

A similarity-based neighbourhood search for enhancing the balance exploration–exploitation of differential evolution

Journal Pre-proof

A similarity-based neighbourhood search for enhancing the balance
exploration–exploitation of differential evolution

Eduardo Segredo, Eduardo Lalla-Ruiz, Emma Hart, Stefan Voß

PII: S0305-0548(19)30313-2
DOI: https://doi.org/10.1016/j.cor.2019.104871
Reference: CAOR 104871

To appear in: Computers and Operations Research

Received date: 30 July 2018
Revised date: 20 December 2019
Accepted date: 23 December 2019

Please cite this article as: Eduardo Segredo, Eduardo Lalla-Ruiz, Emma Hart, Stefan Voß, A similarity-
based neighbourhood search for enhancing the balance exploration–exploitation of differential evolu-
tion, Computers and Operations Research (2019), doi: https://doi.org/10.1016/j.cor.2019.104871

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cor.2019.104871
https://doi.org/10.1016/j.cor.2019.104871

Highlights

• A novel approach that promotes a balance between exploration and exploitation

• Adaptively promotes diversification and intensification based on the search progress

• Hybridisation of this method with both explorative and exploitative variants of DE

• The use of this approach with DE leads to better solutions on large-scale problems

1

A similarity-based neighbourhood search for enhancing the balance
exploration–exploitation of differential evolution

Eduardo Segredoa,b, Eduardo Lalla-Ruizd,∗, Emma Harta, Stefan Voßc

aSchool of Computing, Edinburgh Napier University, 10 Colinton Road, Edinburgh, EH10 5DT, Scotland, United Kingdom
bDepartamento de Ingenieŕıa Informática y de Sistemas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain

cInstitute of Information Systems, University of Hamburg, Hamburg, Germany
dDepartment of Industrial Engineering and Business Information Systems, University of Twente, Enschede, The Netherlands

Abstract

The success of search-based optimisation algorithms depends on appropriately balancing exploration and
exploitation mechanisms during the course of the search. We introduce a mechanism that can be used with
Differential Evolution (de) algorithms to adaptively manage the balance between the diversification and
intensification phases, depending on current progress. The method—Similarity-based Neighbourhood Search
(sns)—uses information derived from measuring Euclidean distances among solutions in the decision space
to adaptively influence the choice of neighbours to be used in creating a new solution. sns is integrated
into explorative and exploitative variants of jade, one of the most frequently used adaptive de approaches.
Furthermore, shade, which is another state-of-the-art adaptive de variant, is also considered to assess the
performance of the novel sns. A thorough experimental evaluation is conducted using a well-known set of
large-scale continuous problems, revealing that incorporating sns allows the performance of both explorative
and exploitative variants of de to be significantly improved for a wide range of the test-cases considered.
The method is also shown to outperform variants of de that are hybridised with a recently proposed global
search procedure, designed to speed up the convergence of that algorithm.

Keywords: Differential evolution, global search, diversity management, exploration, exploitation,
large-scale continuous optimization

1. Introduction

Numerous problems arising from the real-world can be modelled as optimisation problems. Meta-heuristic
approaches often provide an appropriate compromise between computational effort and solution quality,
with a broad variety of methods available, depending on the nature of the problem domain. In terms of
tackling problems within the field of continuous optimisation, one of the most frequently used approaches5

is Differential Evolution (de), first proposed by Storn & Price (1997), and since then spawning a wealth of
variations, described in a recent survey by Das et al. (2016).

As with any meta-heuristic approach, there is a natural tension between increasing convergence speed—
to produce results faster—and preventing premature convergence—reducing the quality of results. While
exploitation methods favour the former, exploration methods favour the latter. As a result, a significant10

volume of research within the de community has been devoted not only to introducing novel operators, e.g.
Guo et al. (2017), that can be hybridised with de, but also to developing schemes that adaptively balance
exploration and exploitation mechanisms (Črepinšek et al., 2013; Lozano & Garćıa-Mart́ınez, 2010). In this
paper, we propose a novel operator to achieve this, namely Similarity-based Neighbourhood Search (sns). It

∗Corresponding author
Email addresses: e.segredo@napier.ac.uk (Eduardo Segredo), e.a.twente@utwente.nl (Eduardo Lalla-Ruiz),

e.hart@napier.ac.uk (Emma Hart), stefan.voss@uni-hamburg.de (Stefan Voß)

Preprint submitted to Computers & Operations Research December 24, 2019

is integrated within one of the most commonly used de frameworks jade, as well as with recent ones, such15

as shade. This continues the line of development proposed by Neri & Tirronen (2010) in a classification of
approaches to de, i.e. “de integrating an extra component” in order to complementing de with improvement
methods to enhance its performance.

The method is evaluated on a well-known set of scalable continuous optimisation problems proposed
by Li et al. (2013). The requirement to solve large, complex problems with a vast number of decision20

variables is becoming increasingly important in the era of big data, where typical problem instances might
have several thousands, even millions, of continuous variables; efforts to develop new methods that can cope
with this kind of scale are increasingly apparent in recent literature (LaTorre et al., 2015; Mahdavi et al.,
2015). The aforementioned set of problems was provided for the special session and competition on Large
Scale Global Optimisation organised in the field of the Congress on Evolutionary Computation (cec) 201325

and used in the most recent one cec’19.
Taking into account previous editions of the competition, in general terms, the approaches showing the

best performance make use of multiple algorithms to solve an instance where de is incorporated among
others. In the current work, the main goal is to research and enhance de state-of-the-art approaches by
means of improvement methods that could be later considered in complex and hybrid schemes as those30

proposed in the literature. Thus, following the research direction (Guo et al., 2017; Črepinšek et al., 2013;
Lozano & Garćıa-Mart́ınez, 2010) the integration of de with an extra component promoting an adaptive
balance between exploration and exploitation along the search is investigated.

Bearing the above discussion in mind, the main contributions of this paper are therefore as follows:

• A novel Similarity-based Neighbourhood Search (sns) that promotes a suitable balance between explo-35

ration and exploitation, depending on the current stage of the search. sns is based on calculating a
similarity value (e.g. Euclidean distance) among individuals and using this to influence the selection
of individuals to create new solutions. The method adaptively promotes diversification at early stages
of the search, and intensification towards the later stages.

• Hybridisation of the operator with both explorative and exploitative variants of de based on param-40

eter adaptation mechanisms provided by one of the most widely applied adaptive de approaches:
jade (Zhang & Sanderson, 2009). Furthermore, shade (Tanabe & Fukunaga, 2013) is also taken into
account as another adaptive de variant to evaluate the performance of the novel sns. This way the
contribution of our method to de is contextualised.

• A broad empirical investigation combined with detailed statistical analysis that demonstrates the45

utility of hybridising sns with both explorative and exploitative de variants in order to attain better
solutions on a test-suite consisting of scalable instances.

• Additional experiments that demonstrate that sns is also able to outperform, in a significant number
of cases, a state-of-the-art operator gs that was recently proposed by Guo et al. (2017) to increase the
convergence speed of de to better solutions when dealing with continuous problems.50

The remainder of this paper is structured as follows. Section 2 goes over those works related to the
contributions of this paper. Afterwards, Section 3 describes the algorithmic proposals applied in the current
work, including the particular de variants, as well as the novel sns. Then, the experimental evaluation
carried out and the discussion of the results obtained are given in Section 4. Finally, Section 5 presents the
main conclusions and suggests several directions for further research.55

2. Literature review

We consider recent surveys on de and continuous optimisation (Das et al., 2016; LaTorre et al., 2015;
Mahdavi et al., 2015). Moreover, in this literature review, we pay particular attention to research that
falls into the category proposed in the classification from Neri & Tirronen (2010), i.e. “de integrating an
extra component”. Bearing the above in mind, in the following we concisely review those works within the60

3

said category. Namely, it encompasses those algorithms using de as an evolutionary framework that are
supported by additional algorithmic components. We note that the particular extra components considered
in this overview are those concerning the synergy between de and other search procedures.

