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behaviour of the gas in the regenerator; the dynamic behaviour of the displacer and the power 

piston/flywheel assembly.  A small fully instrumented the engine is used to validate the model.  The 

theoretical model is in good agreement with the experimental data and describes well all features 

exhibited by the engine.
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1. Introduction

The original Stirling engine, which was patented in Edinburgh by Reverend Robert Stirling in 1816 [1], 

has been subject of many monographs [2 and 3].  The development work of the Stirling engine has 

continued over the years, but many aspects are not reported because of commercial considerations.  

One of the most interesting aspects has been the development of the Low Temperature Differential 

Stirling Engine (LTDSE) by Kolin [4].  This engine operated at a temperature difference of about 20 to 

1000C, which was an order of magnitude lower than the operating temperature differences achieved 

up to that time.

A variant of the Stirling engine, the Ringbom engine, was patented by Ringbom in 1907 [5].  In the 

Ringbom engine there is no direct connection between the flywheel and the displacer, creating a 

dynamically resonant system, thus allowing the engine to settle at its optimum operating configuration 

and conditions.  It appears that the discontinuous motion of the flywheel and the displacer is more 

favourable to approximating the ideal Stirling cycle [4].  Senft [6 and 7] developed the Ringbom 

engine, using many of the ideas introduced by Kolin [4], so that the engine could operate at very low 

temperature differences.  Such an engine, shown schematically in Figure 1, is considered in this 

paper.  In this configuration these engines are not self-starting, but they can operate at very low 

temperature differences, thus utilising many sources of waste and low grade heat, such as geothermal 

energy or process heat, which are widely available.

It is the purpose of this paper to develop a full differential analysis of the engine, termed by Martini as 

a third order analysis [2], and to validate it on an operational engine.  A simplified analysis was 

developed by Senft [8], but that starts with certain assumptions, which may not obtain in practice, such 

as that the mass of gas in the engine is constant, and, more importantly, that the motion of the piston 

is sinusoidal.  The differential analysis developed below starts from the first principles.  The 

preparatory work has already been reported elsewhere [9].

Experimental work is described first in Section 2; this is followed by the development of the theoretical 

model in Section 3, which also summarises the numerical results. This is followed by Discussion and 

Conclusions in Sections 4 and 5 respectively.
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2. Experimental Work

2.1. Apparatus

The engine, shown in detail in Figure 2, is based on the design by Senft [10].  The displacer chamber, 

116 mm internal diameter and 29 mm high, is made of three polycarbonate rings, which allow the 

displacer chamber volume to be changed by adding or removing the individual rings.  The base of the 

displacer chamber, which acts as the hot reservoir, 116 mm internal diameter, 46 mm high and 

manufactured from aluminium, incorporates tapping for the temperature and pressure sensors. 

Similarly, the head of the displacer chamber, which acts as the cold reservoir, 116 mm internal 

diameter, 70 mm high and manufactured from aluminium, incorporates tapping for the temperature 

and pressure sensors, as well a central opening for the displacer rod, and the opening for the power 

piston; the centreline of the power piston opening is offset 34 mm from the centreline of the displacer 

chamber.  The size of the base and the head allows sufficient heat capacity to ensure a significant 

period of operation of the engine.  Situated on the top of the head of the displacer chamber is a 

support structure for the flywheel assembly and the crank disk.  The flywheel, made of PVC and 

170 mm diameter, has its centreline 115 mm above the top of the displacement chamber.  The crank 

arm and the connecting rod are 11 mm and 65 mm long respectively.

The power piston, 34 mm diameter, 20 mm high and manufactured from aluminium, is placed within 

the opening of the head, and the connecting rod is joined to it with a pin.  When the power piston is in 

its bottom dead position, its bottom surface is 18 mm above the top of the displacer chamber.

The displacer, 115 mm diameter and 10 mm high, is made from low density foam board.  The 

displacer incorporates 4 equally spaced cylindrical openings, 25 mm in diameter, with their centres 

30 mm from the centre of the of the displacer, to house the regenerator.  The displacer is joined to the 

displacer rod, which is 14 mm diameter and has an effective contact length 30 mm long.  The 

displacer rod runs through the central opening of the head of the displacer chamber, with its top face 

open to atmosphere.  The regenerator is constructed from steel wool (wire diameter 0.1 mm, average 

porosity 95%), packed flush into the four circular openings in the regenerator.  The total mass of the 

steel wool in the four openings is 7.5 g.

In order to protect the displacer assembly from damage on impact with the top or the bottom surface 

of the displacer chamber and to minimise the losses, 5 mm high and 30 mm outside diameter stubs 

springs were placed centrally on the bottom and the top surface of the displacer.  This modification is 

unique to this work.

