
improvements that are found then being written back to the
chromosome. The authors also use specialised crossover
operators for this representation, as well as heuristic mutation
operators. A different sort of evolutionary approach – this
time for exam timetabling – has also been proposed by Burke,
Elliman and Weare in [23, 24]. In this approach, all candidate
solutions produced during a run are kept feasible because,
rather than break any hard constraints, extra timeslots are
opened to accommodate events that have no feasible place in
the current timetable. One of the aims of the algorithm,
therefore, is to reduce the number of timeslots being used
down to a reasonable level, whilst also taking into

1 See the survey of Ross, Hart and Corne [18] for a good overview of

evolutionary computation and timetabling.

consideration the imposed soft constraints. Thus, specialist
genetic operators are introduced in order to try and
accomplish this.

Recently, an interesting application of the ant colony
metaheuristic to timetabling has also been made by Socha, et
al. in [27] and [28]. At each step of this algorithm, each of the
ants constructs a complete assignment of events to timeslots
using heuristics and pheromone information (the latter which
is present due to previous iterations of the algorithm).
Timetables are then improved using a local-search procedure,
and results are written back to the pheromone matrix for use
in the next iteration.

It is also worth noting that as well as the more ‘mainstream’
metaheuristic paradigms, various other stochastic-based
algorithms have also been proposed for timetabling problems,
such as hyper-heuristics [29], a GRASP procedure [30], multi-
objective techniques [31, 32], and a number of hybrid
algorithms [33-36]. Some good survey papers about the field
of automated timetabling can also be found in [37-41]. There
are also some publicly available problem instances available
for exam timetabling at [42] and course timetabling at [43]
and [44]. It is the latter two references that contain the
problem instances that will be considered in this study.

II. PROBLEM ANALYSIS

A. The Basic Problem
The version of the university course timetabling problem

(UCTP) that we study here was originally formulated for the
Metaheuristics Network [45] and was also subsequently used
for the International Timetabling Competition in 2002 [43].
We have chosen this particular problem because it has been
fairly widely studied in the last few years and, as a result, it
has become somewhat of a benchmark problem in this field.
Note also that although this problem is actually based on real-
world timetabling problems, it is slightly simplified. Although
this is not ideal, it is arguable that this sort of problem is
perhaps more suited for algorithm analysis and comparison, as
it does not feature the various idiosyncratic and institution-
specific constraints usually found in practical problems.

Each problem instance consists of the following
information: firstly, we are given a set of rooms, each with an
associated seating capacity. Secondly, we are given a set of
events, each with a pre-specified set of attending students.
Pairs of events are said to conflict if there is one or more
student(s) required to attend them both. Finally, we are given
a set of room features (that can represent things such as data
projectors, IT equipment etc). Each event requires a subset of
these features and each room satisfies a subset of these
features.

The primary aim of this problem is to assign every event a
room and one of a fixed-number of timeslots (in this case
forty-five, comprising five days of nine timeslots) in such a
way that none of the following hard constraints are violated:

1. No student is required to attend more than one event at

.

3

any one time (or in other words, conflicting events should
not be assigned to the same timeslot);

2. Only one event is put in any room in any timeslot (i.e. no
double-booking of rooms);

3. All of the features required by the event are satisfied by
the room, which has an adequate capacity.

A timetable that schedules all events and obeys all of these
constraints is considered feasible. The total number of
possible assignments (timetables) is (t*r)e

 (where t = the
number of timeslots, r = the number of rooms, and e = the
number of events). In anything but trivial cases, the vast
majority of these assignments will probably contain some
level of infeasibility.

B. Comparison to Graph Colouring
It is worth noting immediately (as it will certainly help with

various explanations later on), that the presence of the first
hard constraint above makes this problem similar to the well-
known graph colouring problem. In order to convert one
problem to the other, individual events are considered nodes,
and edges are added between any two nodes that represent
conflicting events. In very basic timetabling problems (e.g.
[46]) the task is to simply colour the graph in as many colours
as there are available timeslots. However, in our case, the
presence of the second and third hard constraints adds extra
complications: now it does not merely suffice for collections
of non-conflicting events to be grouped together into
timeslots; instead, we must also ensure that every event in a
timeslot can be assigned to its own feasible room. From a
graph-theoretic point-of-view, this means that many feasible
colourings might still actually represent infeasible timetables
(see fig. 1 for a simple example).

1

5

2

3
4

6
1

5

2

3
4

6
(a) (b)

Fig. 1. In this small example both graphs represent optimal colourings.
However, in the case of this timetabling problem, if only two rooms were
available per timeslot, then graph (a) could definitely not represent a feasible
solution, as either event 2, 3 or 4 could not be assigned a room. Graph (b), on
the other hand, could represent a feasible timetable although, of course, this
would also depend on room capacities and features of the problem instance.

C. Soft Constraints and the Two-Stage Approach
For this particular timetabling problem, there are also three

soft constraints. These are as follows:

1. No student should attend an event in the last timeslot of a
day;

2. No student should sit more than two classes in a row;
3. No student should have a single class in a day.

Looking at the majority of studies carried out on this
problem, it would seem that a popular method for dealing with
both the hard and soft constraints is to employ a two-stage
algorithm, the methodology of which can be summarised as
follows: in the first stage, the soft constraints are disregarded

and only the hard constraints of the problem are considered
(i.e. only a feasible timetable is sought); next, assuming
feasibility has been found, attempts are then made to try and
reduce the number of soft constraint violations, using
operators that only allow feasible areas of the search space to
be navigated. The popularity of this approach could partly be
due to the substantial work of Rossi-Doria et al. [35] who, in
an early study of this problem, concluded that the performance
of any one metaheuristic with respect to satisfying hard
constraints and soft constraints might be different: that is,
what might be a good approach for finding feasibility may not
necessarily be so effective when considering the soft
constraints.

Indeed, the merit of this two-stage approach was reinforced
when the International Timetabling Competition [43] was run
in 2002 and people from all over the world were invited to
design algorithms for this problem. As it turned out, the best
algorithms presented (according to the competition criteria)
made use of this two-stage approach, utilising various
constructive heuristics to first find feasibility, followed by
assorted local improvement algorithms (such as simulated
annealing, tabu search, and local-search) to then deal with soft
constraint violations. Since then, a number of papers
stemming from this work have been published and excellent
results have been claimed using this basic two-stage approach.
(These include the hybrid algorithm of Chiarandini et al. [33];
the simulated annealing-based methodology of Kostuch [36];
the tabu search-based methodologies of Arntzen and
Løkketangen [47] and Cordeau et al. [48]; and the ‘Great
Deluge’ approach of Burke et al. [49].)

It must be noted, however, that the problem instances
(available at [43]) used for the competition and subsequent
works are actually quite easy to solve with regards to finding
feasibility, because they were created mainly with soft
constraints in mind. This was because the competition rules
stated that for entrants to qualify, their algorithms had to find
feasibility on all instances (those that could not achieve this
were disqualified). Naturally, this has meant that the majority
of work so far has pertained to soft constraint satisfaction.
However, this still leaves a major issue of concern: How can
we ensure that we have a good chance of finding feasibility
when ‘harder’ instances of this problem are encountered?
Indeed, the problem of finding a feasible timetable is, of
course, NP-hard and should not be treated lightly. Thus we
believe that there are justifications and needs for a more
powerful search algorithm that specialises in finding feasible
timetables, which can also cope across a wide range of
problem instances. An algorithm looking to achieve just this is
one of the main aims of this paper.

D. Grouping Genetic Algorithms and the UCTP
Grouping genetic algorithms (GGAs) may be thought of as

a special type of evolutionary algorithm specialised for
grouping problems. Such problems are those where the task is
to partition a set of items U into a collection of mutually
disjoint subsets (or groups) ui of U, such that:

.

4

 iu U∪ = and i ju u∩ = ∅ , i j≠ . (1)

As well as this, in grouping problems there are also usually
some problem-specific constraints that define valid and legal
groupings, and examples include such well-known problems
as graph colouring, the frequency assignment problem, bin
balancing, and the bin packing problem. Indeed it was the
latter problem that was first addressed via a GGA by their
creator, Emanuel Falkenauer, in [50].

In [50] and [51], Falkenauer convincingly argues that when
considering grouping problems, the so-called ‘traditional’
genetic operators and representations can actually be highly
redundant, not least due to the fact that the operators are item-
oriented rather than group-oriented. The upshot is a general
tendency for these operators to recklessly break up the
building blocks that we might otherwise want promoted. As
an example, consider the traditional item-based encoding
scheme, where a chromosome such as 31223 represents a
solution where the first item is in group three, the second is in
group one, the third is in group two, and so on. (This has been
used, for example, with timetabling in [1] and [35].) First of
all, when used with a grouping problem, such a representation
goes against the principle of minimum redundancy (see [52])
because, given a candidate solution using n groups (in the
chromosome above, for example, n = 3), there are actually
another (n!)–1 possible chromosomes that will represent the
same grouping of items. This means that the size of the search
space will be much larger than it needs to be. Next, if we were
to make use of a ‘traditional’ recombination operator with this
encoding, we would generally see context dependant
information being passed out of context and, as a result, the
offspring would rarely resemble either of their two parents
(with respect to the solutions that they represent). For
example, let us apply a standard two-point crossover to two
chromosomes: 3|12|22 crossed with 1|23|12 would give, as
one of the offspring, 32322. Firstly, this offspring no longer
has a group 1 and, depending on the problem being dealt with,
this may mean that it is invalid. Secondly, it could be agued
that this operation has resulted in nothing more than a near
random jump in the search space, going against the general
aim of a recombination operator.

Similar observations can also be made with a standard
mutation operator with this encoding and also with the typical
genetic operators that work with permutation based encodings,
such as the partially mapped crossover of Goldberg [53] (see
[51], pages 85-96, for a more detailed description).

These arguments lead to the following conclusion: When
considering grouping problems, it is essentially the groups
themselves that are the underlying building blocks of the
problem and not, for example, the particular states of any of
the items individually. Thus, representations and genetic
operators that allow these groups to propagate effectively
during the evolutionary process are a promising approach.
With this in mind, a standard GGA scheme has been proposed
by Falkenauer in [50] and [51], and there have since been
applications of this basic technique to the bin balancing (or

equal-piles) problem [54], graph colouring [6, 55], edge
colouring [56] and exam-timetabling [6], each with varying
degrees of success.