Several approaches can be found in the literature concerning the hybridisation of de with other well-
known meta-heuristics, such as Particle Swarm Optimisation (pso), Simulated Annealing (sa), Variable65

Neighbourhood Search (vns), and Genetic Algorithms (gas), among others. According to Das et al. (2008),
de is often hybridised with pso. In this regard, Xin et al. (2012) presented an overview and taxonomy
concerning hybridisations between de and pso.

Ghasemi et al. (2016) presented four hybrid approaches based on de and pso for solving multi-area
economic dispatch problems. They also proposed a hybrid sum-local search optimiser, where the crossover70

operator of de considered the best so-called particle of a given local neighbourhood. The authors indicated
that their approach presented an appropriate balance between its global search ability and convergence
features.

Parouha & Das (2016) recently proposed a hybrid scheme based on de and the memory concept of pso
for solving continuous optimisation problems. The concept of memory was borrowed from pso and used75

during the trial generation strategy of de in order to enable it to use information belonging to a previous
generation in the new one. Results reported that their approach exhibited better performance in comparison
to either de and pso run as independent optimisers and to the standard hybridisation between de and pso.

As previously mentioned, other recent approaches have covered the hybridisation of de with ga, sa and
vns. Trivedi et al. (2015) proposed a hybrid approach based on de and ga, which was termed as hgade,80

in order to deal with the Unit Commitment Scheduling problem. Binary variables were optimised through
the ga, while continuous variables were evolved by means of de operators. The comparison against de and
ga runs independently showed that hgade led to better results, since the latter was able to significantly
outperform the former.

Guo et al. (2014) presented a hybrid algorithm combining de and sa. It considered two populations85

with each one ruled by a different de variant. sa was used to enhance the global search ability of de during
the selection of individuals from both populations, as well as during the updating of the parameter values
of de. The computational study revealed that the usage of sa improved the overall performance of de.

Kovačević et al. (2014) introduced a hybrid method based on de and vns. The ruling idea behind
this hybrid approach was the application of the neighbourhood variation with the aim of estimating the90

parameter values of the de crossover operator. The hybrid scheme showed to provide a higher performance
in comparison to other de variants proposed in the literature.

Guo et al. (2017) presented a hybridisation between de and a global neighbourhood search, which
was initially proposed by Wang et al. (2013) for integrating with pso. In Guo et al. (2017), the authors
demonstrated that the use of their gs improved the performance of de when addressing continuous problems95

with low dimensionalities. Based on the results reported, they claimed that the convergence speed of de
to better solutions was accelerated. Those results motivated us to further analyse the behaviour of that
particular gs when tackling continuous problems with a much larger number of dimensions, given that this
analysis was missing from (Guo et al., 2017).

With respect to algorithmic schemes proposed to adapt the parameters F and CR (described in the next100

section) of de, Zhang & Sanderson (2009) proposed jade, which is a well-known scheme that provides a
parameter control strategy to determine and update the said parameters. Another approach, proposed by
Wang et al. (2011) combines three trial vector generation strategies and parameter control settings in the
scheme termed Composite de (code). Finally, Tanabe & Fukunaga (2013) proposed an improved variant of
jade, termed as Success History-based Differential Evolution (shade) that uses historical information for105

setting F and CR. The authors showed that shade performs better than jade and code.

3. Algorithmic approaches

In this section, we briefly describe both the explorative and exploitative de variants we have selected
as the base algorithms that our novel sns procedure will be integrated with. The de versions are depicted

4

Algorithm 1 Pseudocode of differential evolution

Require: n, F , CR
1: Generate n individuals or target vectors as the initial population through an initialisation strategy. In

this case, Opposition-based Learning (obl) is considered
2: while (stopping criterion is not satisfied) do
3: for (j = 1 : n) do

4: The individual ~Xj belonging to the current population is referred to as the target vector

5: Obtain a mutant vector ~Vj through the mutant generation strategy

6: Combine ~Xj and ~Vj through the crossover operator to get the trial vector ~Uj

7: Select the fittest individual between ~Xj and ~Uj as the survivor for next generation
8: end for
9: Apply the novel sns to the surviving population.

10: end while
11: return the fittest individual in the population

in Section 3.1, while sns itself is introduced in Section 3.2. Both de variants make use of the parameter110

adaptation mechanisms provided by jade, which are described in Section 3.1.3.

3.1. Explorative and exploitative differential evolution with parameter adaptation based on jade

In de, a vector ~X = [x1, . . . , xi, . . . , xD] is used to encode an individual. The i-th decision variable
is represented by xi, and the number of decision variables or dimensions of the problem at hand is given
by D. At the same time, when dealing with box-constrained problems, the feasible region is defined by115

Φ = {X ∈ RD|xi ∈ [ai, bi], i = 1, 2, ..., D}, where the lower and upper bounds of variable xi are given by ai
and bi, respectively.

Using the most frequently used nomenclature for de (Storn & Price, 1997), i.e., de/x/y/z, where x is
the individual to be mutated, y defines the number of difference vectors used, and z indicates the crossover
strategy, we selected the variants de/rand/1/bin and de/current-to-pbest/1/bin: these intrinsically promote120

exploration and exploitation, respectively (Segura et al., 2015; Zhang & Sanderson, 2009). The term bin
refers to binomial crossover, which is described in the next section.

3.1.1. An explorative differential evolution variant: de/rand/1/bin

The choice of this particular de variant is due to two main reasons. First, in past research, a configuration
of de/rand/1/bin provided the best performance for a significant number of functions belonging to the test125

suite we tackle here (Kazimipour et al., 2014). Second, it was shown to be the best performing overall de
version when dealing with a set of scalable continuous problems in previous work (Segura et al., 2015).

Algorithm 1 shows the general operation of de. First of all, n individuals are generated by means of
an initialisation strategy (step 1). In this work, we apply Opposition-based Learning (obl), proposed by
Xu et al. (2014), as the initialisation mechanism to enhance the quality of the initial population. In a130

previous work carried out by the authors (Segredo et al., 2017), it was demonstrated that the combination
of de/rand/1/bin together with obl is likely to provide better solutions, in comparison to the solutions
attained by applying other initialisation schemes, for the set of problems considered herein. Once the initial
population is obtained, it is evolved until a given stopping criterion is satisfied (step 2). At each generation,

the following steps are carried out for each individual ~Xj=1...n belonging to the current population (step 3),135

denoted as target vector in de terminology (step 4).

First, the mutant generation strategy is applied in order to produce a mutant vector ~Vj (step 5). This
particular de version applies the mutant generation strategy rand/1. Equation 1 describes that strategy,
where r1, r2, and r3 are mutually exclusive integers chosen at random from the range [1, n], and also
different to index j. Since all individuals involved in the mutant generation strategy are randomly selected,140

it promotes exploration rather than exploitation. Nevertheless, by means of the parameter F , which refers
to the mutation scale factor, the diversification and intensification abilities of the algorithm can be balanced.

5

Large values of F promote more exploration, while small values turn the approach into a more exploitative
scheme.

~Vj = ~Xr3 + F × (~Xr1 − ~Xr2) (1)

Once the mutant vector is obtained, it is combined with the target vector through the application of145

a crossover operator so as to obtain the trial vector ~Uj (step 6). The combination of the mutant vector
generation strategy and the crossover operator is usually referred to as the trial vector generation strategy.
For this work, the binomial crossover, which is one of the most widely applied de crossover methods, was
selected. Its operation is shown in Equation 2. The decision variable i belonging to individual ~Xj is
represented by xj,i. A random number uniformly distributed in the range [0, 1] is given by randj,i, and150

irand ∈ [1, 2, ..., D] is an index selected at random ensuring that at least one decision variable belonging to
the mutant vector is inherited by the trial one. Hence, variables are inherited from the mutant vector with
probability CR, also denoted as the crossover rate. In the remaining cases, variables are inherited from the
target vector.

uj,i =

{
vj,i if randj,i ≤ CR or i = irand
xj,i otherwise

(2)

The trial vector generation strategy might produce individuals outside the feasible region Φ, as it can155

be observed in Equations 1 and 2. To address this issue, an infeasible value in a given variable is randomly
re-initialised in the corresponding feasible range of that variable. Once the trial vector is obtained, it
is compared against its corresponding target vector in terms of the objective function value. The fittest
individual survives for the next generation (step 7). In our approach, the trial vector survives in case of
a tie. Finally, the novel sns operator, which will be introduced in Section 3.2, is applied to the surviving160

population at step 9.