The pertinent physical properties of the main engine components are summarised in Table 1.
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2.2. Instrumentation

The temperatures of the base and the head of the displacer chamber, the hot and the cold reservoir 

respectively, are measured with 5 thermocouples, which are situated as indicated in Figure 2.  The 

pressures in the displacer chamber above the displacer (compression space pressure) and the 

pressure below the displacer (expansion space pressure) are measured relative to the ambient 

pressure with two pressure transducer (range of 7000 Pa and refresh rate of 200 Hz).  The relative 

pressure across the displacer is also measured with a pressure transducer (range of 100 Pa and 

refresh rate of 200 Hz).  The positions of the pressure tappings are also shown in Figure 2.

The position of the flywheel is determined optically.  An array of 36 equidistant slots, 1.44 mm wide 

and 7.75 mm deep, is machined into the perimeter of the flywheel.  A slotted optical switch, consisting 

of an infrared diode and optical transistor was used.  A second optical switch was used to read the 

position of the flywheel, corresponding to the bottom dead position of the power cylinder.  The 

response time of the optical switches is sufficiently fast for the observed speeds of the engine.  The 

position of the power piston is then determined from the position of the flywheel by simple geometrical 

considerations.

The position of the displacer is similarly determined by using an optical switch and a system of slots on 

an extension of the displacer rod, which is connected to the displacer.  However, since in this case the 

bottom dead position of the displacer is not well defined, this was complemented with photographic 

and pressure analyses.

The signals from the sensors and transducers were sent to a National Instruments data acquisition 

card for signal conditioning and data logging, and processed on a PC using Microsoft Excel.

2.3. Technique

The engine is placed on a hot plate, thus allowing the base of the displacer chamber, which acts as 

the hot reservoir, to heat up to the required uniform temperature.  When the required temperature is 

reached the engine is transferred to its insulating jacket, which extends over the base and the 

displacer chamber.  The head of the engine, the cold reservoir, is exposed to the ambient temperature 

of 200C, and remains at this temperature.  The flywheel is then started by hand at a given starting 

angle.  All experimental data are gathered comprehensively for the first two minutes, and then for five 

seconds every 30 seconds until the engine stops.  The data are analysed in Microsoft Excel.
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2.4. Experimental errors

The experimental errors associated with the thermocouples are given by the manufacturers as 20C.  

Similarly, the experimental errors associated with the pressure transducers are given as 2% of full 

scale deflection, giving the errors of the larger range and smaller range pressure transducers as 

140 Pa and 2 Pa respectively.

The experimental errors associated with the position of the flywheel are low, and estimated to be 

limited by the gap between two slots, which is equal to 100 (equal to 0.17 rad).  However, the errors 

associated with the position of the displacer are relatively higher, but less than 1 mm.

2.5. Experimental results

2.5.1. Observations

The influence of the starting angle was investigated first.  Various flywheel start angles were used 

ranging, starting at the bottom dead position (0 rad) to the top dead position ( rad) in /4 rad 

increments.  It was observed that the engine was most likely to continue with self sustained motion if 

the start angle was between about /4 rad and /2 rad.  For starting angles close to 0 rad the flywheel 

turns but the engine motion soon decays to stop with little rocking.  For starting angles close to and 

above /2 rad, the engine stalls and stops at the top dead position.  Hence for sustained operation the 

starting angle of about /4 rad was used.

As is well known, the temperature difference between the hot and the cold reservoir determines the 

behaviour of the engine.  For temperature differences below about 600C the engine did not sustain the 

motion (at 200C there was no discernable motion, at 300C a slight rocking of the flywheel was 

observed, between 400C and 600C the initial amplitude of the rocking increased with the temperature 

difference, but the rocking gradually increased, and at about 600C the rocking was sustained).  The 

engine began to run at about 620C, when the engine settled at a stable speed of about 160 to 

180 rpm.  With the temperature difference of about 800C the engine settled at a stable speed of about 

200 to 220 rpm.

2.5.2. Quantitative results

A typical set of experimental results, for nominal temperatures of the hot reservoir, TH and cold 

reservoir, TC of 100C and 20C respectively, are shown in Table 2 and Figures 3 to 8.  Table 2 shows, 

that, after the initial transient, the temperature difference, TH – TC, stays virtually constant, decreasing 

from about 75C at t = 13s to about 70C at t = 120s.  
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Figure 3 shows the variations of the position of the power piston, xP, and the relative expansion 

pressure, pE - pA, with the elapsed time, t in the vicinity of t = 13 s.  These variations are typical for all 

elapsed time in these conditions, in that the relative expansion pressure is about 1800 out of phase 

with the position of the piston; when the piston is at its bottom dead centre, the relative expansion 

pressure is at its maximum.  Figure 4 shows the variations of the relative expansion pressure, pE – pA, 

and the differential pressure, pE - pK, with the elapsed time, t in the vicinity of t = 13 s.  These 

variations are typical for all elapsed time in these conditions, in that the variations of the differential 

pressure are much faster and generally much lower than the variations of either the relative expansion 

pressure, pE, or the relative compression pressure, pK.  Figure 5 shows the variations of the position of 

the piston, xP, the position of the centre of the displacer above the bottom of the displacer chamber, 

xD, and the differential pressure, pE - pK, with the elapsed time, t in the vicinity of t = 13 s.  Once again, 

these variations are typical for all elapsed time in these conditions.  Figures 3 to 5 show that in the 

vicinity of elapsed time t = 13 s, the fundamental frequency of these variations is about 2.75 Hz, 

indicating that the flywheel is rotating at about 165 rpm.