It is fairly clear from the problem description in this section
that the UCTP considered here also constitutes a grouping
problem. In this case, the ‘items’ are the events themselves,
and the ‘groups’ are defined by the timeslots. Thus, in order
for a timetable to be feasible, the events need to be grouped
into t timeslots (we remember that, in this case, t = 45) such
that all of the hard constraints are satisfied.

In the next section we will describe an EA that uses this
grouping theme to tackle the UCTP. The remainder of this
paper is then set out as follows: in section IV we will provide
some general details of the experimental set-up used in this
study and, using this framework, will go on to look at the
effects that the various genetic operators seem to have on the
quality of the search in section V. Next, in section VI, we will
go on to introduce a new way of measuring population
diversities for this sort of representation, and will make some
other general comments regarding this sort of algorithmic
approach. In section VII we will then attempt to improve the
algorithm: firstly, through the use of some new fitness
functions and, secondly, via the introduction of a stochastic
local-search operator (making, in effect, a grouping memetic
algorithm). In particular, we will examine the good and bad
effects that this operator can have, and will also consider the
consequences of removing the grouping genetic operators
altogether. Finally, in section VIII we will outline the main
conclusions of this study and, in section IX, we will discuss
some possible future research issues raised by these
conclusions.

III. THE ALGORITHM

A. Representation and Solution Construction
For this algorithm, each timetable is represented by a two

dimensional matrix where rows represent rooms and columns
represent timeslots [57]. Each place in the timetable (i.e. cell
in the matrix) can be blank, or contain at most one event. Note
that this latter detail thus allows us to disregard the second
hard constraint of this problem. Additionally, in this approach
we choose to not allow any event to be inserted into a place
where it causes a violation of either of the two remaining hard
constraints. Instead, extra timeslots are opened (i.e. columns
are added to the matrix) in order to handle events that cannot
be feasibly assigned to any place in the current timetable.
(Similar schemes have also been used in other methodologies:
see [6], [23], [24], and [27], for example.)

As we will see, a scheme for constructing full solutions
from empty or partial solutions is vital in this sort of
algorithmic approach, not only for building members of the
initial population, but also for use with the grouping genetic
operators (described below). The procedure Construct for
achieving this is outlined in fig. 2, and takes, as arguments, an
empty or partial timetable tt and a non-empty list of currently
unplaced events U. Using the sub-procedure Build, events are

.

5

then taken one by one from U (according to some heuristics,
defined in Table I), and inserted into places in the timetable
that are between timeslots x and y and that are feasible. Events
for which there are no feasible places are ignored. Eventually
then, U will be empty (in which case we will have a complete
timetable that may or may not be using the required number of
timeslots), or it will only contain events that cannot be
inserted anywhere in the current timetable. In the latter case, a
number of new timeslots are opened, and the process is
repeated on these new timeslots. The number of timeslots that
are opened is calculated in line 6 of the Build procedure in fig.
2. Note that the result of this calculation represents a lower
bound, because we know that a maximum of r events can be
assigned to one particular timeslot, and therefore at least

| | /U r⎡ ⎤⎢ ⎥ extra timeslots will be needed to accommodate the
remaining events in U.

In order to form an initial population, the construction
procedure is called for each individual. At each step, an event
is chosen according to heuristic H1 with ties being broken by
H3

2. Next, a place is chosen for the event using heuristic H4,
with ties being broken by H5 and further ties with H6. By
using H4, we are making the seemingly sensible choice of
choosing the place that will have the least effect on the future
place options of the remaining unplaced events. Meanwhile,
the use of heuristics H3 and H6 (random choices) in the initial
population generator provides us with enough randomisation
to form a diverse initial population.

Fig. 2. The Construction Procedure: describing how a partial or empty
timetable is converted back into a complete timetable. In this pseudo-code tt
represents the current timetable and U is a list of unplaced events of length |U|.
Additionally, t represents the target number of timeslots, len(tt) indicates how
many timeslots are currently being used by tt, and r indicates the number of
rooms.

(As an aside, it is worth mentioning that we also
implemented and tested a second construction scheme that
worked by opening timeslots in tt one by one, on the fly as
soon as any event in U, due to preceding insertions, became

2 Note that H1 is somewhat akin to the rule for selecting which node to

colour next in Brélaz’s classical Dsatur algorithm for graph colouring [58],
although this particular heuristic also takes the issue of room allocation into
account. This basic rule therefore selects events based on the state of the
current timetable, prioritising those with the least remaining feasible options.

unplaceable. However a detailed comparison of the two
schemes revealed that the quality of the individual timetables
produced by this second method was usually worse, and the
cost of this process was significantly higher. This second issue
is particularly important because, as we will see in the next
section, a reconstruction scheme is also an integral part of the
grouping genetic operators. We believe that this greater extra
expense is due to the fact that, whilst looking for places for
events in U, the whole timetable (which would be continually
growing) needs to be considered, whilst in our construction
scheme, while U remains non-empty, the problem is actually
being split into successively smaller sub-problems.)

TABLE I.
 THE VARIOUS EVENT AND PLACE SELECTION HEURISTICS USED WITH THE

CONSTRUCTION PROCEDURE IN FIG 2

Heuristic Description
H1 Choose the event with the smallest number of

possible places to which it can be feasibly
assigned in the current timetable.

H2 Choose the event that conflicts with the
highest number of other events.

H3 Choose an event randomly.
H4 Choose the place that the least number of other

unplaced events could be feasibly assigned to
in the current timetable.

H5 Choose the place in the timeslot with the most
events in.

H6 Choose a place randomly.

B. The Genetic Operators
Because, in this case, we have decided to consider the

individual timeslots as the principal building blocks of the
problem (section II), it follows that appropriate genetic
operators should be defined so that these ‘groups of events’
can be propagated effectively during the evolutionary process.
We chose to use the standard GGA recombination
methodology (proposed in [50, 51]) modified to suit our
particular needs and representation.

Fig. 3 depicts how we go about constructing the first
offspring timetable using parents p1 and p2 with four randomly
selected crossover points. A second offspring is constructed
by switching the roles of the parents and the crossover points.
What is important to note about this operator is that it allows
the offspring to inherit complete timeslots (the structures that
we consider to be the underlying building blocks of the
problem) from both parent timetables.

Note that as a result of stage-two of recombination, there
will be duplicate events in the offspring timetable. This
problem could be corrected, for example, by going through
the timetable, and removing all duplicate events from the
timeslots that came from p1. However, although such an
operation would result in a valid and complete offspring
timetable, it is likely that the offspring would actually be poor
in quality because it would almost certainly be using more
timeslots than either of the two parents, thus going against the
general aim of the algorithm. We therefore choose to use the

Construct (tt, U) .
1. if (len(tt) < t)
2. Open (t – len(tt)) new timeslots;
3. Build (tt, U, 1, len(tt));

Build (tt, U, x, y) .
1. while (∃ events in U with places in tt
 between timeslots x and y)
2. Take an event e from U that has feasible
 places in tt;
3. Pick one of these places and insert e;
4. if (U = ∅) end;
5. else
6. Open ⎡ ⎤| | /U r new timeslots;
7. Build (tt, U, y, len(tt));

.

6

additional step of adaptation [59] to try to circumvent this
issue. This process is described in stage-three of fig. 3 and,
indeed, the same procedure has also been used with GGAs
applied to bin packing in [50] and [51], and graph colouring in
[6] and [55]. Finally, in stage-four of recombination, events
that become unplaced as a result of the adaptation step are
reinserted using the construction procedure (fig. 2) with
heuristic H1 being used to define the order in which events are
reinserted (breaking ties with H2 and any further ties with H3).
Places for events are then selected using the same heuristics as
the initial population generator.

Our mutation operator also follows a typical GGA scheme:
a small number of randomly selected timeslots are removed
from the timetable and the events contained within these are
reinserted using the construction procedure. (The number of
timeslots to remove is defined by the parameter mr, such that
between one and mr distinct timeslots are randomly chosen to
be removed.) Because we want the mutation operator to serve
its normal purpose of adding diversity to the search, the order
that the events are reinserted is completely randomised (by
only using heuristic H3), with places being chosen using
heuristic H4, breaking ties with H6.

Finally, we also make use of an inversion operator.
Similarly to the other GGAs already mentioned, this works by
selecting two timeslots in a timetable at random, and then
simply reversing the order of the timeslots contained between
these. Note that inversion does not, therefore, alter the number
of timeslots being used, or indeed the packings of events into
these timeslots. However, it may assist recombination if
promising timeslots are moved closer together, as this will
improve their chances of being propagated together later on.3

 p1

 p2

 a b

 c d

(1) Point Selection.
Randomly select crossover
points a, b, c, and d such
that a != b and c !=d.

(2) Injection. Inject
copies of the timeslots
between points c and d
into a copy of p1 at
point a.

(3) Removal of Duplicates using
Adaptation. Remove all timeslots from the
parts that came from p1 (i.e. the white part)
that contain duplicate events. Keep track of
any items that become unplaced.

+

(4) Reconstruction.
Reinsert any unplaced
events using the
construct procedure.

Fig. 3. The four stages of recombination: point selection, injection, removal
of duplicates using adaptation, and reconstruction. Note that in order to
construct the second offspring, copies of the timeslots between points a and b
in p1 are injected into a copy of p2 at point c.

C. A Preliminary Fitness Measure
Finally, in this algorithm, we need a way of measuring a

3 It is probably worth noting that we could have actually implemented a

uniform grouping crossover operator here as opposed to the two-point variant
explained above. However, in this case we decided to keep all the genetic
operators within the GGA design-guidelines specified by Falkenauer in [51].

timetable’s quality. In our case, since we are only interested in
finding feasibility, a suitable measurement need only reflect
the timetable’s distance-to-feasibility. In general timetabling,
this can be measured by taking various factors into
consideration such as the number of broken constraints, the
number of unplaced events, and so on. Of course, what is
chosen should depend on the representation being used, and
on user and/or algorithmic preference. As we stated earlier, in
this algorithm we explicitly prohibit the violation of hard
constraints and, instead, open up extra timeslots as and when
needed. We could therefore simply use the number of extra
timeslots as a distance-to-feasibility measure. However, such a
method is likely to hide useful information because it would
not tell us anything about the number of events packed into
these extra timeslots. We therefore use a more meaningful
measure that we calculate by carrying out the following steps.
Let t represent the target number of timeslots and s represent
the current number of timeslots being used in a timetable:

1. Calculate the number of extra timeslots t' being used by
the timetable (where t' = s – t)

2. Identify the t' timeslots with the least events in them
3. Total up the number of events in these t' timeslots.

We may also think of this measure as the minimum number of
events that would need to be removed from the timetable in
order to bring the number of timeslots down to the required
amount. Obviously, a fully feasible timetable has a distance-
to-feasibility of zero.