3.1.2. An exploitative differential evolution variant: de/current-to-pbest/1/bin

This de variant is considered due to its ability to promote intensification rather than diversification.
Particularly, it is the DE variant considered by the original implementation of jade (Zhang & Sanderson,
2009). The operation of this de variant (de/current-to-pbest/1/bin) is exactly the same as that shown in165

Algorithm 1. The mutant generation strategy, however, is different.
Here, a mutant vector ~Vj is created starting from a target vector ~Xj as it is described in Equation 3.

Indexes r1 and r2 are mutually exclusive integers randomly selected from the range [1, n], and also different

to index j. Furthermore, the individual ~Xr3 is randomly selected from the fittest p × 100% individuals.
Some of the fittest individuals in the population are taken into account by the mutant generation scheme,170

and consequently, this de variant is more exploitative than the approach de/rand/1/bin, which only uses
randomness for selecting the individuals involved in the mutant generation scheme.

~Vj = ~Xj +K × (~Xr3 − ~Xj) + F × (~Xr1 − ~Xr2) (3)

As can be observed, in addition to the mutation scale factor F , parameter p can be used in order to
set the balance between the exploration and exploitation capabilities of the algorithm. By considering large
p values, the scheme is more explorative, while it becomes more exploitative with small p values. Finally,175

parameter K is also introduced, but in order to make the configuration of the approach easier, K = F is
usually considered in the related literature (Segura et al., 2015; Zhang & Sanderson, 2009).

3.1.3. Adaptation of the mutation scale factor and crossover rate by means of jade

As observed in previous sections, values for the mutation scale factor F and the crossover rate CR have
to be set to run both aforementioned de variants. Controlling or adapting the parameters of an algorithm180

while it is run has shown to provide significant benefits with respect to tuning or keeping those parameters
fixed for the whole execution (Karafotias et al., 2015). Therefore, a significant number of works related to
the adaptation of de parameters have been proposed (Das et al., 2016; Tvrd́ık et al., 2013).

6

jade (Zhang & Sanderson, 2009) includes one of the best performing and most frequently used approaches
to adapt the mutation scale factor F and the crossover rate CR. Those control mechanisms produce values185

for F and CR before executing the trial vector generation strategy (steps 5 and 6 of Algorithm 1), thus
generating a new trial vector by using the newly created values. Hence, every individual has associated its
own values for parameters F and CR.

In jade, a particular value for F is randomly obtained by means of a Cauchy distribution with location
factor µF and scale parameter equal to 0.1. If that value is lower than 0, then another one is sampled from190

the distribution, while if it is greater than 1, then it is truncated to 1. The location factor µF is initialised
to 0.5, and then, its value is updated at each generation after step 8 of Algorithm 1. In order to do this,
the Lehmer mean (meanL) of the successful values of F (SF), the previous value of µF , and a parameter c
representing the adaptation speed of µF are taken into consideration. The set SF consists of those values
of F associated to trial vectors that have been able to replace their corresponding target vectors in the195

population to survive for the next generation (step 7 of Algorithm 1). Equation 4 illustrates the updating
mechanism of µF .

µF = (1− c) · µF + c ·meanL(SF) (4)

At this point, we should note that in previous research (Segura et al., 2015), it was demonstrated that the
application of Equation 4 decreases the performance of an explorative de version, such as de/rand/1/bin,
in comparison to keeping µF fixed for the whole run. In the same work, however, it was shown that200

the application of Equation 4 increases the performance of an exploitative de variant, like de/current-to-
pbest/1/bin. As a result, the updating mechanism of µF was disabled for de/rand/1/bin herein, and values
for parameter F were randomly generated by a Cauchy distribution by keeping the location factor fixed
(µF = 0.5) for the whole run. In the case of de/current-to-pbest/1/bin, the updating mechanism of µF was
applied.205

With respect to the control mechanism of CR, it is similar to the control approach of F . In this case, a
value for CR is randomly generated through a Normal distribution with mean µCR and standard deviation
equal to 0.1, and then truncated to the range [0, 1]. The mean µCR is initialised to 0.5 and updated
by considering the arithmetic mean (meanA) of the successful values of CR (SCR), the previous value of
µCR, and a parameter c that represents the adaptation speed of µCR. In the current work, the updating210

mechanism of µCR, which is shown in Equation 5, is applied to both de variants with an adaptation speed
c = 0.1.

µCR = (1− c) · µCR + c ·meanA(SCR) (5)

3.2. Similarity-based neighbourhood search

In order to induce a proper balance between the diversification and intensification abilities of both
aforementioned de variants, and at the same time, with the aim of improving the quality of the solutions215

provided at the end of the executions, a novel Similarity-based Neighbourhood Search (sns) is presented.
This method considers the similarity among individuals, thus, first of all, a given similarity metric has

to be established, such as the Euclidean distance. Once that metric is selected, the population is sorted
in terms of the similarity of its individuals with respect to the fittest one, thus producing a sorted list. A
portion of that list is chosen according to a given criterion, which, for instance, can consider the current220

moment of the search procedure. As a result, individuals involved in the neighbourhood search are selected
from that particular portion of the list, which dynamically changes depending on the current moment of the
search. In this work, the similarity metric applied is the Euclidean distance and a portion of the sorted list
is selected based on the number of function evaluations currently performed. The application of the above
strategy seeks to promote diversification at early stages of the optimisation process, while intensification is225

fostered at the end of the runs. In the following, the specific details of sns are provided.
The operation of sns is shown in Algorithm 2. First of all, a real number a1 is uniformly selected at

random from the range [0, 1], together with defining a2 such that the condition a1 + a2 = 1 holds (step 1).

Afterwards, an individual ~Xk is uniformly selected at random from the current population (step 2). Then,

7

Algorithm 2 Pseudocode of the similarity-based neighbourhood search

Require: n, δ, Ω, ω
1: Set a1 to a random real number uniformly selected from the range [0, 1], together with defining a2 such

that the condition a1 + a2 = 1 is satisfied
2: Uniformly select an individual ~Xk from the current population at random
3: Sort the current population in descending order in terms of the similarity of each individual, i.e., the

Euclidean distance in the decision space, with respect to the fittest individual in the population ~Xbest

4: Create a sub-population including those individuals indexed within the [l(ω), u(ω)] positions in the

sorted population and select another individual ~Xr1 at random from that limited population such that
r1 ∈ [l(ω), u(ω)]. Index r1 must be different to index k

5: Generate a new individual ~V by means of Equation 6
6: Replace the best individual’s least similar neighbour by the newly created individual ~V

the current population is sorted in descending order in terms of the similarity of each individual with respect230

to the fittest individual in the population, i.e. ~Xbest (step 3). The above means that the fittest individual’s
least similar individuals will be found at the beginning of the list, while the fittest individual’s most similar
individuals will be found at the end of the list. The particular similarity metric to be applied has to be
established by the algorithm designer. Here, we use the Euclidean distance in the decision space. In step 4,
a sub-population composed of those individuals indexed in the [l(ω), u(ω)] positions of the sorted population235

is used for selecting at random another individual ~Xr1 . The computation of l(ω) and u(ω) will be described
in detail later.

After that, Equation 6 is applied to produce a new individual ~V (step 5). It can be observed that Equa-

tion 6 allows individual ~Xk to be attracted by ~Xbest and ~Xr1 , depending on the values that a1 and a2 take.
The idea behind Equation 6 is that sns promotes exploration or exploitation depending on the particular240

individual chosen as ~Xr1 . If ~Xr1 is different to ~Xbest, then sns will promote exploration. Otherwise, if ~Xr1

is similar to ~Xbest then sns will promote exploitation.