Figures 6 to 8 show the respective conditions of the Sterling engine in the vicinity of elapsed time 

t = 120 s, giving the fundamental frequency of the variations of about 2.8 Hz, indicating that the 

flywheel is rotating at about 168 rpm.
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3. Theoretical analysis

3.1. Initial considerations

Based on a small number of simplifying assumptions, and derivation of simple kinematic relationships, 

differential description is developed for all important components of the engine:

 the expansion space

 the compression space

 the displacer

 the piston/flywheel assembly

 the regenerator

The various modelling constants, required for the theoretical analysis, are then determined, the 

approach to obtaining numerical solutions is briefly described, and a typical selection of theoretical 

results is presented.

The number of simplifying assumptions is kept to a minimum, thus ensuring that the theoretical 

analysis is as general as possible.  It is generally assumed that

 the working fluid is approximated by perfect gas

 gas flow through all the gaps is laminar

 all coefficient of heat transfer are constant

 pressures and temperature are uniform in the expansion and the compression space

 the connecting rod has no mass

Further assumptions, used in describing the behaviour of the regenerator are discussed in 

Section 3.6.  Finally, for simplicity it is assumed that the engine is positioned vertically.  This simplifies 

the calculations without any loss in rigour.

With reference to Figures 9 and 10, the relationships between various kinematic parameters can be 

derived.  First, it can be shown that the relationships between the angles is given by

 sinsin


r
 (1)

   sincos (2)

where  is the angle of the flywheel, and angles  and  are given in given in Figure 9.  The 

relationship between the position of the power piston, xP, and the angle of the flywheel,, is given by



7

    cossin
5.022 rrhx FP   (3)

where hF is the vertical distance between the top of the displacer chamber and the centre of the 

flywheel,  is length of the connecting rod, and r is the length of the crank arm.

3.2. Expansion space

Conservation of energy in the expansion space shows that the change of in gas energy, EE, is given 

by 

  DERHE WtQQE  (4)

where QH is the heat transfer rate to the gas from the hot reservoir, QER is the heat flow rate from the 

expansion space to the regenerator and WD is the work done by the gas in the expansion space on

the displacer.

Making the usual substitutions, equation (4) can be written as

    DDERPEHHHEEV xAptTmctTTkTmc  *
1 (5)

where cV and cP are the specific heat of the gas at constant volume and constant pressure 

respectively, mE and TE are the mass and temperature of the gas in the expansion space, kHH is the 

heat transfer parameter between the hot reservoir and the expansion space, AD is the cross sectional 

area of the displacer, and Rm is the mass flow rate from the expansion space to the compression 

space (through the regenerator), given as

 KEMRR ppkm  (6)

where kMR is the flow parameter.  Since the direction of the mass flow rate, Rm , is either from the 

expansion space to the regenerator (for pE > pK) or from the regenerator to the expansion space (for 

pE < pK), the temperature associated with this flow is either the gas temperature in the expansion 

space, TE, for pE > pK, or the temperature of the gas leaving the regenerator to the expansion space, 

TRE, for pE < pK; hence the temperature T1
* in equation (5) is defined as

REKE

EKE

TTppfor

TTppfor




*

1

*
1

(7)

Noting further that
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R
E m

dt

dm
 (8)

equation (5) can be re-written in differential form as

    



  *

1
*

1

1
TmRTTmc

dt

dx
ApTTk

mcdt

dT
RERV

D
DEEHHH

EV

E  (9)

Finally, the pressure in the expansion space is determined form the gas law as

E

EE
E V

RTm
p  (10)

where VE is the volume of the expansion space is given by 

 DDDE hxAV 5.0 (11)

where hD is the height of the displacer.

3.3. Compression space

Conservation of energy in the compression space shows that the change of in gas energy, EK, is 

given by 

  PDKAKRCK WWtQQQE  (12)

where QC is the heat transfer rate from the gas to the cold reservoir, QKR is the heat flow rate from the 

regenerator to the compression space, QKA is the heat flow rate from the ambient atmosphere to the 

compression space, WD is the work done by the displacer on the gas in the compression space, and 

WP is the work done by the gas in the compression space on the power piston.

Similarly to above, equation (12) can be written as

      PPKDDRDKAPRPCKHCKKV xApxAAptTmctTmctTTkTmc  *
3

*
2  (13)

where mK and TK are the mass and temperature of the gas in the compression space, kHC is the heat 

transfer parameter between the cold reservoir and the compression space, ADR is the cross sectional 
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area of the displacer rod, AP is the cross sectional area of the power piston, and Am is the mass flow 

rate from the ambient atmosphere to the compression space, given as

 KAAKA ppkm  (14)

where kAK is the flow parameter.  Since the direction of the mass flow rate, Am , is either from the 

ambient atmosphere to the compression space (for pA > pK) or from the compression space to the 

ambient atmosphere (for pA < pK), the temperature associated with this flow is either the ambient 

temperature, TA, for pA > pK, or the gas temperature in the compression space, TK, for pA < pK; hence 

the temperature T3
* in equation (13) is defined as

KKA

AKA

TTppfor

TTppfor




*

3

*
3

(15)

Similarly to equation (7), the gas temperature T2
* is defined as 

KKE

RKKE

TTppfor

TTppfor




*

2

*
2

(16)

where TRK is the temperature of the gas leaving the regenerator to the compression space.