IV. EXPERIMENTAL SET-UP
As it turned out, our initial tests showed that many existing

benchmark instances (on the web and otherwise) could be
easily solved by this algorithm. For example, feasible
solutions were usually found in initial populations when using
the instances at [43].4 Although this highlights the strength of
our construction scheme, unfortunately it tells us very little
about the other characteristics of the algorithm. We therefore
set about making some new problem instances. These were
created with no reference to this algorithm, but were
deliberately intended to be troublesome for finding feasibility.
This was achieved by simple experiments whereby instances
were created and run on two existing constructive algorithms,
reported in [47] and [60]. Only instances that both of these
algorithms struggled with were considered for inclusion in the
instance set. Indeed, given excess time, these two algorithms
were generally unable to place around 20% to 40% of the
events. All in all, we made three sets of twenty instances: the
small set, the medium set and the large set, with sizes of
approximately 200 events and 5 rooms, 400 events and 10
rooms, and 1000 events and 25 rooms respectively. Further
details, including a description of how the instances were
generated, plus the instances themselves, can be found online
at [44]. Note that all instances have at least one solution where

4 Note, however, as we mentioned in section II, these benchmark instances

were created with soft constraints in mind.

.

7

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (sec)

using recombination (rr=1.0)
primitive recombination (rr=1.0)

no recombination (rr=0.0)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

evaluations (x10)

using recombination (rr=1.0)
primitive recombination (rr=1.0)

no recombination (rr=0.0)

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (sec)

using recombination (rr=1.0)
primitive recombination (rr=1.0)

no recombination (rr=0.0)

 80

 82

 84

 86

 88

 90

 0 100 200 300 400 500 600 700 800

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (sec)

using recombination (rr=1.0)
primitive recombination (rr=1.0)

no recombination (rr=0.0)

Figs. 4 (a), (b), (c), and (d). (Top left, top right, bottom left, and bottom right respectively). Showing the behaviour of the algorithm with and without
recombination over time (except for (b), which is with respect to evaluations). The meaning of ‘primitive recombination’ is explained in the text. Figs (a) and (b)
show runs with the medium instances, (c) with the small instances, and (d) with the large instances. Each line represents, at each second, the distance to
feasibility of the best solution in the population, averaged across 20 runs on each of the 20 instances (i.e. 400 runs) using mr = 2, ir = 4, and ρ = 50.

the events can be feasibly packed into the target number of
forty-five timeslots.

We also imposed certain time limits on our algorithm that
we considered to be fair for these sizes of problem. These
were 30, 200 and 800 seconds of CPU time for the small,
medium and large sets respectively, on a PC under Linux,
using 1GB RAM and a Pentium IV 2.66Ghz processor.

For all experiments, a steady-state population (of size ρ)
using binary tournament-selection was used: at each step of
the algorithm, two offspring are produced by either
recombination or replication5 (dictated by a recombination
rate rr). Next, the offspring are mutated (according to the
mutation rate mr – see section III), and finally reinserted into
the population, in turn, over the individuals with the worst
fitness. If there is more than one least-fit individual, a choice
between these is made at random. Additionally, at each step a
few (ir) random individuals in the population are selected to
undergo inversion.

V. THE EFFECTS OF RECOMBINATION
For our first set of experiments, we looked at the general

5 An offspring made via replication is simply a copy of its first parent.

effects of the recombination operator by comparing runs using
recombination (with a rate rr = 1.0) against runs that used
none (rr = 0.0). Results are depicted in figures 4(a)-(d). If we
look first at the results for the medium instances in fig. 4(a),
we can see that after an initial lag period of around 20 seconds
(where using no recombination provides quicker movements
through the search space) a use of our recombination operator
benefits the search significantly.6

Note however, that such a simple comparison on its own is
not completely fair because, as the reader may have noticed,
the heuristics used for reconstruction with our recombination
operator are different to those used with mutation (and
therefore it might be the heuristics doing the work, and not the
fact that the recombination operator is successfully combining
useful parts of different solutions). Thus, we also include a
third line that again uses recombination with a rate 1.0, but
also uses the more primitive reconstruction heuristics used by
the mutation operator (this line is labelled ‘primitive
recombination’ in the figures). In fig. 4(a) we can see that, in
this case, the presence of this primitive recombination

6 In this paper, we use the word ‘significant’ to indicate that a Wilcoxon
signed-rank test showed that results found at the time limit came from a
different underlying distribution with probability ≥ 95%.

.

8

operator actually seems to hinder the search with regards to
time. However, it might also make sense to observe this
behaviour from a second perspective: in timetabling, due to
the large number of possible constraints that can be imposed
on a particular problem, it can often be the case that the
evaluation function might actually become the most costly
part of the algorithm, particularly when soft constraints are
also being considered. If we now look at these same runs, but
with regards to the number of evaluations7 (fig. 4(b)), we can
see that according to this criterion, use of this more primitive
recombination, up until around 150,000 evaluations, is clearly
beneficial. We also see once more that the more advanced
recombination operator provides the best search. This
difference was also significant.

With the small and large instance sets, meanwhile, we
noticed different behaviours. In the case of the small
instances, the algorithm generally performed well across the
set, and seemed quite insensitive to the various parameter
settings (and whether recombination was being used or not).
Indeed, although fig. 4(c) indicates a slightly better search
when using recombination, this difference was small and not
seen to be significant. As a matter of fact, in our trials, optimal
solutions were regularly found to over half of the instances
within the time limit, making it difficult to draw any
interesting conclusions other than the fact that performance of
the algorithm with these instances was generally quite good.

Finally, with the large instances, yet another type of
behaviour was observed. Looking at fig. 4(d), we can see that
the use of recombination in these cases seems to drastically
slow the search. Indeed, no benefits of recombination can
actually be seen until around 500 seconds. Clearly, if we were
using shorter time limits, the operator might therefore hinder
rather than help. Secondly, if we look at the scale of the y-axis
in fig. 4(d), we can see that, in fact, only small improvements
are actually being achieved during the entire run; indeed,
considering all problem instances used in the tests are known
to have at least one optimal solution (with respect to the hard
constraints) these improvements are disappointing.

The above observations immediately suggest that instance
size is an important factor in the run characteristics of this
algorithm in terms of both timing implications and general
progress made through the search space. In the next section
we will present some ideas as to why this might be so.

VI. SCALING-UP ISSUES WITH THE GGA

A. Measuring Diversity
Before describing some of the possible scaling-up issues of

this algorithm, it is first necessary to introduce a diversity
measure for the grouping representation. Because the concepts
that will be described in this section apply to grouping
problems as a whole, we will use the more generic terms
‘groups’ and ‘items’ in our descriptions, as opposed to

7 In this paper, each time a new individual is produced, we consider this as

one evaluation.

‘timeslots’ and ‘events’, which, of course, only apply to
timetabling problems.

As we have discussed, the grouping representation admits
two important properties: chromosomes are variable in length
(in that they can contain varying numbers of groups), and the
ordering of the groups within the chromosomes is irrelevant
with regards to the overall solution being represented.
Unfortunately, these characteristics mean that many of the
usual ways of measuring population diversity, such as
Hamming distances [61] or Leung-Gao-Xu diversity [62], are
rendered inappropriate. Additionally, in the case of this
timetabling problem, we believe that it would be misguided to
use diversity measures based on population fitness
information (such as the standard deviation etc.), because in
our experiences it can often be the case that minor changes to
a timetable might actually result in large changes to its fitness
and, inversely, two very different timetables can often have a
similar fitness.

We believe that a suitable diversity measure for this
representation, however, can be obtained from the ‘substring-
count’ method of Mattiussi, Waibel, and Floreano, recently
presented in [63]. In the grouping representation, it is worth
considering that each group can only occur at most once in
any particular candidate chromosome (otherwise the solution
would be illegal because it would contain duplicates). Given a
population P, a meaningful measurement of diversity might
therefore be calculated via the formula:

 ()
m

div P
n

ρ= ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2)

where ρ is the population size, m is the number of different
groups in the population, and n is the total number of groups
in the population. Using this measurement, a homogenous
population will therefore have a diversity of 1.0, whilst a
population of entirely distinct individuals (where none of the
individuals have an equivalent grouping of items) will have a
diversity of ρ.

Additionally, in agreement with Mattiussi, Waibel, and
Floreano, using these ideas we are also able to define a
distance measurement for a pair of individuals, p1 and p2, via
the formula:

 1 2(,) 2 1
x

dist p p
y

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3)

where x represents the number of different groups in p1 and
p2, and y is the total number of groups in p1 and p2. Thus, two
homogenous timetables will have a distance of zero and two
maximally distinct individuals will have a distance of one.

B. Diversity, Recombination and Group Size
In our experiments, we often noticed that evolution was

slow at the beginning of a run, but then gradually sped up as
the run progressed. These characteristics were particularly
noticeable with the larger instances where we saw new
individuals being produced at a somewhat unsatisfactory rate
for quite a large proportion of the run. Investigations into this

.

9

matter revealed that this was due to the fact that the
recombination operator usually tended to be more costly at the
start of a run and then gradually became less expensive as
evolution progressed. Further investigations revealed that this
added expense seemed to be influenced by two factors:
population diversity, and the sizes of the groups in the
candidate solutions.

Fig. 5 shows three examples of the grouping recombination
operator in order to illustrate these concepts. In fig. 5(a), the
distance between candidate solutions p1 and p2 is
comparatively small (i.e. 2*(6/8)–1 = 0.5) and only one of the
seven items becomes unplaced during the recombination
operation. In fig. 5(b) however, although the number of
groups and items being injected is the same as fig. 5(a), the
distance between p1 and p3 is larger (i.e. 2*(8/8)–1 = 1.0);
consequently, the duplicate items resulting from the injection
are spread across more of the groups, meaning that a greater
number of the groups coming from p1 need to be eliminated.
This also means that more items have to be dealt with by the
reconstruction process, making the overall procedure more
expensive.