~V = ~Xk + a1 × (~XBest − ~Xk) + a2 × (~Xr1 − ~Xk) (6)

Finally, the newly generated individual ~V replaces the best individual’s least similar neighbour in the
population (step 6). A number of different replacement strategies were tested in preliminary experimentation:
replacement of the fittest individual’s least similar neighbour; replacement of the fittest individual’s most245

similar neighbour; replacement of individual ~Xk only in the case the newly generated individual ~V is fitter
than the former. The first replacement strategy provided the best overall results in these preliminary
experiments and therefore is used in the remainder of the paper.

The method by which individual ~Xr1 is selected from the sorted population (step 4) is described below.
Index r1, which must be different to index k, is uniformly chosen at random from the range [l(ω), u(ω)].250

Functions l(ω) and u(ω) set a lower and an upper bound, respectively, for the range from which ~Xr1 is
selected, and depend on the current stage of the search, given by the number of function evaluations ω
performed until that particular moment. The linear ascending function shown in Equation 7 is applied to
calculate u(ω), where n is the population size, the total number of function evaluations of a run is given
by Ω, and parameter δ < n refers to the minimum number of individuals involved in the selection. Once a255

particular value is given by u(ω), the lower bound l(ω) is calculated as Equation 8 shows.
As a result, at the beginning of a particular run, when only a few function evaluations have been

performed, the lower and upper bounds will be close to 0 and δ, respectively. As the execution progresses,
both bounds will linearly increase. Finally, at the end of the run, the lower and upper bounds will be close
to n− δ and n, respectively.260

u(ω) =
n− δ

Ω
· ω + δ (7)

8

Table 1: Overview of experiments. Considering a particular experiment, bullet points in the last column indicate the best-
performing overall approaches from among those specified in the corresponding second column.

Experiment Methods Goal
Overall best

sns gs de

First de-rand-sns
de-rand-gs
de-rand

Analysing the performance
of the proposed sns when it
is embedded into the explo-
rative de-rand

•

Second de-curr-sns
de-curr-gs
de-curr

Analysing the performance
of the proposed sns when
it is embedded into the ex-
ploitative de-curr

•

Third de-sha-sns
de-sha-gs
de-sha

Analysing the performance
of the proposed sns when it
is embedded into shade

• •

l(ω) = u(ω)− δ (8)

Recall that the population from which ~Xr1 is selected is sorted in descending order in terms of the
similarity of each individual with respect to the fittest individual in the population. As a result, at the
beginning of a given run, ~Xr1 will be selected from among the δ least similar neighbours to the fittest
individual in the current population. Exploration is thus promoted at early stages of the search procedure
(see Equation 6). Nevertheless, as more and more function evaluations are performed, the fittest individual’s265

least similar neighbours are progressively discarded, and therefore, the balance is moved from exploration
towards exploitation. At the end of the execution, only the fittest individual’s δ most similar neighbours
are involved in the selection, and consequently, exploitation is promoted.

Finally, it is worth noting that for a fixed population size, parameter δ allows the balance between
the exploration and exploitation abilities of sns to be dynamically adjusted. With small values of δ, its270

intensification ability is increased at late stages of the optimisation process, while it is decreased considering
large values.

4. Experimental evaluation

This section is devoted to describing the computational experiments performed to assess the performance
of sns. As previously discussed, sns is combined with the two de variants, de/rand/1/bin and de/current-to-275

pbest/1/bin described in Section 3.1; these are referred to as de-rand-sns and de-curr-sns, respectively.
It is important to note that both de versions are adaptive, as the control mechanisms provided by jade
are applied to adapt the values of the mutation scale factor F and the crossover rate CR (as described
in Section 3.1.3). We also compare performance to the same de variants with and without the global
neighbourhood search operator (gs) proposed by Guo et al. (2017): the variants including gs are termed280

as de-rand-gs and de-curr-gs in the rest of the paper, while those without as de-rand and de-curr.
Finally, de-sha-sns and de-sha-gs refer to hybridisations of shade embedding sns and gs, respectively,
while de-sha refers to the original implementation of shade given by Tanabe & Fukunaga (2013). At this
point, we would like to remind that the remaining components of all the different algorithms compared
in each experiment were the same. For instance, the initialisation strategy obl was applied by all the285

approaches included in the comparisons. An overview of the experiments carried out along this section,
including a description of their goals, the particular approaches involved, and the schemes showing the best
overall resulting performance, is given in Table 1.

9

Table 2: Benchmark functions
Name Bounds Optimum

f1: Shifted Elliptic Function [−100, 100]D 0

f2: Shifted Rastrigin’s Function [−5, 5]D 0

f3: Shifted Ackley’s Function [−32, 32]D 0

f4: 7-nonseparable, 1-separable Shifted and Rotated Elliptic Function [−100, 100]D 0

f5: 7-nonseparable, 1-separable Shifted and Rotated Rastrigin’s Function [−5, 5]D 0

f6: 7-nonseparable, 1-separable Shifted and Rotated Ackley’s Function [−32, 32]D 0

f7: 7-nonseparable, 1-separable Shifted Schwefel’s Function [−100, 100]D 0

f8: 20-nonseparable Shifted and Rotated Elliptic Function [−100, 100]D 0

f9: 20-nonseparable Shifted and Rotated Rastrigin’s Function [−5, 5]D 0

f10: 20-nonseparable Shifted and Rotated Ackley’s Function [−32, 32]D 0

f11: 20-nonseparable Shifted Schwefel’s Function [−100, 100]D 0

f12: Shifted Rosenbrock’s Function [−100, 100]D 0

f13: Shifted Schwefel’s Function with Conforming Overlapping Subcomponents [−100, 100]D 0

f14: Shifted Schwefel’s Function with Conflicting Overlapping Subcomponents [−100, 100]D 0

f15: Shifted Schwefel’s Function [−100, 100]D 0

Experimental method. All the above algorithmic approaches were implemented by means of the Meta-
heuristic-based Extensible Tool for Cooperative Optimisation (metco) proposed by León et al. (2009). Ex-290

periments were executed on one debian gnu/linux computer with four amd R© opteronTM processors (model
number 6348 he) at 2.8 ghz and 64 gb ram. Since all the approaches considered are stochastic, each run
was repeated 100 times. The following statistical testing procedure, which was previously used in a former
work by the authors (Segura et al., 2016), was applied to conduct comparisons between approaches. First,
a Shapiro-Wilk test was performed to check whether the values of the results followed a normal (Gaussian)295

distribution. If so, the Levene test checked for the homogeneity of the variances. If the samples had equal
variance, an anova test was done. Otherwise, a Welch test was performed. For non-Gaussian distributions,
the non-parametric Kruskal-Wallis test was used. For all tests, a significance level α = 0.05 was considered.

Problem set. We test the proposed algorithms using the continuous optimisation benchmark suite pre-
sented by Li et al. (2013). It consists of 15 different scalable minimisation functions (f1–f15) as follows:300

fully-separable functions (f1–f3), partially additively separable functions (f4–f11), overlapping functions
(f12–f14), and a non-separable function (f15). As proposed by Li et al. (2013), we fix the number of deci-
sion variables D to 1000 for all functions, with the exception of f13 and f14, where 905 decision variables
were considered due to overlapping subcomponents. Large-scale optimisation problems are thus considered
herein. Table 2 shows a summary of the functions tested in the current work, including information about305

the bounds of the decision variables and the value of the global optimum for each of them. As it can be
observed, all the test cases are based on transformations and/or combinations of well-known base functions,
such as the Sphere function and the Rastrigin’s function, among others. For instance, Equation 9 shows the
formal definition of the Rastrigin’s function, where ~x is a vector with D decision variables or dimensions.
The goal is to find the values of the D decision variables belonging to vector ~x such that frastrigin(~x) is310

minimised.

frastrigin(~x) =

D∑

i=1

[x2
i − 10cos(2πxi) + 10] (9)

Table 3: Parameterisation of de-rand-sns, de-rand-gs and de-rand

Parameter Value Parameter Value

Stopping criterion 3 · 106 evals. Mutation scale factor (F) Adapted by Cauchy(0.5, 0.1)

Population size (n) 50 Crossover rate (CR) Adapted by jade

10

4.1. Analysing the performance of the similarity-based neighbourhood search with an explorative adaptive
de version: de/rand/1/bin

Experiments in this section address two questions: (1) Does sns enable an appropriate balance between
the diversification and intensification abilities of an explorative de algorithm?; (2) Does the hybrid approach315

de-rand-sns provide better solutions in comparison to de-rand-gs and/or de-rand? de-rand-sns, de-
rand-gs, and de-rand were applied with the parameterisation shown in Table 3. A stopping criterion
equal to 3 · 106 function evaluations was set for all the approaches by following the suggestions given by Li
et al. (2013).