Noting further that

AR
K mm

dt

dm
  (17)

and using equations (1 to 3), equation (13) can be re-written in differential form as

   

  
    















































*
3

*
3

*
2

*
2

5.022

2

sin
sin

cossin1

TmRTTmcTmRTTmc

dt

d
r

r

r
Ap

dt

dx
AApTTk

mcdt

dT

AKAVRKRV

PK

D
DRDKCKHC

KV

K









(18)

where R is the gas constant.

Finally, the pressure in the expansion space is determined form the gas law as
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K

KK
K V

RTm
p  (19)

where VK is the volume of the compression space is given by 

    PPPDDCDRDK hxAxhhAAV 5.05.0  (20)

where hC is the height of the compression chamber and hP is the height of the power piston.

3.4. Displacer

The motion of the displacer is given by a standard equation

    DADRAKDKED
D

D FAppAppgm
dt

xd
m 

2

2

(21)

subject to

DDDC hxhh 5.05.0  (22)

where mD is the total mass of the displacer assembly (the displacer, the regenerator and the displacer 

rod), g is the gravitational acceleration, condition of equation (22) ensures that the displacer is 

confined within the displacer chamber, and FDA is the restraining force exerted by the two stub springs 

in the top and bottom surface of the displacer chamber.  If the two springs behave linearly over their 

whole range, the restraining force can be calculated as

 

 DDSTCSTDADCDDSTC

DADSTCDDSB

DDSBSBDADSBDD

xhhhkFhhxhhhfor

Fhhhxhhfor

xhhkFhhxhfor






5.05.05.0

05.05.0

5.05.05.0

(23)

where hSB and hST are the unrestrained lengths of the bottom and the top stub springs respectively, 

and kSB and kST are the constants of the bottom and the top stub springs respectively.

3.5. Power piston/flywheel assembly

Referring to Figures 9 and 10, the equations of motion of the power piston and the flywheel can be 

written respectively as
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  cos
2

2

RPAKP
P

P FAppgm
dt

xd
m  (24)

dt

d
krF

dt

d
I DFRF


 cos

2

2

(25)

where mP is the mass of the power piston, FR is the axial force in the connecting rod, IF is the moment 

of inertia of the flywheel, and the second term on the right hand side of equation (25) combines all the 

losses acting on the system.  It is assumed that these losses are proportional to the angular velocity of 

the flywheel, with kDF as the constant loss parameter.

Equations (24 and 25) can be combined to eliminate the axial force in the connecting rod, FR, in terms 

of the following differential equation for the angle of the flywheel, .

  
 

  
    

  
 

dt

d
kApprgrm

dt

d
r

r

r

r

r
rm

dt

d
Imr

r
mr

DFPAKP

P

FPP

















coscoscos

cos
sin

sincos

sin

cossin
cos

cossincos
sin

cossin
cos

2

5.022

222

5.122

22

2

2
2

5.022

3



















































(26)

3.6. Regenerator

A simple description of the regenerator is developed below.  It is assumed that, as shown in Figure 11, 

the regenerator consists of N gas-matrix cells, consisting of an axisymmetric arrangements of the gas 

core and the surrounding matrix.  It is further assumed that there is no axial conduction of heat, and 

that the temperature of the gas and the matrix in each cell are uniform (but not identical).

The derivation of the governing equations is demonstrated on the behaviour of the first cell for the gas 

flow from the expansion space to the compression space (pE > pK).  Conservation of energy in the gas 

core of the first cell can be written as 

    tTTktTmctTmcTmc MRHRMRRPERPRRCV  1111  (27)

where mRC is the mass of gas in each cell, TR1 and TM1 are the temperature of the gas and the matrix 

in the first cell, and kHRM is the heat transfer parameter between the gas core and the surrounding 

matrix.  The first term on the right hand side is the flow of heat into the gas cell, the second term is the 

flow of heat out of the gas cell and the third term is the conduction of heat from the gas to the 

surrounding regenerator matrix.  Similarly for the surrounding matrix of the first cell
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    tTTkTmc MRHRMMMCM  111 (28)

where mMC is the mass of the surrounding regenerator matrix in each cell and cM is the specific heat of 

the regenerator matrix.