Next, in fig. 5(c) we demonstrate the effects that larger
groups have on the recombination operator. In this case, the
size of the problem may be considered the same as the
previous two examples, because we are still only dealing with
seven items. However, this time the size of the groups is larger
and, as can be seen, the injection of a group from p5 into p4
causes a high proportion of the items to become unplaced
during stage three of recombination.

In fact, figs. 5(b) and 5(c) depict cases of what we will term
a unilateral recombination: after the injection stage, all of the
groups coming from the first parent have contained a
duplicate and have therefore been eliminated. Thus, the
resultant offspring does not actually end up containing
building blocks from both parents (as is usually desirable), but
will instead be made up of some groups from the second
parent, with the rest having to be formed, from scratch, by the
reconstruction process. In this sense, it might be considered
more of a macro-mutation operator than anything else.

In order to further illustrate these concepts, consider figures
6(a)-(c), which show details of an example run of our GGA
with a small, medium, and large problem instance
respectively. In all three figures it can be seen that as
evolution progresses, the level of diversity in the populations
generally falls. This, of course, is typical of an evolutionary
algorithm. We also see in these figures that the proportion of
items (events) becoming unplaced during recombination

mirrors this fall very closely, thus highlighting the strong
relationship of the two measurements. However, the other
noticeable characteristic in these figures is the way in which
high levels of both of these measures are sustained for longer
periods when the instance sizes (and therefore the number of
events/items per timeslot/group) are larger. Looking at fig.
6(c), for example, we can see that no real drop in either
measurement actually occurs until around 180,000 evaluations
and, up until this point, over half of the items (events) are
becoming unplaced, on average, with every application of the
recombination operator.

We believe that this latter phenomenon is caused by the fact
that because in this case the groups are larger, the potential for
losing the groups coming from the first parent is increased (as
illustrated in fig. 5(c)). We may therefore view this as a more
destructive recombinative process. Of course, not only does
this make the operation more expensive (because a greater
amount of reconstruction has to be performed), it also means
that it is more difficult for the GGA to successfully combine
and pass on complete groups from one generation to the next.
Thus, it would seem that, in these cases, the recombination
operator is indeed becoming more of a macro-mutation
operator, and a key component of the evolutionary algorithm
might be being compromised.

It is also worth noting that in cases where the recombination
operator is behaving in a more destructive manner, this will
generally mean that more groups in an offspring will occur as
a result of the reconstruction process (as opposed to being
inherited from an ancestor). Unfortunately, however, this may
well add extra diversity to the population, thus exacerbating
the problem even further.

C. Group Size and Chromosome Length
As a final point, if we refer back to fig. 3 (which

demonstrates the standard GGA recombination operator
applied to this timetabling problem), we note that the total
number of possible values that can be chosen for crossover
points c and d (that is, the total number of group-combinations
that can be selected for injection from the second parent into
the first parent) is exactly:

(1)

2

s s −
 (4)

where s represents the length of the second parent p2.
Additionally, the total number of possible group-combinations
that can be selected for removal by the mutation operator is:

(c) (b) (a)
construct p1

A
B C

D
E
F

G

A
B C

D
E
F

E
F

C
G

G +

A
B E

F
C
G D

 p2
A
B E

F C
G

D p3 p1

+ A D F

A
B C

D
E
F

G

A
B C

D
E
F

G
B

E
C

G

A
F

G
B

E
C

D

G
B

E
C

A
B
C
D

B
D
F

E
F
G

+

B
D
F

A C G E

p4

A
B
C
D

E
F
G

p5
A
C
E

B
D
F

G construct
construct

Fig. 5. Demonstrating how diversity and group size can influence (1) the amount of reconstruction needed, and (2) the number of groups that are lost, using the
standard grouping recombination operator.

.

10

!

!()!

s

m s m−
 (5)

where m is the number of groups chosen to be removed
from the chromosome, and s represents the length of the
chromosome being mutated.

However, unlike in many forms of evolutionary
computation where chromosome length is defined by the size
of the problem instance being dealt with (e.g. [1], and [64])8;
with this sort of algorithm and representation, chromosome
length is actually defined by the number of groups being used.
Of course, this means that when dealing with instances that
use larger groups of items, chromosomes will be
proportionately shorter, and the values returned by equations
(4) and (5) will, in turn, be lower.

The implications of these facts are particularly apparent
with this timetabling problem. Here, the number of timeslots
being used defines chromosome length, and it is the number
of events and rooms that defines problem size. However,
given that our aim is to feasibly arrange the events into forty-
five timeslots, this means that the lengths of the chromosomes
will remain more or less constant, regardless of the problem
size. Unfortunately, in practice this means that an increase in
instance size will not only cause the timeslots to be larger
(resulting in the unfavorable situations described in the
previous subsection), it also implies that the potential for the
genetic operators to provide sufficient exploration of the
search space might also be more limited.

VII. IMPROVING THE ALGORITHM
Having now introduced a GGA for the UCTP, and having

also highlighted some general issues relating to this type of
approach, in this section we will now look at two separate
ways that we might go about improving the algorithm: firstly,
through the use of some new fitness functions and, secondly,
via the introduction of an additional local-search operator
[65].

8 In grouping problems, for example, problem size will generally be

defined by the number of items.

A. Fitness Function Analysis
A central aspect of any evolutionary algorithm is the way in

which candidate solutions in the population are evaluated
against each other. Ideally, a good fitness function must
convey meaningful information about the quality of a
candidate solution and should also encourage the search into
promising areas of the solution space. For many problems in
operational research, a suitable measure is suggested naturally
by the problem at hand (e.g. the travelling salesman problem
[64]). In others, it is not so easy. For example, in [51]
Falkenauer looks at the bin packing problem and suggests that
while the most obvious way of measuring a candidate
solution’s fitness is to just calculate the number of bins being
used (with the aim of minimisation), this is actually unsuitable
because it will likely lead to a very inhospitable fitness
landscape where ‘a very small number of optimal points in the
search space are lost in the exponential number of points
where this purported cost is just one above this optimum.
Worse, these slightly sub-optimal points [all] yield the same
cost.’ This could, for example, lead us to a situation where we
might have a diverse population, but all members appear to
have the same fitness. In this situation, not only would
selection pressure be lost, but also if all the scores were indeed
one away from the optimum, any move from near-feasibility
to full-feasibility would be more or less down to chance.

In section III C, we mentioned two possible ways of
measuring solution quality with this problem, and then used
one of these (our so-called distance-to-feasibility measure) to
perform the experiments in section V. However, there is no
reason why we need to use either of these during evolution.
Indeed, both measurements are fairly coarse-grained and
might well lead us to the undesirable situations described in
the previous paragraph. We therefore designed and tested four
further fitness functions. These, plus the original two are
defined as follows. For simplicity’s sake, all have been made
maximisation functions.

 1
1

1
f

s
=

+
 (6) 2

1
1

f
d

=
+

 (7)

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

pr
op

or
io

n
(%

)

di
ve

rs
ity

evaluations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

pr
op

or
io

n
(%

)

di
ve

rs
ity

evaluations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

pr
op

or
io

n
(%

)

di
ve

rs
ity

evaluations (x200)

proportion (%)
diversity

Figs. 6 (a)-(c) (Left to right.): Example runs with a small, medium, and large instance respectively, demonstrating (1) the close relationship between diversity
and the amount of reconstruction needing to be done with the recombination operator, and (2) the differing ways that the two measures vary during the runs as a
result of the different sized timeslots/groups. (All runs using rr = 1.0, ir = 4, mr = 2, ρ = 50.) . In the figures, the amount of reconstruction being done with the
recombination operator is labelled Proportion (%) – this refers to the percentage of events that are becoming unplaced, on average, with each application of the
recombination operator.

.

11

3
1

1 ()
f

d s t
=

+ + −
 (8)

2
1

4

()s
ii

E r
f

s
== ∑ (9)

2
1

5

()s
ii

C
f

s
== ∑ (10)

2
1

6

()s
ii

S
f

s
== ∑ (11)

Here, s represents the number of timeslots being used by a
particular timetable, t is the target number of timeslots, r is the
number of available rooms per timeslot, and d represents the
distance-to-feasibility measure already defined. Additionally,
we also define some new measures: Ei represents the number
of events currently assigned to timeslot i; Si tells us how many
students are attending events in timeslot i; and, finally, Ci tells
us the total conflicts-degree of timeslot i (that is, for each
event in the timeslot, we determine its degree by calculating
how many other events in the entire event set it clashes with,
and Ci is simply the total of these values).

Function f3 is basically the same as Eiben et al.’s fitness
function for graph colouring in [55]. It uses the observation
that if two timetables have the same value for d, then the one
that uses the least number of extra timeslots is probably better
and, similarly, if two timetables have the same number of
extra timeslots, then the one with the smallest value for d is
probably better.

Functions f4, f5, and f6, meanwhile, judge quality from a
different viewpoint and attempt to place more emphasis on the
individual timeslots. Thus, timetables that are made up of
what are perceived to be promising timeslots (i.e. good
packings of events) are usually favoured because their fitness
will be accentuated by the squaring operations. The three
functions differ, however, in their interpretations of what
defines a good packing: function f4 tries to encourage
timetables that have timeslots with high numbers of events in
them, and is similar to the fitness function suggested by
Falkenauer for bin packing [51]; function f5, meanwhile, uses
the well-known heuristic from graph colouring [58] that
recommends colouring as many nodes (events) of high degree
as possible with the same colour (this function was originally
proposed by Erben in [6]); finally, function f6 attempts to
promote timetables that contain timeslots with large total
numbers of students attending some event in them – following
the obvious heuristic that if many big events are packed into
one timeslot, then other smaller (and presumably less
troublesome) events will be left for easier packing into the
remaining timeslots.

As a final point, it is worth noting that functions f2 and f3
need to know in advance the target number of timeslots. If this
is undefined, the task of calculating the minimum number of
timeslots needed to accommodate the events of a given
instance is equivalent to calculating the chromatic number in
graph colouring. However, computing the chromatic number
is itself, an NP-hard problem. In practical course timetabling,
however, this detail is probably unimportant because it is
typical for the university to specify the target number of
timeslots in advance.

B. Experimental Observations
To investigate the effects of these six fitness functions, we

performed tests using the same steady-state population scheme
as before (section IV), and simply altered the fitness functions
for each set of trials. Note then, that the only actual difference
between the trials is the criteria used for choosing tournament
winners, and picking the individuals to replace. Note also, that
the computational costs of the fitness functions are roughly
equivalent, as all require just one parse of the timetable.