In order to fix the population size n, we carried out a preliminary study where we executed 20 runs of de-320

rand by considering 15, 50, 150 and 300 individuals to solve functions f1–f15. The best overall performance
in our preliminary study was attained by applying n = 50 individuals. As a result, all experiments with
de-rand-sns, de-rand-gs and de-rand were conducted using that population size. Finally, the minimum
number of individuals involved in the selection process of sns was set to five individuals (δ = 5), which
represents 10% of the whole population. This value was selected as in a preliminary study it provided the325

best overall results in terms of the quality of the solutions attained at the end of the executions. Particularly,
we executed 20 independent runs of de-rand-sns with problems f1–f15 by considering values 5, 10, 15, 20,
25 and 50 for parameter δ. Since parameter δ is fixed to a relatively small value, exploitation is increased
by sns at late stages of the search process, as we previously mentioned in Section 3.2.

Figure 1 shows, for each of the three approaches de-rand-sns, de-rand-gs and de-rand, the evolution330

of the mean of the error with respect to the objective function value considering 100 independent runs. Note
that for some test cases (f1, f3 and f12), axes were modified in order to properly visualise differences among
approaches. Furthermore, in the particular case of f12, axes were adjusted to show differences between
de-rand-gs and de-rand, thus discarding the results of de-rand-sns, since the latter attained a worse
performance in comparison to the first two approaches. de-rand-sns was able to provide the lowest mean335

of the error during the whole search process on 9 out of 15 functions. To understand the role that diversity
might play in contributing to these results, we examine three example functions (f3, f6 and f10) in more
detail. Those three functions were selected as they provide a representative set, i.e., similar conclusions than
those given below can be extracted for the remaining test cases. Figure 2 describes the evolution of the
mean distance to the closest neighbour (dcn) attained by de-rand-sns, de-rand-gs and de-rand. Note340

that although de-rand-gs and de-rand preserve a higher diversity in the population during the execution
in comparison to de-rand-sns, they have a higher mean error than de-rand-sns. In other words, the
tendency of the de variant used to promote exploration is not suppressed by de-rand-gs or de-rand. On
the other hand, the adaptive mechanism induced by de-rand-sns appears to counter-balance the explorative
tendency of the base-variant to provide better results. In general, de-rand-sns tends to increase diversity345

at the beginning of a run; as executions advance, diversity is then decreased.
In some instances, e.g. f11, de-rand-sns does not converge as fast as de-rand-gs and/or de-rand

during the early stages of the search process, but achieves the lowest mean of the error by the end of the
execution. This is explained by the fact that the novel sns operator shifts the balance from exploration
towards exploitation as the run progresses, which ultimately delivers better results than the variants that350

consistently promote exploration. Finally, although de-rand-sns exhibited the fastest convergence to better
solutions in the majority of test cases in comparison to de-rand-gs and de-rand, there are six functions
for which de-rand-gs and de-rand showed a better performance with respect to de-rand-sns. It is likely
that exploration should be promoted during the whole run in order to better deal with those test cases. In
fact, four out of those six test cases (i.e., f2, f5, f9 and f12) are multimodal problems, where approaches355

that mainly promote exploration may attain better results. Consequently, an approach like de-rand-sns,
which moves the balance towards intensification as the run progresses, might be counterproductive when
solving those particular functions when compared to schemes that mainly promote exploration during the
entire run, such as de-rand-gs and de-rand.

Table 4 shows the mean, the median and the standard deviation (sd) of the error attained by de-rand-360

sns, de-rand-gs and de-rand on each problem instance at the end of each execution. The best results
obtained are shown in boldface. de-rand-sns provides the lowest mean and median of the error at the

11

0

10000

20000

30000

40000

50000

2e+06 2.2e+06 2.4e+06 2.6e+06 2.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f1 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

0

5000

10000

15000

20000

25000

30000

35000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f2 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

20

20.05

20.1

20.15

20.2

20.25

20.3

20.35

20.4

500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f3 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

0

2e+11

4e+11

6e+11

8e+11

1e+12

1.2e+12

1.4e+12

1.6e+12

1.8e+12

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f4 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f5 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

1.02e+06

1.025e+06

1.03e+06

1.035e+06

1.04e+06

1.045e+06

1.05e+06

1.055e+06

1.06e+06

1.065e+06

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f6 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

7e+09

8e+09

9e+09

1e+10

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f7 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

0

5e+15

1e+16

1.5e+16

2e+16

2.5e+16

3e+16

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f8 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

1.1e+09

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f9 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

9.2e+07

9.25e+07

9.3e+07

9.35e+07

9.4e+07

9.45e+07

9.5e+07

9.55e+07

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f10 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

0

1e+11

2e+11

3e+11

4e+11

5e+11

6e+11

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f11 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

3000

4000

5000

6000

7000

8000

9000

10000

1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f12 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

0

1e+10

2e+10

3e+10

4e+10

5e+10

6e+10

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f13 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

0

1e+11

2e+11

3e+11

4e+11

5e+11

6e+11

7e+11

8e+11

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f14 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

2e+08

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f15 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

Figure 1: Evolution of the mean of the error for schemes de-rand-sns, de-rand-gs, and de-rand considering 100 executions

end of the executions in 9 out of 15 functions (f3, f4, f6–f8, f10, f11, f13 and f14). In f15, de-rand-sns
gives the best median, while de-rand-gs provides the best mean. de-rand-gs obtains the best mean and
median on four instances (f1, f5, f9 and f12), and de-rand on one problem (f2).365

A pairwise statistical comparison among the different optimisation schemes is presented in Table 5,

12

0

100

200

300

400

500

600

700

800

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
D

C
N

Function evaluations

Function f3 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

0

100

200

300

400

500

600

700

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
D

C
N

Function evaluations

Function f6 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

0

100

200

300

400

500

600

700

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
D

C
N

Function evaluations

Function f10 - 3e6 evals. - 100 exec.

DE-RAND-SNS
DE-RAND-GS

DE-RAND

Figure 2: Evolution of the mean distance to the closest neighbour (dcn) for schemes de-rand-sns, de-rand-gs, and de-rand
considering 100 executions

following the statistical procedure described at the beginning of Section 4. In particular, p-values and
results of the statistical comparison between the first and second approaches of each pair are depicted. In
cases where statistically significant differences appeared, p-values are shown in boldface. Moreover, the
table also shows whether the first approach statistically outperformed the second one (↑), if the first scheme370

was statistically outperformed by the second one (↓), and if statistically significant differences did not arise
between both approaches (↔). A configuration A statistically outperforms another configuration B if there
exists statistically significant differences between them, i.e., if the p-value is lower than α = 0.05, and if at
the same time, A provides a lower mean and median of the error than B. For those cases where approach
A attained the lowest mean of the error, while configuration B achieved the lowest median of the error, and375

vice-versa, the Vargha-Delaney A measure was considered in order to check for effect size, and therefore, to
determine the best performing scheme. We provide the following observations based on the data explained
above.

• de-rand-sns statistically outperformed de-rand-gs in 10 out of 15 test cases (f3, f4, f6–f8, f10,
f11 and f13–f15), while de-rand-gs outperformed de-rand-sns in the remaining five problems.380

• de-rand-sns was statistically better than de-rand on 12 out of 15 problems (f3–f11 and f13–f15),
while de-rand statistically outperformed de-rand-sns in the remaining three test cases.