The regenerator description can then be given as

KE ppfor 

cell 1 (next to the expansion space)

   111
1

MR
RCV

HRM
RE

RCV

RpR TT
mc

k
TT

mc

mc

dt

dT



(29)

 11
1

MR
MCM

HRMM TT
mc

k

dt

dT
 (30)

cells I = 2 to N

   IMIR
RCV

HRM
IRIR

RCV

RpIR TT
mc

k
TT

mc

mc

dt

dT
,,,1,

,  


(31)

 IMIR
MCM

HRMIM TT
mc

k

dt

dT
,,

,  (32)

KE ppfor 

cell N (next to the compression space)

   NMNR
RCV

HRM
KNR

RCV

RpNR TT
mc

k
TT

mc

mc

dt

dT
,,,

, 


(33)

 NMNR
MCM

HRMNM TT
mc

k

dt

dT
,,

,  (34)

cells I = N - 1 to 1

   IMIR
RCV

HRM
IRIR

RCV

RpIR TT
mc

k
TT

mc

mc

dt

dT
,,1,,

,  


(35)

 IMIR
MCM

HRMIM TT
mc

k

dt

dT
,,

,  (36)

where the subscript I refers to the I-th regenerator cell.
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3.7. Initial and boundary conditions

It is assumed that the temperatures of the hot and cold reservoirs are constant throughout the process 

and equal to TH and TC respectively.  The temperature and pressure of the gas in the engine are 

initially ambient, TA and pA respectively.  The temperature of the regenerator matrix is initially also 

ambient.  The displacer initially rests on the bottom stub spring, and the power piston/flywheel 

assembly is initially stationary, with the flywheel initially at an angle 0.  The process starts at time 

t = 0, when an angular velocity  is imposed on the flywheel.

3.8. Modelling parameters

The characteristics of the various components, such as their dimensions and masses, are given in 

Table 1.  The standard physical constants used in the modelling are given in Table 3.  The remaining 

parameters, which are given in Table 4, were determined by a combination of analytical and 

experimental considerations.

The flywheel loss parameter, kDF, was determined by measuring the deceleration of the flywheel/piston 

assembly, when the engine was unheated and the displacer chamber was open to atmosphere.  The 

flow parameter kAK was calculated by measuring the flow rate from the expansion space to the 

compression space for a given pressure difference.  Similarly, the flow parameter kMR was calculated 

by measuring the gas flow rate from the compression space to the surrounding atmosphere for a given 

pressure difference.

Additionally the flow of gas between through the annular space between the displacer and displacer 

chamber was calculated directly, assuming laminar flow, and a flow parameter equivalent to kMR was 

determined.  This directly calculated value was practically equal to the experimentally determined 

value, indicating that the flow between the expansion and compression space was mainly through the 

annular space rather than the regenerator.  On that basis the equivalent heat transfer parameter 

between the gas core and the surrounding matrix in the regenerator, kHRM, was estimated as 2/N W/K, 

where, as pointed out above, N is the number of cells in the regenerator.

The mass of the surrounding regenerator matrix in each regenerator cell, mMC, is the ratio of the 

regenerator mass and the number of regenerator cells.  The mass of gas in each regenerator cell, 

mRC, was calculated from the average regenerator porosity, gas density and the number of 

regenerator cells.

The heat transfer behaviour in the expansion and compression spaces is difficult to estimate.  

However, certain scoping calculations can be undertaken.  The estimates are made for heat transfer 
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between the top surface of the hot reservoir (approximated by a heated horizontal plane) and the 

expansion space, and it is assumed that the heat transfer parameter for heat transfer from the 

compression space to the cold plate is the same.  Assuming, very conservatively, that the heat 

transfers from the hot plate to the expansion space natural convection, the heat transfer parameter 

between hot reservoir and expansion space, kHH, is calculated as about 0.1 W/K.  However, 

considering the flow pattern in the expansion space over the hot plate and the intermittent nature of 

the flow, it is estimated that the heat transfer parameter, kHH, is at least 0.3 W/K.  This value is then 

used in the theoretical calculations for both kHH and kHC.

3.9. Numerical procedure and sequence of calculations

The equations derived above were discretised using standard techniques, and coded.  The following 

sequence of calculations was used:

 the boundary and initial conditions were specified; in particular the initial angle of the flywheel 

was set at 0, and the initial angular velocity of the flywheel was set at 

 the number of regenerator cells, N, was specified

 the time interval, t, and the total running time tT were specified

 the initial position of the displacer was determined from its weight and the constant of bottom 

stub spring

 the calculations then proceeded in the following recurring sequence: the angle of the 

flywheel , the position of the power piston xP, the position of the displacer xD, the gas 

pressure in the expansion space pE, the gas pressure in the compression space pK, the mass 

of gas in the expansion space mE, the mass of gas in the compression space mK, the 

temperature of the regenerator matrix TM, the temperature of the regenerator gas TR, the 

temperature of the gas leaving the regenerator to the expansion space TRE, the temperature of 

the gas leaving the regenerator to the compression space TRK, the gas temperature in the 

expansion space TE and the gas temperature in the compression space TK

The sequence was generally terminated when the total running time tT was reached, but it was 

sometimes terminated earlier if numerical instabilities occurred.