Figures 7(a)-(c) show how the algorithm responds to the six
fitness functions over time with the different instance sets. If
we first draw our attention to figures 7(a) and (b), we can see
that with regards to the small and medium instances, f5, and
then f6, clearly give the best searches (on average), with
respect to both the speed of the search and the best solutions
that are found, with f1 and then f2, as expected, providing the
worst. We believe this is due to the reasons mentioned above:
when using f5 and f6 (and to a lesser extent, f3 and f4) the
algorithm is able to distinguish between solutions that,
according to f1 or f2, might be valued the same. Thus, selection
pressure is able to remain for a greater duration of the run.
Furthermore, it would appear that the heuristic criteria that f5
and f6 use to make these distinctions (described above), is
indeed conducive to the search. Indeed, in both cases, the
improvements that f5 and f6 provided were significant.

Interestingly, we see that the algorithm responds differently
to the fitness functions when considering the large instances
(fig. 7(c)). As before, we see that f1 is clearly the worst, but
we also see that the characteristics of the remaining five
fitness functions is now more or less reversed, with f2
providing the best performance. This could be because the
squaring functions used with f4, f5, and f6 cannot accentuate
the characteristics of a good timeslot as much as when used
with the other instances (which have fewer events per
timeslot). However, most importantly one has to look again at
the scale of the y-axis of fig. 7(c) to appreciate that the
algorithm, again, actually performs fairly badly with all of the
fitness functions. Additionally, if we ignore f1, the differences
between the other five fitness functions were not actually seen
to be significant.

Fig. 8 also shows some intriguing results of these
experiments. As can be seen, when considering the medium
and large instance sets, the number of evaluations performed
within the time alters drastically depending on which fitness
function the algorithm is using. (This pattern also emerges
with the small instances, but the distinction is more difficult to
make in the figure.) This, we believe, is due to the concepts
described above: because the more fine-grained fitness
functions (f4, f5, and f6) are able to distinguish between
timetables that the other three fitness functions might see as
identical, selection pressure remains for a greater part of the
run. This, in turn, means that diversity falls at a higher rate for
a longer period, resulting in a less expensive recombination
process. For the same reason, the most coarse-grained fitness
function f1 also performs by far the fewest evaluations within
the time limits. Note that an overly rapid loss of diversity may

.

12

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

f1
f2
f3
f4
f5
f6

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

f1
f2
f3
f4
f5
f6

 78

 80

 82

 84

 86

 88

 90

 0 100 200 300 400 500 600 700 800

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

f1
f2
f3
f4
f5
f6

 0

 50000

 100000

 150000

 200000

 250000

 300000

f6f5f4f3f2f1

ev
al

ua
tio

ns

small
medium

large

Figs. 7(a)-(c) (top-left, top-right, and bottom-left respectively), and figure 8 (bottom-right). Figures 7 (a)-(c) show the effects of the six different fitness
functions over time with the small, medium, and large instances respectively. Each line represents, at each second, the distance to feasibility of the best solution
in the population, averaged across 20 runs on each of the 20 instances (i.e. 400 runs), using ρ = 50, rr = 1.0 (0.25 with 7(c)), mr = 2, and ir = 4. Fig. 8 shows
the number of evaluations performed within the time limits (specified in section IV), when using the various fitness functions, and the different sized instances.

sometimes be undesirable in an EA as it might lead to a
redundancy of the recombination operator and an under-
sampling of the search space. However, in the case of this
algorithm there is clearly a trade-off because, as noted, a high
amount of diversity can cause recombination to be both
expensive and destructive. With the small and medium
instances, the trade-off seems to fall in favour of using f5 and
f6 which, although exhibiting tendencies to lose diversity at a
quicker rate, still both return superior results and in less time.

As a final point, it is worth considering some practical
implications of these fitness functions. In some real world
timetabling problems there may be some events that every
student is required to attend (such as a weekly seminar or
assembly). Clearly, such an event must be given its own
exclusive timeslot, as all other events will clash with it.
However, fitness function f4 will, unfortunately, view this as
an almost empty (or badly packed) timeslot and will penalise
it, therefore possibly deceiving the algorithm. Fitness
functions f5 and f6, however, will reward this appropriately.
Conversely, f5 for example, as well as being shown to be less
favourable with the larger instances, currently bases its
judgement of a timeslot’s quality on the total degree of the

events within it (with higher values being favoured).
However, this criterion is only a heuristic, and it is possible
that counter examples could be encountered.

C. Introducing Local-Search Techniques
It is generally accepted that EAs are very good at coarse-

grained global search, but are rather poor at fine-grained
local-search [66]. It is therefore perfectly legitimate (and
increasingly common) to try to enhance an EA by adding
some sort of local-search procedure. This combination of
techniques is commonly referred to as a memetic algorithm
(see the work of Moscato [67, 68], for example), and the
underlying idea is that the two techniques will hopefully form
a successful partnership where the genetic operators move the
search into promising regions of the search space, with the
local-search then being used to explore within these regions.

Looking at some other algorithms from this problem
domain, both Dorne and Hao [69], and Galnier and Hao [70]
have shown how good results can be found for many graph
colouring instances through the combination of these
techniques. In both cases, specialised recombination operators
were used, with tabu search then being utilised to eliminate

.

13

cases of adjacent nodes having the same colour. Rossi-Doria
et al. have also used similar techniques for timetabling in [35],
where the more global operators (such as uniform-crossover)
are complemented by a stochastic first-improvement local-
search operator which, as one of its aims, attempts to rid the
resultant timetables of any infeasibility.

As a matter of fact, it turns out that none of these three
methods are actually suitable for our algorithm, because they
are intended for eliminating violations of hard constraints,
which in our described methodology, we explicitly disallow.
Indeed, a suitable local-search procedure in this case should,
instead, be able to take a timetable with no hard constraint
violations, and somehow find a timetable that is hopefully
better, but still with no violations. With regards to other
grouping-based algorithms that have used of this sort of
representation, but have also made use of an additional local-
search technique, Falkenauer’s hybrid-GGA [71], and Levine
and Ducatelle’s ant algorithm [72] (both for bin packing) were
both reported to return substantially better results when their
global-search operators were coupled with a local-search
method. Their techniques were inspired by Martello and
Toth’s dominance criterion [73] and worked by taking some
unplaced items, and then attempting to swap some of these
with items already in existing bins so that (a) the bins became
more full, but (b) the number of items in the bin stayed the
same (i.e. each item was only replaced by a bigger item).

However, even though such dominance criterion does not
strictly apply in our timetabling problem, we can still try to
define a similar operator that will attempt to improve the
packings of events into the timeslots. Such an operator is
defined in fig. 9 and, by taking a list unplaced events and a
partial timetable (U and tt respectively), it operates by
repeatedly trying to take events from U and insert them into
free and feasible places in tt.

LocalSearch (tt, U, limit) .
1. Make a list V containing all the places in tt that

have no events assigned to them;
2. i = 0;
3. while (U ≠ ∅ and V≠∅ and i < limit)
4. foreach(u∈U and v∈V)
5. if (u can be feasibly put into v in tt)
6. put u into v in tt;
7. remove u from U and v from V;
8. if (U≠∅ and V≠∅)
9. repeat
10. choose random event e in tt and v∈V;
11. if(e can be feasibly moved to v in tt)
12. move e to v;
13. update V to reflect changes;
14. i++;
15. until (i ≥ limit or e has been moved to v)

Fig 9. The local-search procedure: In this pseudo code, tt represents a partial
timetable, U is a list of unplaced events, and limit represents the iteration limit
of the procedure.

Note that this operator will have two important effects.

First, while not allowing the number of events contained in tt
to decrease, if it is successful then events will be taken from U
and added to tt, thereby improving its overall timeslot
packings. Second, because the events and free spaces within tt
will be randomly shuffled amongst the timeslots (lines 9-15 of
fig. 9), diversity will be added to the population.

In our experiments, we used the local-search operator in
conjunction with our mutation operator. As before, each time
a mutation occurs, a small number of timeslots are randomly
selected and removed from the timetable. The events in these
timeslots now make up the list of unplaced events U and the
local-search procedure is applied. If U is non-empty when the
iteration limit is reached, then the construction scheme (figure
2) is used to insert the remaining events. (Here, the value for
limit – that is, the iteration limit of the procedure – was made
proportionate to the size of the instance being solved. Thus,
we used the parameter l such that limit = l*e; where e is the
number of events in the problem instance.)

D. Experimental Observations
With regards to algorithm performance, the introduction of

this operator now presents another trade-off: a high amount of
local-search might not allow enough new individuals to be
produced within the time limit (and will presumably result in
too little global search), whilst too little local-search might
result in an inadequate exploration of the search-space regions
that the global operators have brought us to.

To investigate these implications, we empirically carried
out a large number of trials on the three instance sets, using
various different recombination rates rr, settings for l,
mutation rates mr, and population sizes ρ. In all trials, fitness
function f5 from the previous section was used, as well as the
same steady-state population scheme described in section IV.

The first thing that we noticed in these experiments was the
dramatic effect that the use of local-search had on the number
of new individuals produced within the time limits. This is
illustrated for the three instance sets in fig. 10. Here, we see
that the introduction of local-search, even in small amounts,
causes a dramatic decrease in the number of new individuals
produced within the time limits. Although we believe that this
is partly due to the obvious fact that the local-search
procedure is adding extra expense to the mutation operator,
we believe that the main reason is due to the fact that, because
the local-search operator helps to maintain diversity in the
population, this therefore causes the recombination operator to
remain more expensive for a greater part of the run. As fig. 10
shows, this is especially so for the medium and large
instances. Secondly, in these experiments we also saw the
GGA respond differently to the various parameter settings
when dealing with the different instance sets. A short
summary of these differences now follows (example runs can
also be seen in figures 11(a)-(c)):
• With the small instances, the best parameter settings

generally involved using small populations with high
amounts of local-search and a very small (but still present)
amount of recombination. (The best results were gained

.

14

when using ρ = 5, l = 100, mr = 1 and rr = 0.1.)
• With the medium instances, the best parameter settings

for the GGA involved using small populations, with small
(but still present) amounts of local-search, and a fairly high
rate of recombination. (The best results were given by the
parameters ρ = 10, l = 2, mr = 1 and rr = 0.7.) An increase
in any of these parameters caused the search to become
much slower, particularly for increases in l, which would
simply maintain too much diversity in the population, thus
keeping the recombination operator destructive and
expensive. On the other hand, decreases in any of these
parameters tended to cause an earlier stagnation of the
search.