• de-rand-gs statistically outperformed de-rand in 11 out of 15 functions (f1, f4, f5, f7–f9, and
f11–f15), while de-rand was statistically better than de-rand-gs in two test cases (f2 and f3).
Significant differences were not observed for the remaining problems.385

We conclude that on the scalable optimisation problems tested, it is worth hybridising the explorative
adaptive de variant with an additional operator, whether it is the novel sns or the global neighbourhood
search operator gs. This is evidenced by the fact that de-rand-sns and de-rand-gs statistically outper-
formed de-rand in 12 and 11 problems, respectively.

However, de-rand-sns performed statistically better than de-rand-gs for a significant number of prob-390

lems (10 out of 15), demonstrating its clear superiority over the recently proposed global search operator.
This is most likely attributed to the tendency of the global neighbourhood to lead to premature convergence,
for example as in test cases f4 and f11, while de-rand-sns is able to maintain a better balance between
exploration and exploitation during different phases of the algorithm.

4.2. Analysing the performance of the similarity-based neighbourhood search with an exploitative adaptive395

de version: de/current-to-pbest/1/bin

Next, we repeat the above study with the goal of analysing whether sns is able to induce a suitable balance
between the diversification and intensification abilities of a de variant which mainly promotes exploitation on
the same suite of problem instances. We compare the performances of the three algorithms de-curr-sns,
de-curr-gs and de-curr, all of which utilise an exploitative version of de, using the parameterisation400

shown in Table 6. The population size n was fixed to 300 individuals, following a preliminary analysis that

13

Table 4: Mean, median, and standard deviation (sd) of the error achieved by de-rand-sns, de-rand-gs, and de-rand at the
end of 100 executions for problems f1–f15

Alg. de-rand-sns de-rand-gs
Func. Mean Median SD Mean Median SD
f1 4.846e+03 6.333e+00 3.005e+04 1.480e-12 1.473e-12 2.870e-13
f2 1.809e+04 1.807e+04 9.847e+02 6.265e+02 6.019e+02 2.069e+02
f3 2.000e+01 2.000e+01 1.467e-04 2.002e+01 2.002e+01 8.052e-04
f4 1.260e+10 1.205e+10 4.173e+09 3.808e+10 3.552e+10 1.036e+10
f5 4.734e+06 4.755e+06 8.471e+05 3.984e+06 3.986e+06 6.934e+05
f6 1.022e+06 1.022e+06 1.073e+04 1.052e+06 1.056e+06 1.267e+04
f7 7.740e+07 6.792e+07 3.235e+07 3.383e+08 3.166e+08 1.231e+08
f8 2.942e+14 3.152e+14 1.035e+14 8.792e+14 9.236e+14 3.571e+14
f9 4.366e+08 4.362e+08 5.288e+07 2.770e+08 2.759e+08 4.425e+07
f10 9.201e+07 9.206e+07 7.459e+05 9.341e+07 9.354e+07 6.541e+05
f11 2.968e+09 1.388e+09 5.362e+09 5.596e+10 5.430e+10 1.718e+10
f12 8.466e+05 6.546e+03 6.791e+06 2.944e+03 2.932e+03 2.963e+02
f13 2.173e+09 2.039e+09 6.081e+08 6.455e+09 6.367e+09 9.688e+08
f14 2.768e+10 2.637e+10 1.198e+10 9.336e+10 9.153e+10 1.247e+10
f15 2.892e+07 2.083e+07 3.930e+07 2.563e+07 2.516e+07 3.415e+06

Alg. de-rand
Func. Mean Median SD
f1 4.292e-12 4.296e-12 5.516e-13
f2 1.224e+00 9.950e-01 1.272e+00
f3 2.002e+01 2.002e+01 6.832e-04
f4 3.156e+11 3.323e+11 1.140e+11
f5 6.652e+06 6.678e+06 5.782e+05
f6 1.055e+06 1.056e+06 9.660e+03
f7 1.902e+09 1.937e+09 3.679e+08
f8 8.701e+15 8.253e+15 2.803e+15
f9 5.128e+08 5.165e+08 4.130e+07
f10 9.341e+07 9.351e+07 5.985e+05
f11 1.587e+11 1.510e+11 4.208e+10
f12 3.702e+03 3.708e+03 1.248e+02
f13 2.348e+10 2.395e+10 3.217e+09
f14 3.413e+11 3.427e+11 5.314e+10
f15 5.131e+07 5.158e+07 3.447e+06

Table 5: Pairwise statistical comparison among de-rand-sns, de-rand-gs, and de-rand considering their results achieved at
the end of 100 executions for problems f1–f15

de-rand-sns vs. de-rand-gs de-rand-sns vs. de-rand de-rand-gs vs. de-rand
Func. p-value Stat. p-value Stat. p-value Stat.
f1 2.524e-34 ↓ 2.524e-34 ↓ 6.847e-89 ↑
f2 2.524e-34 ↓ 2.524e-34 ↓ 2.524e-34 ↓
f3 2.524e-34 ↑ 2.524e-34 ↑ 1.083e-13 ↓
f4 2.100e-33 ↑ 2.524e-34 ↑ 1.561e-33 ↑
f5 9.349e-11 ↓ 1.469e-43 ↑ 1.706e-74 ↑
f6 2.079e-26 ↑ 5.329e-30 ↑ 2.083e-01 ↔
f7 6.018e-34 ↑ 2.524e-34 ↑ 2.524e-34 ↑
f8 1.496e-29 ↑ 1.526e-51 ↑ 2.204e-32 ↑
f9 1.899e-57 ↓ 4.757e-23 ↑ 9.301e-95 ↑
f10 9.187e-25 ↑ 2.370e-26 ↑ 6.199e-01 ↔
f11 5.030e-34 ↑ 2.524e-34 ↑ 4.524e-47 ↑
f12 2.524e-34 ↓ 2.524e-34 ↓ 1.545e-30 ↑
f13 2.601e-34 ↑ 2.524e-34 ↑ 2.294e-81 ↑
f14 3.209e-34 ↑ 2.524e-34 ↑ 4.931e-73 ↑
f15 3.497e-07 ↑ 2.496e-30 ↑ 2.524e-34 ↑

Table 6: Parameterisation of de-curr-sns, de-curr-gs and de-curr

Parameter Value Parameter Value

Stopping criterion 3 · 106 evals. Mutation scale factor (F) Adapted by jade

Population size (n) 300 Crossover rate (CR) Adapted by jade

indicated that this value provided the best overall performance for problems f1–f15. Given that this de
variant promotes exploitation, it makes sense that larger population sizes provide some means of exploration
to balance this. The minimum number of individuals involved in the selection process of sns was set to five
individuals (δ = 5), as in the first experiment.405

Figure 3 shows the evolution of the mean of the error with respect to the objective function value

14

0

10000

20000

30000

40000

50000

60000

70000

80000

2e+06 2.2e+06 2.4e+06 2.6e+06 2.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f1 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

5000

10000

15000

20000

25000

30000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f2 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f3 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

4e+09

5e+09

6e+09

7e+09

8e+09

9e+09

1e+10

1.6e+06 1.8e+06 2e+06 2.2e+06 2.4e+06 2.6e+06 2.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f4 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

1.1e+07

1.2e+07

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f5 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

1.025e+06

1.03e+06

1.035e+06

1.04e+06

1.045e+06

1.05e+06

1.055e+06

1.06e+06

1.065e+06

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f6 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.6e+061.8e+06 2e+06 2.2e+062.4e+062.6e+062.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f7 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

1e+13

1.5e+13

2e+13

2.5e+13

3e+13

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f8 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f9 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

9.1e+07

9.15e+07

9.2e+07

9.25e+07

9.3e+07

9.35e+07

9.4e+07

9.45e+07

9.5e+07

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f10 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

1.6e+061.8e+06 2e+06 2.2e+062.4e+062.6e+062.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f11 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

2.4e+06 2.5e+06 2.6e+06 2.7e+06 2.8e+06 2.9e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f12 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

1.6e+06 1.8e+06 2e+06 2.2e+06 2.4e+06 2.6e+06 2.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f13 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

2e+06 2.2e+06 2.4e+06 2.6e+06 2.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f14 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f15 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

Figure 3: Evolution of the mean of the error for schemes de-curr-sns, de-curr-gs, and de-curr considering 100 executions

over 100 independent runs for schemes de-curr-sns, de-curr-gs and de-curr. As in the case of the
previous experiment, axes were modified for some test cases, (f1, f4 and f7), to facilitate visualisation of
the differences among approaches. In 8 out of 15 cases, the best result is obtained by de-curr-sns: in
six test cases (f5, f6, f9, f10, f11 and f13), de-curr-sns exhibits the lowest mean of the error for almost410

15

0

10

20

30

40

50

60

70

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
D

C
N

Function evaluations

Function f5 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

0

100

200

300

400

500

600

700

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
D

C
N

Function evaluations

Function f6 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

0

100

200

300

400

500

600

700

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
D

C
N

Function evaluations

Function f10 - 3e6 evals. - 100 exec.