Since the pressure and position changes during the various transients are fast, the time interval, t, 

had to be short to ensure convergence; the time interval t = 10-7 s was used as a compromise for 

sufficient accuracy and reasonably fast processing times.  Similarly, the number of regenerator cells 

was set at N = 2.  The accuracy was checked by investigating the influence of decreased time interval 

and increased number of regenerator cells.
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3.10. Numerical results

The base line for the theoretical calculations was obtained for the initial angle of the flywheel set at 

0 = /4, and for the initial angular velocity of the flywheel was set at  = 20 rad/s.  The influence of the 

temperature difference TH – TC was systematically investigated.

For temperature differences below about 600C the engine did not sustain the motion (at 400C and 

500C the flywheel rotates several times before starting to rock, with the rocking being sustained for 

longer periods as the temperature difference increases).  The engine began to run at about 600C, 

when the engine settled at a stable speed of about 80 to 100 rpm.  With the temperature difference of 

about 800C the engine settled at a stable speed of about 130 rpm.

A typical set of theoretical results, for the temperatures of the hot reservoir, TH and cold reservoir, TC

of 100C and 20C respectively, are shown in Figures 12 to 17.

Figure 12 shows the variations of the position of the piston, xP, and the relative expansion pressure, 

pE - pA, with the elapsed time, t in the vicinity of t = 13 s.  These variations are typical for all elapsed 

time in these conditions, in that the relative expansion pressure is about 1800 out of phase with the 

position of the piston: when the piston is at its bottom dead centre, the relative expansion pressure is 

at its maximum.  Figure 13 shows the variations of the relative expansion pressure, pE – pA, and the 

differential pressure, pE - pK with the elapsed time, t in the vicinity of t = 13 s.  These variations are 

typical for all elapsed time in these conditions, in that the variations of the differential pressure are 

much faster and generally much lower than the variations of either the relative expansion pressure, 

pE - pA, or the relative compression pressure, pK - pA.  Figure 14 shows the variation of the position of 

the piston, xP, the position of the displacer, xD, and the differential pressure, pE - pK with the elapsed 

time, t in the vicinity of t = 13 s.  Once again, these variations are typical for all elapsed time in these 

conditions.  Figures 12 to 14 show that in the vicinity of elapsed time t = 13 s, the fundamental 

frequency of these variations is about 2 Hz, indicating that the flywheel is rotating at about 120 rpm.

Similarly, Figures 15 to 17 show the respective conditions of the Sterling engine in the vicinity of 

elapsed time t = 120 s, giving the fundamental frequency of the variations of about 2.2 Hz, indicating 

that the flywheel is rotating at about 130 rpm.
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4. Discussion

4.1. Comparison of predictions with experimental data

The theoretical predictions and the experimental data are compared with reference to Figures 15 to 

17, and Figures 6 to 8, obtained for nominally identical conditions.  The two sets of Figures 

demonstrate that the theoretical model predicts well all aspects of behaviour exhibited by the actual 

engine.

The variation of the differential expansion pressure, pE – pA, is about  rad out of phase with the 

variation of the position of the power piston, xP, for both experimental data and the theoretical results 

(Figures 6 and 15).  However, it should be noted, that whereas the amplitude of the theoretical 

predictions of pressure variation is about 6700 Pa, the corresponding amplitude of the experimental 

data is about 4500 Pa, or about 30% lower.  There are two possible reasons for the error.  First, it 

appears that the crank arm in the Stirling engine slipped during operation by about 10% from 11 mm 

to 10 mm; had it not, the experimental pressure amplitude would have been closer to the predicted 

amplitude.  Second, it is possible that the external flow parameter, kAK, determined experimentally 

during a semi-static test, increased during to a higher, dynamic value during the actual operation of 

the Stirling engine, thus allowing significant external venting of the displacer chamber.

Similarly, the variation of the position of the displacer, xD, is about  rad out of phase with the variation 

of the position of the power piston, xP, for both experimental data and the theoretical results (Figures 8 

and 17).  However, whilst the variation of the position of the power piston is reasonably sinusoidal, 

both the experimental data and the theoretical predictions demonstrate several interesting features of 

the variation of the position of the displacer.  First, the displacer dwells for a significant fraction of the 

periodic time in the top dead position, and for even a longer fraction in the bottom dead position.  

Second, possibly due to the effects of gravity, the drop of the displacer is much faster than its rise.  

The rapid rise and fall of the displacer is accompanied by large and rapid changes in the differential 

pressure, pE - pK, when the displacer approaches the bottom and the top of the displacer chamber.  

Finally, the displacer appears to bounce on the top and bottom stub springs, as demonstrated by rapid 

changes in the differential pressure, pE - pK.

Figures 7 and 16 show that the theoretically predicted variations of the differential pressure, pE - pK, 

are much larger than the experimentally determined variations.  The probable reason is, once again, 

that the dynamic value of the internal flow parameter, kMR, is greater than the experimental value 

obtained during the semi-static tests.  However, both Figures indicate that the differential pressure is 

positive for about one third of the periodic time.