• With the large instances, the best results of the GGA were
gained when using big populations with small amounts of
recombination, and no local-search. (The best results were
given using ρ = 50, l = 0, mr = 1, and rr = 0.25.) In
particular, runs that used both local-search and
recombination always provided disappointing searches
because the diversity offered by the local-search would
generally cause the recombination operator to do more harm
than good. Thus, the best results were generally gained when

we ensured that many regions of the search space were
sampled (by using larger populations) with the majority of
the downhill movements then being attempted by the less
destructive mutation operator.

E. The Contribution of the GGA Operators
Given that the above experiments have indicated that the
inclusion of a local-search technique, whilst being able to aid
the search in some cases, can still cause the often unhelpful
diversity that makes the recombination operator expensive and
destructive; the natural question to now ask is: What results
can be gained if we abandon the genetic operators altogether,
and simply use local-search on its own?

We dealt with this question by implementing a new
algorithm that operated by making just one initial timetable (in
the same way as described in section III), and then by
repeatedly applying the mutation operator incorporating local-
search until the time limit was reached. In the following
explanations, this algorithm will be referred to as the ‘local-
search algorithm’, and comparisons of this and the GGA are
provided in figs 11(a)-(c).

Considering the large problem-instances first (fig. 11(c)),
the presence of the local-search algorithm now allows us to

 0

 50000

 100000

 150000

 200000

 250000

 20 18 16 14 12 10 8 6 4 2 0

ev
al

ua
tio

ns

amount of local search (l)

small
medium

large

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

(Local-search using l = 1000, mr = 1)
(GGA using ρ = 5, l = 100, mr = 1, rr = 0.1)

(GGA using ρ = 50, l = 0, mr = 1, rr = 0.0)
(GGA using ρ = 50, l = 100, mr = 1, rr = 1.0)

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

(Local-search using l = 1000, mr = 1)
(GGA using ρ = 10, l = 2, mr = 1, rr = 0.7)
(GGA using ρ = 50, l = 0, mr = 1, rr = 0.0)

(GGA using ρ = 50, l = 20, mr = 1, rr = 1.0)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 110

 0 100 200 300 400 500 600 700 800

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

(Local-search using l = 1000, mr = 1)
(GGA using ρ = 10, l = 2, mr = 1, rr = 0.1)

(GGA using ρ = 50, l = 0, mr = 1, rr = 0.25)
(GGA using ρ = 50, l = 20, mr = 1, rr = 1.0)

Fig. 10 and figs 11 (a)-(c). Figure 10 (top-left) shows the influence that various amounts of local-search have on the number of evaluations performed within
the time limits for the different instance sets (using ρ = 50, rr = 0.5, mr = 2, and ir = 4). Figs. 11 (a)-(c) (top-right, bottom-left and bottom-right), show (1) the
effects of various parameter settings with small, medium, and large instances respectively; and (2) a comparison between these and the local-search algorithm
described in section VII. Each line represents, at each second, the distance to feasibility of the best solution in the population, averaged across 20 runs on each
of the 20 instances (i.e. 400 runs). Note, because different population sizes are being used, the lines may not start at the same point on the y-axis.

.

15

view, in context, some of the negative effects of the GGA
operators. As can be seen, the local-search algorithm – which,
we note, does not use a population, recombination, or
selection pressure – clearly gives the best results. (Statistical
tests showed these differences to be significant.) This may
well be due to the various issues raised in section VI – not
least the observation that when the groups in candidate
solutions are large, the genetic operators seem to be less
beneficial to the overall search. Note that there are also some
important differences between these two algorithms. Firstly,
because the GGA requires that a population of individual
timetables be maintained, computation time generally has to
be shared amongst the individual members. In the case of the
local-search algorithm this is not so. Additionally, the GGA
operators of replication and recombination generally have to
spend time copying chromosomes (or part of chromosomes)
from parent to offspring, which in the space of an entire run,
could amount to a consequential quantity of CPU time. Again,
with the local-search algorithm, this is not necessary.
Differences such as these might thus offer advantages to the
local-search algorithm where more effort can be placed upon
simply trying to improve just the one timetable. Indeed, if the
local-search operator is not particularly susceptible to getting
caught in local optima (as would seem to be the case here)
then this may well bring benefits.

Finally, moving our attention to figs. 11(a) and 11(b), we
can see that the local-search algorithm also seems to
outperform the GGA when dealing with the small and medium
problem-instances. Indeed, in our experiments the differences
in both cases were also seen to be significant, thus
demonstrating the superiority of the local-search algorithm in
these cases as well. This superiority, presumably, is due to the
same factors as those described in the previous paragraphs.
However, it is worth noting that the differences in results do
seem to be less stark than those of the large instances, hinting
that the GGA is perhaps able to be more competitive when the
timeslots are smaller in size. This also agrees with the
arguments size given in section VI. (The interested reader can
find a complete breakdown of these results at [44].)

VIII. CONCLUSIONS
In this paper, we have examined a number of different

issues regarding GGAs and their applicability to the university
course timetabling problem. We now summarise the main
findings of this work:

• We have taken a well-studied version of the UCTP and
noted that the task of satisfying the hard constraints is a type
of grouping problem. Consequently, using the guidelines
suggested by Falkenauer [51], we have designed a GGA for
the problem that combines standard GGA operators with
powerful construction heuristics. We have observed that
recombination can aid the evolutionary search in some cases,
whilst in others, depending on the run time available, it
might be more of a hindrance.

• We have introduced a way of measuring population

diversity and distances between pairs of individuals for the
grouping representation. We have seen that diversity and
group size can influence (a) the overall expense of the
recombination operator, and (b) the ease in which building
blocks are combined and passed from one generation to the
next. We have also noted that there may be other issues with
this type of representation, due to the fact that larger groups
will cause chromosomes to become proportionally shorter in
length. While we still believe that it is indeed the groups that
encapsulate the underlying building blocks of this type of
problem, in this study we have thus highlighted areas where
the propagation of these building blocks can be problematic.

• We have examined ways that the performance of this
GGA might be improved through the introduction of a local-
search operator and a number of different fitness functions.
In particular, we have seen that, in some cases the more fine-
grained fitness functions (such as f5 and f6) can produce
significantly better results, but in other instances this is not
so. We have also seen that the introduction of a stochastic
local-search operator to this GGA can improve results, but
probably needs to be used with care, as in some cases its use
can mean that (a) not enough new individuals are produced
within the time limits, and (b) the added diversity that it
brings can cause the recombination operator to be too
destructive and expensive.

• Finally, given such improvements, in the vast majority of
cases we have seen that this GGA is still actually
outperformed by our more straightforward local-search
algorithm, which does not make use of a population,
selection pressure, or the grouping recombination operator.
The superior performance of this algorithm is particularly
marked in the large problem-instances where, due to the
larger groups, we believe the GGA operators display the
least potential for aiding the search. This backs up our
hypotheses regarding the pitfalls of the GGA approach in
certain cases.

Due to the fact that we were obliged to make some new
instance sets for this problem, we have been unable to provide
comparisons of these algorithms with other approaches.
However, these instances can be found on the web at [44] and
we invite any other researchers interested in designing
algorithms for timetabling to download them for use in their
own experiments.

IX. DISCUSSION

Finally, we round off this paper by making some other
general comments on the findings of this work, and offer
some suggestions for future research.

One of the main themes in this paper has been the
observation that the GGA does not seem to perform well as
the timetabling instance size (and therefore timeslot size)
increases. From a practical point of view, this scaling-issue is
particularly important, as it is not uncommon in universities to
have a few thousand or more events that need to be scheduled
into a limited number of timeslots (see the problem instances

.

16

used in [22], for example). On the face of it, this might present
some unfavourable practical implications for any algorithm
using a grouping theme. However, a worthwhile future
endeavour could be to investigate how complete timetabling
problems might be broken up into smaller sub-problems. For
example, it has been noted [46] that real-world timetabling
problems are often quite clumped in their make up: a
computing department, for example, might have a set of
events that forms a distinct clump largely separated from the
events in, say, the psychology department. These departments
could have few or no common students, may use different sets
of rooms or might even be situated in separate campuses
altogether. In these cases, the timetabling problems of these
departments may have little bearing on each other and might
even be solved independently from each other (see fig. 12).

Interesting ideas on the subject of dealing with large
problem instances have also been proposed by Burke and
Newall in [26]. Here, the authors use graph colouring-type
heuristics to break up large sets of events into a number of
smaller sub-sets, and then use a memetic algorithm to try and
solve each subset individually. Tests by Burke and Newall
indicate that this method of problem decomposition can offer
both shorter run times and improved solution quality in some
cases.

Fig. 12. An example of clumping: the nodes (events) in the left sub-graph
conflict with none of the nodes in the right sub-graph. These two graphs might
therefore be coloured separately from each other.

Another noticeable characteristic of the algorithms
discussed here is the fact that, for the moment, no soft
constraints are considered. This was never our aim for the
algorithm, and indeed good algorithms that specialise in soft
constraint violations can be found elsewhere (see, for example
[33], [35], [36], [47], [49], and [57]). However, there might be
additional complications if we were to attempt their inclusion.
For instance, constraints such as ‘students should not have to
attend more than two events in consecutive timeslots’ clearly
depend on the ordering of the timeslots – a factor that is not
considered here. Additionally, if we were to include soft
constraint satisfaction in the GGA’s aims we would probably
also need to add suitable penalty measures (possibly through
the use of weights [1, 14, 17]) to the fitness function.
However because the chief aim of the algorithm is to find
feasibility, such a modification might actually have the
adverse effect of sometimes leading the search away from
attractive (and 100% feasible) regions of the search space.

On the other hand, the incorporation of other sorts of soft
constraints might present fewer difficulties. Consider, for
example, the first soft constraint in section II. If we were to try
and reduce the target number of timeslots from forty-five

down to forty, this would actually mean that candidate
timetables would be deemed feasible when the number of
timeslots being used fell below forty-five, but also the total
number of violations of this soft constraint would also fall as
the number of timeslots being used approached forty.