DE-CURR-SNS
DE-CURR-GS

DE-CURR

Figure 4: Evolution of the mean distance to the closest neighbour (dcn) for schemes de-curr-sns, de-curr-gs, and de-curr
considering 100 executions

the entire run, while for functions f3 and f4, de-curr-sns overtakes the other algorithms during the latter
stages of the search process. Functions f5, f6 and f10 clearly illustrate that sns behaves differently to the
other approaches in terms of speed of convergence.

To gain further insight into the role that diversity plays in improving results, we show the evolution of the
mean distance to the closest neighbour (dcn) for each of the schemes de-curr-sns, de-curr-gs and de-415

curr in Figure 4, for functions f5, f6 and f10. As with the previous experiment, de-curr-gs and de-curr
maintain high diversity during the entire run with respect to de-curr-sns, but are outperformed by de-
curr-sns. Although all approaches utilise the same underlying exploitative version of de, the incorporation
of sns enables smarter diversity management, decreasing diversity as the execution advances. The fact
that our proposed sns is able to promote diversification and intensification at early and late stages of the420

optimisation process, respectively, is therefore shown once more. Despite de-curr-sns showed the best
performance for a significant number of the functions tested in comparison to de-curr-gs and de-curr,
in the case of other problems, such as f8, f14 and f15, de-curr-gs and de-curr demonstrated to perform
better than de-curr-sns during the entire execution. Those problems are unimodal, and therefore, schemes
that mainly promote exploitation during the whole run show to be more suitable. de-curr-sns not only425

promotes exploitation at the end of the runs but exploration at the beginning of the executions, which may
be counterproductive when addressing unimodal problems. A possibility to mitigate the above, which may
be a line of work worth being carried out, could be to speed up the way the balance from exploration towards
exploitation is performed.

Table 7 shows the mean, the median, and the standard deviation (sd) of the error attained by de-curr-430

sns, de-curr-gs and de-curr over the repeated experiments. de-curr-sns provided the lowest mean
and median of the error at the end of the executions in 7 out of 15 functions (f3, f5, f6, f9–f11 and f13),
while de-curr-gs and de-curr attained the lowest mean and median of the error at the end of the runs
for problems f1 and f7, and f2 and f8, respectively.

In order to statistically support the above results, Table 8 shows the pairwise statistical comparison435

among the different approaches taken into account for this particular experiment. We make the following
observations:

• de-curr-sns statistically outperformed de-curr-gs in five out of 15 test cases (f3, f5, f6, f9

and f10), while de-curr-gs outperformed de-curr-sns in four test cases (f1, f2, f12 and f15).
For the remaining problems, de-curr-sns and de-curr-gs did not present statistically significant440

differences.

• de-curr-sns was statistically better than de-curr on 7 out of 15 problems (f3–f6 and f9–f11),
while de-curr statistically outperformed de-curr-sns in five test cases (f1, f2, f8, f12 and f15).
For the remaining functions, both schemes did not present statistically significant differences.

• de-curr-gs statistically outperformed de-curr in four out of 15 functions (f1, f4, f5 and f9),445

while de-curr was statistically better than de-curr-gs in two test cases (f2 and f15). Significant
differences between both approaches did not arise for the remaining problems.

16

Table 7: Mean, median, and standard deviation (sd) of the error achieved by de-curr-sns, de-curr-gs, and de-curr at the
end of 100 executions for problems f1–f15

Alg. de-curr-sns de-curr-gs
Func. Mean Median SD Mean Median SD
f1 2.272e+03 3.092e+02 9.656e+03 4.178e+02 1.156e+02 1.486e+03
f2 1.276e+04 1.297e+04 1.090e+03 7.849e+03 6.897e+03 2.334e+03
f3 2.026e+01 2.026e+01 2.182e-02 2.037e+01 2.037e+01 6.342e-03
f4 4.184e+09 4.082e+09 1.176e+09 4.292e+09 3.959e+09 1.262e+09
f5 2.378e+06 2.377e+06 3.508e+05 3.580e+06 3.588e+06 3.463e+05
f6 1.029e+06 1.030e+06 9.572e+03 1.056e+06 1.058e+06 8.883e+03
f7 5.282e+06 4.852e+06 2.110e+06 4.941e+06 4.524e+06 1.975e+06
f8 9.885e+12 8.693e+12 6.152e+12 8.211e+12 8.092e+12 4.642e+12
f9 2.385e+08 2.377e+08 2.380e+07 3.148e+08 3.110e+08 2.360e+07
f10 9.137e+07 9.123e+07 5.046e+05 9.341e+07 9.378e+07 1.044e+06
f11 2.066e+08 1.986e+08 5.312e+07 2.148e+08 2.094e+08 4.666e+07
f12 6.218e+03 5.959e+03 1.063e+03 5.787e+03 5.680e+03 6.657e+02
f13 2.553e+08 2.408e+08 9.506e+07 2.746e+08 2.643e+08 9.762e+07
f14 2.684e+08 1.294e+08 4.005e+08 2.060e+08 1.381e+08 2.295e+08
f15 1.423e+06 1.385e+06 2.780e+05 1.340e+06 1.310e+06 1.778e+05

Alg. de-curr
Func. Mean Median SD
f1 1.941e+03 1.942e+02 1.506e+04
f2 7.060e+03 6.063e+03 2.033e+03
f3 2.037e+01 2.037e+01 6.781e-03
f4 4.685e+09 4.640e+09 1.336e+09
f5 3.946e+06 3.944e+06 3.036e+05
f6 1.053e+06 1.058e+06 1.330e+04
f7 5.112e+06 4.672e+06 2.219e+06
f8 7.924e+12 7.005e+12 4.920e+12
f9 3.387e+08 3.390e+08 1.899e+07
f10 9.352e+07 9.378e+07 9.070e+05
f11 2.258e+08 2.239e+08 5.024e+07
f12 5.894e+03 5.579e+03 2.181e+03
f13 2.793e+08 2.649e+08 9.648e+07
f14 2.364e+08 1.349e+08 2.630e+08
f15 1.284e+06 1.255e+06 1.513e+05

Table 8: Pairwise statistical comparison among de-curr-sns, de-curr-gs, and de-curr considering their results achieved at
the end of 100 executions for problems f1–f15

de-curr-sns vs. de-curr-gs de-curr-sns vs. de-curr de-curr-gs vs. de-curr
Func. p-value Stat. p-value Stat. p-value Stat.
f1 3.125e-08 ↓ 1.853e-03 ↓ 9.735e-03 ↑
f2 2.278e-28 ↓ 1.367e-31 ↓ 1.691e-03 ↓
f3 2.701e-78 ↑ 9.589e-79 ↑ 4.113e-01 ↔
f4 8.584e-01 ↔ 8.024e-03 ↑ 2.001e-02 ↑
f5 1.571e-61 ↑ 3.588e-84 ↑ 1.324e-13 ↑
f6 1.735e-28 ↑ 9.463e-23 ↑ 3.456e-01 ↔
f7 2.200e-01 ↔ 3.544e-01 ↔ 7.638e-01 ↔
f8 8.278e-02 ↔ 1.937e-02 ↓ 5.462e-01 ↔
f9 3.383e-57 ↑ 3.554e-82 ↑ 2.720e-13 ↑
f10 8.112e-21 ↑ 9.664e-25 ↑ 7.843e-01 ↔
f11 1.021e-01 ↔ 3.906e-03 ↑ 1.090e-01 ↔
f12 5.259e-05 ↓ 7.598e-07 ↓ 1.579e-01 ↔
f13 1.501e-01 ↔ 9.760e-02 ↔ 8.145e-01 ↔
f14 8.892e-01 ↔ 8.546e-01 ↔ 9.942e-01 ↔
f15 4.319e-03 ↓ 1.312e-06 ↓ 1.950e-02 ↓

Thus we conclude that hybridising sns with both exploitative and explorative de variants is beneficial for
this test-suite of scalable optimisation problems. The approach outperforms the basic de variant and also
the recently introduced global-search operator gs on a wide selection of instances. However, sns provides450

more noticeable benefit when combined with the explorative de than the exploitative de with respect to gs.