The theoretical model describes many of the aspects demonstrated by the engine, such as the 

requirement for the minimum temperature difference TH – TC of about 600C to allow continuous 
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operation of the engine and the importance of the initial angle of the flywheel 0, which has an 

influence on whether or not the engine would attain continuous operation, and the direction of the 

sustained rotation of the flywheel.  It appears that the operation of the engine depends on the mass of 

air in the displacer chamber, which then determines the internal pressure distribution, and the initial 

mass of the air depends on the initial position of the power piston, or the initial position of the flywheel.

Finally, it should be pointed out that the theoretical model underpredicts the angular velocity of the 

flywheel in its steady-state sustained running.  For example, for the temperature difference TH – TC of 

about 750C, the theoretical model underpredicts the experimental data by about 25%.

4.2. Further considerations and future work

The theoretical model, which was developed from the first principles, is in a reasonable agreement 

with the experimental data.  However, further work is required on the description of the regenerator, 

further evaluation of the various heat transfer parameters and the removal of some of the 

assumptions, such as the allocation of the internal flow between the regenerator and the annular gap 

between the displacer and the displacer chamber, modelling of the connecting rod and the allocation 

of losses.

The theoretical model will then be used to optimise the engine, and to prepare the theoretical 

foundations for designing a large and simple low temperature differential Stirling engine, which could 

be used to utilise large available quantities of low grade heat.
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5. Conclusions

A theoretical model of a low temperature differential Stirling engine has been developed.  A fully 

instrumented experimental low temperature Stirling engine has been designed to validate the 

theoretical model.  The model is in a good agreement with the experimental results, and confirms 

several important features of this kind of engine.  First, a certain minimum temperature difference is 

required to allow a sustained operation of the engine.  Second, it is shown that the displacer dwells for 

significant times at the top and bottom of its travel.  Third, the displacer is about 180 degrees of out 

phase with the power piston.  Finally, for a given temperature difference the final angular velocity of 

the flywheel in sustained operation is independent of the initial conditions, but the direction of the 

rotation of the flywheel is strongly dependent on the initial conditions.  The model will be used to 

design a large and simple low temperature differential Stirling engine.
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Symbols

AD cross sectional area of the displacer

ADR cross sectional area of the displacer rod

AP cross sectional area of the power piston

cM specific heat of the regenerator matrix

cV specific heat of the gas at constant volume

cP specific heat of the gas at constant pressure

EE energy of gas in expansion space

EK energy of gas in compression space

FDA spring restraining force

FR axial force in the connecting rod

g gravitational acceleration

hC height of the compression chamber

hD height of the displacer

hF distance between the top of displacer chamber and the centre of flywheel

hP height of the power piston

hSB unrestrained length of the bottom stub spring

hST unrestrained length of the top stub springs

IF moment of inertia of the flywheel

kAK flow parameter, given by equation (14)

kDF flywheel loss parameter

kHC heat transfer parameter between cold reservoir and compression space

kHH heat transfer parameter between hot reservoir and expansion space

kHRM heat transfer parameter between the gas core and the surrounding matrix

kMR flow parameter, given in equation (6)

kSB spring constant of the bottom stub spring

kST spring constant of the top stub spring

 length of the connecting rod

mE mass of gas in the expansion space

mD total mass of the displacer assembly

mK mass of gas in the compression space

mM total mass of the regenerator matrix

mMC mass of the surrounding regenerator matrix in each cell

mRC mass of gas in each cell

mP mass of the power piston

Am mass flow rate from the ambient atmosphere to the compression space

Rm mass flow rate from the expansion space to the compression space

N number of gas-matrix cells in the regenerator

pA ambient pressure
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pE pressure in the expansion space

pK pressure in the compression space

QC heat transfer rate from the gas to the cold reservoir

QER heat flow rate from the expansion space to the regenerator

QH heat transfer rate to the gas from hot reservoir

QKA heat flow rate from the ambient atmosphere to the compression space

QKR heat flow rate from the regenerator to the compression space

r length of the crank arm

R gas constant

t time

tT total running time

TA ambient temperature

TC temperature of the cold reservoir

TH temperature of the hot reservoir

TE temperature of the gas in the expansion space

TK temperature of the gas in the compression space

TM temperature of the regenerator matrix

TM1 temperature of the regenerator matrix in the first cell

TRE temperature of the gas leaving the regenerator to the expansion space

TR temperature of the regenerator gas

TR1 temperature of the regenerator gas in the first cell

TRK temperature of the gas leaving the regenerator to the compression space

T1
* temperature of the gas defined by equation (7)

T2
* temperature of the gas defined by equation (16)

T3
* temperature of the gas defined by equation (15)

VE volume of the expansion space

VK volume of the compression space

WD work by the displacer

WP work on the power piston

xD position of centre of displacer above the bottom of displacer chamber

xP position of centre of power piston above the bottom dead position

 angle given in Figure 9

 angle given in Figure 9

 angle of the flywheel, given in Figure 9

0 initial angle of the flywheel

 initial angular velocity is imposed on the flywheel

subscripts

I refers to the I-th regenerator cell
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Captions to Figures and Tables

Figures

1. Diagram of a Ringbom engine developed by Senft [6, 7].

2. Diagram of the engine investigated in this work.

3. A plot of the experimentally determined variations of the position of the power piston, xP, and the 

relative expansion pressure, pE - pA, with the elapsed time, t in the vicinity of t = 13 s.