Another worthwhile endeavour involving the general two-
stage timetabling approach might also be to investigate the
actual importance of ensuring that a completely feasible
timetable is always gained in stage one. Will an algorithm
specialising in the elimination of soft constraints always
perform better when presented with a fully feasible timetable?
Or will an almost-feasible timetable perform equally well? On
a similar theme, it might also be instructive to see if we can
identify some features of feasible (or near-feasible) timetables
that will give us some indication of how easy it will be to then
satisfy the soft constraints.

We may also see some general improvements to both of our
proposed algorithms through a modification of the solution
construction process, described in section III. For example,
given a list of unplaceable events U, the current function
opens up | | /U r⎡ ⎤⎢ ⎥ additional timeslots. As noted this defines
a lower bound as to the number of timeslots that are needed to
house all of the events in U. However, by opening this amount
there is no guarantee that additional timeslots will not need to
be opened later on. Indeed, calculating the actual number of
timeslots needed for the events in U is the same as the NP-
hard problem of calculating the chromatic number in graph
colouring. On the other hand, opening too few timeslots at this
stage (which is what this calculation could do) will also be a
disadvantage because it means the algorithm will have to
continue to open timeslots later on, adding further to the cost
of the process. However, some simple reasoning with respect
to problem structure might give us further information. For
example, if there are, say, n events in U that can only be put
into the one same room then it is obvious that at least n extra
timeslots will need to be opened.

Finally, it is worth considering that many of the factors
discussed here, in particular those relating to the scaling-up
issues surrounding the GGA, might not just apply to this
problem, but also to the general GGA model as a whole. For
example, a GGA has been shown to be very successful with
bin packing in the work of Falkenauer [51]. However, the
problem-instances used here were only actually made up of
very small groups (generally there were only three items per
bin). It would thus be interesting to see how these same
operators performed with bin packing problem-instances that
allowed larger numbers of items to be placed into each bin, or
indeed how other GAA applications tend to deal with these
kinds of problem instances.

ACKNOWLEDGEMENT
The authors would like to thank the anonymous referees

who provided helpful comments on earlier versions of this
work.

.

17

REFERENCES
[1] D. Corne, P. Ross, and H. Fang, "Evolving Timetables," in Practical

Handbook of Genetic Algorithms, vol. 1, L. C. Chambers, Ed. Boca
Raton, FL: CRC Press, 1995, pp. 219-276.

[2] T. Cooper and J. Kingston, "The complexity of timetable construction
problems," in Practice and Theory of Automated Timetabling (PATAT) I,
(Lecture Notes in Computer Science, vol. 1153) E. Burke and P. Ross
Eds. Berlin, Germany: Springer-Verlag, 1996. pp 283-295.

[3] S. Even, A. Itai, and A. Shamir, "On the complexity of Timetable and
Multi-commodity Flow Problems," SIAM Journal of Computing, vol. 5,
pp. 691-703, 1976.

[4] G. White and W. Chan, "Towards the Construction of Optimal
Examination Schedules," INFOR, vol. 17, pp. 219-229, 1979.

[5] M. Carter, G. Laporte, and S. Y. Lee, "Examination Timetabling:
Algorithmic Strategies and Applications," Journal of the Operational
Research Society, vol. 47, pp. 373-383, 1996.

[6] E. Erben, "A Grouping Genetic Algorithm for Graph Colouring and
Exam Timetabling," in Practice and Theory of Automated Timetabling
(PATAT) III (Lecture Notes in Computer Science vol. 2079) E. Burke
and W. Erben Eds. Berlin, Germany: Springer-Verlag, 2000, pp. 132-
158.

[7] E. A. Akkoyunlu, "A Linear Algorithm for Computing the Optimum
University Timetable," The Computer Journal, vol. 16(4), pp. 347-350,
1973.

[8] S. Daskalaki, T. Birbas, and E. Housos, "An Integer Programming
Formulation for a Case Study in University Timetabling," European
Journal of Operational Research, vol. 153, pp. 117-135, 2004.

[9] B. Deris, S. Omatu, H. Ohta, and D. Samat, "University Timetabling by
Constraint-based Reasoning: A Case Study," Journal of the Operational
Research Society, vol. 48(12), pp. 1178-1190, 1997.

[10] D. Abramson, "Constructing School Timetables using Simulated
Annealing: Sequential and Parallel Algorithms," Management Science,
vol. 37, pp. 98-113, 1991.

[11] D. Abramson, H. Krishnamoorthy, and H. Dang, "Simulated Annealing
Cooling Schedules for the School Timetabling Problem," Asia-Pacific
Journal of Operational Research, vol. 16, pp. 1-22, 1996.

[12] S. Elmohamed, G. Fox, and P. Coddington, "A Comparison of
Annealing Techniques for Academic Course Scheduling," in Practice
and Theory of Automated Timetabling (PATAT) II, (Lecture Notes in
Computer Science, vol. 1408) E. Burke and M. Carter Eds. Berlin,
Germany: Springer-Verlag, 1998. pp 92-114.

[13] J. M. Thompson and K. A. Dowsland, "A Robust Simulated Annealing
based Examination Timetabling System," Computers and Operations
Research, vol. 25, pp. 637-648, 1998.

[14] A. Schaerf, "Tabu Search Techniques for Large High-School
Timetabling Problems," in Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI'96), Portland (OR), USA:
AAAI Press/MIT Press, 1996, pp. 363-368.

[15] D. Costa, "A tabu search algorithm for computing an operational
timetable," European Journal of Operational Research, vol. 76, pp. 98-
110, 1994.

[16] A. Hertz, "Tabu search for large scale timetabling problems," European
Journal of Operational Research, vol. 54, pp. 39-47, 1991.

[17] A. Schaerf, "Local Search Techniques for Large High-School
Timetabling Problems," IEEE Transactions on Systems, Man, and
Cybernetics, Part A, vol. 29(4), pp. 368-377, 1999.

[18] P. Ross, E. Hart, and D. Corne, "Genetic Algorithms and Timetabling,"
in Advances in Evolutionary Computing: Theory and Applications, A.
Ghosh and S. Tsutsui Eds. New York: Springer-Verlag, 2003, pp. 755-
772.

[19] A. Colorni, M. Dorigo, and V. Maniezzo, "Genetic Algorithms And
Highly Constrained Problems: The Time-Table Case," in Parallel
Problem Solving from Nature (PPSN) I (Lecture Notes in Computer
Science, vol. 496), H. Schwefel and R. Manner Eds. Berlin, Germany:
Springer-Verlag, 1990, pp 55-59.

[20] A. Colorni, M. Dorigo, and V. Maniezzo, "A genetic algorithm to solve
the timetable problem," Tech. Rep. 90-060 revised, Politecnico di
Milano, Italy, 1992.

[21] D. Abramson and J. Abela, "A Parallel Genetic Algorithm for Solving
the School Timetabling Problem," Tech. Rep., Division of Information
Technology, C.S.I.R.O., c/o Dept. of Communication & Electronic

Engineering, Royal Melbourne Institute of Technology, PO BOX
2476V, Melbourne 3001, Australia, 1991.

[22] B. Paechter, R. Rankin, A. Cumming, and T. Fogarty, "Timetabling the
Classes of an Entire University with an Evolutionary Algorithm," in
Parallel Problem Solving from Nature (PPSN) V (Lecture Notes in
Computer Science, vol. 1498), T. Baeck, A. Eiben, M. Schoenauer, and
H. Schwefel Eds. Berlin, Germany: Springer-Verlag, 1998, pp 865-874.

[23] E. Burke, D. Elliman, R. Weare "A Hybrid Genetic Algorithm for
Highly Constrained Timetabling Problems" in Genetic Algorithms: Proc.
of the Sixth International Conference (ICGA95), L. Eshelman Ed. San
Francisco, CA: Morgan-Kaufmann, 1995, pp 605-610.

[24] E. Burke, D. Elliman, and R. Weare, "Specialised Recombinative
Operators for Timetabling Problems," in Artificial Intelligence and
Simulated Behaviour Workshop on Evolutionary Computing (Lecture
Notes in Computer Science vol. 993), T. Fogarty Ed. Berlin, Germany:
Springer-Verlag, 1995, pp 75-85.

[25] E. K. Burke, J. P. Newall, and R. F. Weare, "A Memetic Algorithm for
University Exam Timetabling," in Practice and Theory of Automated
Timetabling (PATAT) I, (Lecture Notes in Computer Science vol. 1153)
E. Burke and P. Ross Eds. Berlin, Germany: Springer-Verlag, 1996, pp
241-250.

[26] E. Burke and J. Newall, "A Multi-Stage Evolutionary Algorithm for the
Timetable Problem," IEEE Transactions in Evolutionary Computation,
vol. 3(1), pp. 63-74, 1999.

[27] K. Socha and M. Samples, "Ant Algorithms for the University Course
Timetabling Problem with Regard to the State-of-the-Art," in
Evolutionary Computation in Combinatorial Optimization (EVOCop)
III (Lecture Notes in Computer Science vol. 2611) M. Dorigo, G. Di
Caro, and M. Sampels Eds. Berlin, Germany: Springer-Verlag, 2003, pp
334-345.

[28] K. Socha, J. Knowles, and M. Sampels, "A MAX-MIN Ant System for
the University Course Timetabling Problem," in Proceedings of the
Third International Workshop on Ant Algorithms (ANTS02) (Lecture
Notes in Computer Science vol. 2463) M. Dorigo, G. Di Caro, and M.
Sampels Eds. Berlin, Germany: Springer-Verlag, 2002, pp 1-13.

[29] E. Burke, G. Kendall, and E. Soubeiga, "A Tabu-Search Hyperheuristic
for Timetabling and Rostering," Journal of Heuristics, vol. 9(6), pp.
451-470, 2003.

[30] S. Casey and J. Thompson, "GRASPing the Examination Scheduling
Problem," in Practice and Theory of Automated Timetabling (PATAT)
IV, (Lecture Notes in Computer Science, vol. 2740) E. Burke and P. de
Causmaecker Eds. Berlin, Germany: Springer-Verlag, 2003, pp 232-244.

[31] P. Cote, T. Wong, and R. Sabourin, "Application of a Hybrid Multi-
Objective Evolutionary Algorithm to the Uncapacitated Exam Proximity
Problem," in Practice and Theory of Automated Timetabling (PATAT) V,
(Lecture Notes in Computer Science, vol. 3616), E. Burke and M. Trick
Eds. Berlin, Germany: Springer-Verlag, 2004, pp 294-312.