4. A plot of the experimentally determined variations of the relative expansion pressure, pE – pA, and 

the differential pressure, pE - pK, with the elapsed time, t in the vicinity of t = 13 s.

5. A plot of the experimentally determined variations of the position of the piston, xP, the position of 

the centre of the displacer above the bottom of the displacer chamber, xD, and the differential 

pressure, pE - pK with the elapsed time, t in the vicinity of t = 13 s.

6. A plot of the experimentally determined variations of the position of the power piston, xP, and the 

relative expansion pressure, pE - pA, with the elapsed time, t in the vicinity of t = 120 s.

7. A plot of the experimentally determined variations of the relative expansion pressure, pE – pA, and 

the differential pressure, pE - pK, with the elapsed time, t in the vicinity of t = 120 s.

8. A plot of the experimentally determined variations of the position of the piston, xP, the position of 

the centre of the displacer above the bottom of the displacer chamber, xD, and the differential 

pressure, pE - pK with the elapsed time, t in the vicinity of t = 120 s.

9. Nomenclature used in the analysis of the kinematic relationships.

10. Nomenclature used in the analysis of the engine.

11. Approximation of the regenerator used in the analysis.

12. A plot of the theoretically calculated variations of the relative expansion pressure, pE – pA, and the 

differential pressure, pE - pK, with the elapsed time, t in the vicinity of t = 13 s.

13. A plot of the theoretically calculated variations of the relative expansion pressure, pE – pA, and the 

differential pressure, pE - pK, with the elapsed time, t in the vicinity of t = 13 s.
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14. A plot of the theoretically calculated variations of the position of the piston, xP, the position of the 

centre of the displacer above the bottom of the displacer chamber, xD, and the differential 

pressure, pE - pK with the elapsed time, t in the vicinity of t = 13 s.

15. A plot of the theoretically calculated variations of the position of the power piston, xP, and the 

relative expansion pressure, pE - pA, with the elapsed time, t in the vicinity of t = 120 s.

16. A plot of the theoretically calculated variations of the relative expansion pressure, pE – pA, and the 

differential pressure, pE - pK, with the elapsed time, t in the vicinity of t = 120 s.

17. A plot of the theoretically calculated variations of the position of the piston, xP, the position of the 

centre of the displacer above the bottom of the displacer chamber, xD, and the differential 

pressure, pE - pK with the elapsed time, t in the vicinity of t = 120 s.

Tables

1. Dimensions and properties of the main engine components.

2. Temperatures of the hot and the cold reservoirs.

3. Physical constants used in the analysis.

4. Additional parameters used in the analysis.
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Component Property Value Unit

Diameter 0.116 mDisplacer chamber
Height 0.029 m
Diameter 0.115 m
Height 0.010 m

Displacer and regenerator assembly

Mass 0.034 kg
Displacer rod Diameter 0.014 m

Number 4 -
Diameter 0.020 m
Height 0.010 m
Mass (total) 0.0075 kg

Regenerator segments

Porosity 95 %
Diameter 0.170 mFlywheel
Moment of inertia 0.00069 kg m2

Diameter 0.034 m
Height 0.020 m

Power piston

Mass 0.030 kg
Unrestrained length 0.005 mBottom and top stub springs
Spring constants 1000 N/m

Table 1

Table 01



Temperature [C]
Hot reservoir, TH Cold reservoir, TC Difference, TH - TC

nominal 100.0 20.0 80.0
at t = 0 s 105.0 16.0 89.0
at t = 3 s 96.5 17.0 79.5
at t = 13 s 91.0 16.5 74.5
at t = 22 s 90.5 16.5 74.0
at t = 120 s 87.5 17.0 70.5

Table 2

Table 02



Parameter Value Unit

specific heat of the regenerator matrix 450 J/kg K

specific heat of the gas at constant volume 1005 J/kg K

specific heat of the gas at constant pressure 718 J/kg K

gravitational acceleration 9.81 m/s2

ambient pressure 101000 Pa

gas constant 287 J/kg K

ambient temperature 280 K

Table 3

Table 03



Parameter Symbol Value Unit

flow parameter, given by equation (14) kAK 5 x 10-10 kg/s Pa

flywheel loss parameter kDF 1 x 10-5 J s/rad

heat transfer parameter between cold reservoir and compression space kHC 0.3 W/K

heat transfer parameter between hot reservoir and expansion space kHH 0.3 W/K

heat transfer parameter between gas core and surrounding matrix kHRM 2/N W/K

flow parameter, given in equation (6) kMR 2 x 10-5 kg/s Pa

mass of the surrounding regenerator matrix in each cell mMC 7.5 x 10-3/N kg

mass of gas in each cell mRC 2.2 x 10-5/N kg

Table 4

Table 04