[32] M. Carrasco and M. Pato, "A Multiobjective Genetic Algorithm for the
Class/Teacher Timetabling Problem," in Practice and Theory of
Automated Timetabling (PATAT) III (Lecture Notes in Computer
Science vol. 2079) E. Burke and W. Erben Eds. Berlin, Germany:
Springer-Verlag, 2000, pp. 3-17.

[33] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria, "An
effective hybrid algorithm for university course timetabling," Journal of
Scheduling, vol. 9(5), pp. 403-432, 2006.

[34] L. Merlot, N. Boland, B. Hughes, and P. Stuckey, "A Hybrid Algorithm
for the Examination Timetabling Problem," in Practice and Theory of
Automated Timetabling (PATAT) IV, (Lecture Notes in Computer
Science, vol. 2740) E. Burke and P. de Causmaecker Eds. Berlin,
Germany: Springer-Verlag, 2003, pp 207-231.

[35] O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. Knowles,
M. Manfrin, M. Mastrolilli, L. Paquete, B. Paechter, and T. Stützle, "A
comparison of the performance of different metaheuristics on the
timetabling problem," in Practice and Theory of Automated Timetabling
(PATAT) IV, (Lecture Notes in Computer Science, vol. 2740) E. Burke
and P. de Causmaecker Eds. Berlin, Germany: Springer-Verlag, 2003, pp
329-351.

[36] P. Kostuch, "The University Course Timetabling Problem with a 3-Phase
approach," in Practice and Theory of Automated Timetabling (PATAT)
V, (Lecture Notes in Computer Science, vol. 3616), E. Burke and M.
Trick Eds. Berlin, Germany: Springer-Verlag, 2004, pp 109-125.

.

18

[37] M. Carter, "A Survey of Practical Applications of Examination
Timetabling Algorithms," in Operations Research, vol. 34(2), pp. 193-
202, 1986.

[38] E. K. Burke, D. G. Elliman, P. H. Ford, and R. Weare, "Examination
Timetabling in British Universities: A Survey," in Practice and Theory
of Automated Timetabling (PATAT) I, (Lecture Notes in Computer
Science, vol. 1153) E. Burke and P. Ross Eds. Berlin, Germany:
Springer-Verlag, 1996. pp 76-92.

[39] M. Carter and G. Laporte, "Recent Developments in Practical Course
Timetabling," in Practice and Theory of Automated Timetabling
(PATAT) II, (Lecture Notes in Computer Science, vol. 1408) E. Burke
and M. Carter Eds. Berlin, Germany: Springer-Verlag, 1998, pp 3-19.

[40] A. Schaerf, "A Survey of Automated Timetabling," Artificial
Intelligence Review, vol. 13(2), pp. 87-127, 1999.

[41] E. Burke and S. Petrovic, "Recent Research Directions in Automated
Timetabling," European Journal of Operational Research, vol. 140, pp.
266-280, 2002.

[42] M. Carter. [Online] Available: ftp://ie.utoronto.ca/mwc/testprob/
Accessed June 2005.

[43] B. Paechter. [Online] Available: http://www.idsia.ch/Files/ttcomp2002/.
Accessed June 2005.

[44] R. Lewis. [Online] Available:
http://www.emergentcomputing.org/timetabling/harderinstances
Accessed June 2005.

[45] C. Blum and C. Manfrin [Online] Available
http://www.metaheuristics.org/. Accessed June 2005.

[46] P. Ross, D. Corne, and H. Terashima-Marin, "The Phase-Transition
Niche for Evolutionary Algorithms in Timetabling," in Practice and
Theory of Automated Timetabling (PATAT) I (Lecture Notes in
Computer Science vol. 1153) E. Burke and P. Ross Eds. Berlin,
Germany: Springer-Verlag, 1996, pp 309-325.

[47] H. Arntzen and A. Løkketangen, "A Tabu Search Heuristic for a
University Timetabling Problem," in Metaheuristics: Progress as Real
Problem Solvers (Computer Science Interfaces Series vol.. 32) T
Ikabaki, K. Nonobe, and M. Yagiura Eds. Berlin, Germany: Springer-
Verlag, 2005, pp. 65-86.

[48] J. Cordeau, B. Jaumard, and R. Morales, "Efficient Timetabling Solution
with Tabu Search," [Online]. Available
http://www.idsia.ch/Files/ttcomp2002/jaumard.pdf Accessed June 2005.

[49] E. Burke, Y. Bykov, J. Newall, S. and Petrovic, "Time-Predefined
Approach to Course Timetabling," Yugoslav Journal of Operations
Research (YUJOR), vol. 13(2), 2003, pp 139-151.

[50] E. Falkenauer, "A New Representation and Operators for GAs Applied
to Grouping Problems," Evolutionary Computation, vol. 2, pp. 123-144,
1994.

[51] E. Falkenauer, Genetic Algorithms and Grouping Problems: New York,
NY: John Wiley and Sons, 1998.

[52] N. J. Radcliffe, "Forma Analysis and Random Respectful
Recombination," in Proceedings of the Fourth International Conference
on Genetic Algorithms, R. Belew and L. Booker Eds. San Marco CA:
Morgan Kaufmann, 1991, pp. 222-229.

[53] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA.: Addison-Wesley, 1989.

[54] E. Falkenauer, "Solving equal piles with the grouping genetic
algorithm," in Proceedings of the 6th International Conference on
Genetic Algorithms, L. Eshelman Ed. San Marco CA: Morgan
Kaufmann, 1995, pp 492-497.

[55] A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert, "Graph Coloring
with Adaptive Evolutionary Algorithms," Journal of Heuristics, vol.
4(1), pp. 25-46, 1998.

[56] S. Khuri, T. Walters, and Y. Sugono, "A grouping genetic algorithm for
coloring the edges of graphs," in Proceedings of the 2000 ACM
Symposium on Applied computing, NY, USA: ACM Press, 2000, pp
422-427.

[57] R. Lewis and Ben Paechter, “Application of the Grouping Genetic
Algorithm to University Course Timetabling”, in Evolutionary
Computation in Combinatorial Optimisation (EVOCop) V. (Lecture
Notes in Computer Science vol. 3448) G. Raidl and J. Gottlieb Eds.
Berlin, Germany: Springer-Verlag, 2005, pp 144-153.

[58] D. Brelaz, "New methods to Color the vertices of a graph," Commun.
ACM, vol. 22, pp. 251-256, 1979.

[59] E. Falkenauer, "Applying genetic algorithms to real-world problems," in
Evolutionary Algorithms (The IMA Volumes of Mathematics and its

Applications vol. 111), L. Davis, K. De Jong, M. Vose, and L. D.
Whitley Eds. NY, USA: Springer, 1999, pp 65-88.

[60] R. Lewis and B. Paechter, “New Crossover Operators for Timetabling
with Evolutionary Algorithms”, in Proceedings of the Fifth International
Conference on Recent Advances in Soft Computing (RASC 2004), A.
Lotfi Ed. Nottingham, England, 2004, pp. 189-195

[61] W. Morrison and K. de Jong, "Measurement of Population Diversity," in
Selected Papers from the 5th European Conference on Artificial
Evolution (EA) 2001 (Lecture Notes in Computer Science vol. 2310), P.
Collet, C. Fonlupt, J.-K. Hao, E. Lutton, and M. Schoenauer Eds. Berlin,
Germany: Springer-Verlag, 2002, pp 31-41.

[62] Y. Leung, Y. Gao, and Z. Xu, "Degree of Population Diversity – A
perspective on Premature Convergence in Genetic Algorithms and Its
Marcov Chain Analysis," IEEE Trans. Neural Networks, vol. 8(5), pp.
1165-1765, 1997.

[63] C. Mattiussi, M. Waibel, and D. Floreano, "Measures of Diversity for
Populations and Distances Between Individuals with Highly
Reorganizable Genomes," Evolutionary Computation, vol. 12, pp. 495-
515, 2004.

[64] G. Tao and Z. Michalewicz, "Inver-over Operator for the TSP," in
Parallel Problem Solving from Nature (PPSN) V, (Lecture Notes in
Computer Science vol. 1498), A.E. Eiben, T. Baeck, M. Schoenauer and
H-P. Schwefel Eds. Berlin, Germany: Springer-Verlag, 1998, pp 803-
812.

[65] R. Lewis and B. Paechter, “An Empirical Analysis of the Grouping
Genetic Algorithm: The Timetabling Case”, in Proceedings of the 2005
IEEE Congress on Evolutionary Computation (CEC) vol. 3, 2005, pp
2856-2863.

[66] X. Yao, "An Overview of Evolutionary Computation," Chinese Journal
of Advanced Software Research, vol. Allerton Press Inc., New York, NY
10011, pp. 12-29, 1996.

[67] P. Moscato and M. G. Norman, "A 'Memetic' Approach for the
Travelling Salesman Problem. Implementation of a Computational
Ecology for Combinatorial Optimization on Message-Passing Systems,"
in Proceedings of the International Conference on Parallel Computing
and Transputer Applications, Amsterdam, NL: IOS Press, 1992, pp 187-
194.

[68] P. Moscato, "On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms," Tech. Rep. Caltech
Concurrent Computation Program, Report. 826, California Institute of
Technology, Pasadena, California, USA, 1989.

[69] R. Dorne and J.-K. Hao, "A New Genetic Local Search Algorithm for
Graph Coloring," in Parallel Problem Solving from Nature (PPSN) V,
(Lecture Notes in Computer Science vol. 1498), A.E. Eiben, T. Baeck,
M. Schoenauer and H-P. Schwefel Eds. Berlin, Germany: Springer-
Verlag, 1998, pp 745-754.

[70] P. Galinier and H. J-K., "Hybrid evolutionary algorithms for graph
coloring," Journal of Combinatorial Optimization, vol. 3(4), pp. 379-
397, 1999.

[71] E. Falkenauer, "A hybrid grouping genetic algorithm for bin packing,"
Journal of heuristics, vol. 2, pp. 5-30, 1996.

[72] J. Levine and F. Ducatelle, "Ant Colony Optimisation and Local Search
for Bin Packing and Cutting Stock Problems. Journal," Journal of the
Operational Research Society, vol. 55(12), pp. 705-716, 2003.

[73] S. Martello and P. Toth, "Lower bounds and reduction procedures for
the bin packing problem," Discrete Applied Mathematics, vol. 28(1), pp.
59-70, 1990.