4.3. Analysing the performance of the similarity-based neighbourhood search with shade

In this third experiment, we analyse if the novel sns is able to provide any advantage in terms of
performance when it is embedded into shade, which is another adaptive de variant with a different operation
than that applied by jade. For doing that, we compare the three approaches de-sha-sns, de-sha-gs and455

de-sha, which are applied with the parameterisation shown in Table 9. As in the case of the second

17

Table 9: Parameterisation of de-sha-sns, de-sha-gs and de-sha

Parameter Value Parameter Value

Stopping criterion 3 · 106 evals. Mutation scale factor (F) Adapted by shade

Population size (n) 300 Crossover rate (CR) Adapted by shade

experiment, the population size n was fixed to 300 individuals, carrying out a preliminary study that
indicated that this value provided the best overall performance for problems f1–f15. The minimum number
of individuals involved in the selection process of sns was set to five individuals (δ = 5), as in previous
experiments.460

Figure 5 shows the evolution of the mean of the error with respect to the objective function value over 100
independent runs for schemes de-sha-sns,de-sha-gs and de-sha. As in the case of previous experiments,
axes were modified for several test cases, with the aim of facilitating visualisation of the differences among
approaches. In 6 out of 15 test cases (f6, f7, f9, f10, f13 and f14), the best mean of the error was achieved
by de-sha-sns, either during almost the whole execution or at its end. In the case of de-sha-gs, the best465

mean of the error was provided in 5 out of 15 functions (f1, f4, f5, f11 and f12). Bearing the above in mind,
we can conclude that in 11 out 15 problems, which represents 73.3% of all test cases, the hybridisation
between shade and an additional mechanism to improve the search—either sns or gs—provided benefits
in terms of performance. Only for test cases f2, f3, f8 and f15, the approach de-sha, which is the original
implementation of shade, was able to attain the best results.470

Table 10 shows the mean, the median, and the standard deviation (sd) of the error attained by de-
sha-sns, de-sha-gs and de-sha at the end of the executions, while Table 11 shows the pairwise statistical
comparison among the different approaches involved in this third experiment. Considering Table 10, the
results shown in Figure 5 can be confirmed. de-sha-sns provided the best mean and median of the error
at the end of the runs in six test cases, while de-sha-gs and de-sha yielded the best mean and median of475

the error in five and four test cases, respectively. Thus, hybridising the particular shade, either with sns
or gs, is effective.

On the other hand, Table 11 shows that, in terms of the distribution of results over multiple runs and
comparison of mean and medians, there is no statistically significant difference in 9 out 15 functions between
the two hybrid methods, with de-sha-gs producing a better mean and median in four of the remaining six480

problems (in contrast to the results shown in Table 10, where it can be observed that de-sha-sns provided a
better mean and median in a larger number of instances in comparison to de-sha-gs). Finally, de-sha-sns
was statistically better or did not show any statistical difference with respect to de-sha in 10 out of 15
problems, while de-sha-gs was statistically superior or did not present statistically significant differences
in comparison to de-sha in 13 out of 15 test cases. The above demonstrates again that hybridising is a485

better approach to be taken into consideration.
In order to perform a more in-depth analysis, and as we previously mentioned, de-sha-sns was able to

achieve the best mean and median of the error in six test cases (f6, f7, f9, f10, f13 and f14) as Table 10
shows. Considering those particular six functions, in the case of the comparison against de-sha, de-sha-sns
was statistically superior in functions f6, f9, f10 and f14, while for problems f7 and f13, differences were490

not significant. de-sha-gs was able to provide the best mean and median of the error in five problems (f1,
f4, f5, f11 and f12) as Table 10 shows. Taking into account those five problems, with respect to de-sha,
de-sha-gs was statistically better in problems f4 and f5, while for the remaining problems differences were
not significant. The above means that from a total number of 11 test cases, where either de-sha-sns or
de-sha-gs provided the best results at the end of the runs, in six of them, the performance of any of both495

approaches was statistically better in comparison to de-sha.
Finally, as it was previously mentioned, de-sha-gs statistically outperformed de-sha-sns in four prob-

lems (f1, f2, f3 and f12), but the above is only relevant for test cases f1 and f12, where de-sha-gs provided
the best mean and median of the error. For functions f2 and f3, de-sha attained the best mean and median
of the error. Actually, de-sha statistically outperformed de-sha-sns and de-sha-gs in the case of function500

f2, and de-sha-sns in the case of problem f3.
As a clear conclusion, we can state that hybridising, not only the novel sns, but also gs, with a different

18

0

10000

20000

30000

40000

50000

60000

2e+06 2.2e+06 2.4e+06 2.6e+06 2.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f1 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f2 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f3 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

6e+09

7e+09

8e+09

9e+09

1e+10

1.1e+10

1.2e+10

1.3e+10

1.6e+061.8e+06 2e+06 2.2e+062.4e+062.6e+062.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f4 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

1.1e+07

1.2e+07

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f5 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

1.025e+06

1.03e+06

1.035e+06

1.04e+06

1.045e+06

1.05e+06

1.055e+06

1.06e+06

1.065e+06

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f6 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

9e+06

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

1.7e+07

2e+06 2.2e+06 2.4e+06 2.6e+06 2.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f7 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

1.15e+13

1.2e+13

1.25e+13

1.3e+13

1.35e+13

1.4e+13

1.45e+13

1.5e+13

1.55e+13

1.6e+13

1.65e+13

1.6e+061.8e+06 2e+06 2.2e+062.4e+062.6e+062.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f8 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f9 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

9.15e+07

9.2e+07

9.25e+07

9.3e+07

9.35e+07

9.4e+07

9.45e+07

9.5e+07

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f10 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

5e+08

1.6e+061.8e+06 2e+06 2.2e+062.4e+062.6e+062.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f11 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

0

20000

40000

60000

80000

100000

120000

140000

160000

2e+06 2.2e+06 2.4e+06 2.6e+06 2.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f12 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

1.1e+09

1.2e+09

1.6e+061.8e+06 2e+06 2.2e+062.4e+062.6e+062.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f13 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

2e+09

2.2e+09

1.6e+061.8e+06 2e+06 2.2e+062.4e+062.6e+062.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f14 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

1.6e+061.8e+06 2e+06 2.2e+062.4e+062.6e+062.8e+06 3e+06

M
ea

n
of

 th
e

er
ro

r

Function evaluations

Function f15 - 3e6 evals. - 30 exec.

DE-SHADE-SNS
DE-SHADE-GS

DE-SHADE

Figure 5: Evolution of the mean of the error for schemes de-sha-sns, de-sha-gs, and de-sha considering 100 executions

adaptive variant of de, such as shade, provides benefits in terms of the results yielded for this particular
test-suite of large-scale problems.

19

Table 10: Mean, median, and standard deviation (sd) of the error achieved by de-sha-sns, de-sha-gs, and de-sha at the end
of 100 executions for problems f1–f15

Alg. de-sha-sns de-sha-gs
Func. Mean Median SD Mean Median SD
f1 1.098e+03 4.089e+02 1.590e+03 2.960e+02 1.978e+02 5.832e+02
f2 1.403e+04 1.416e+04 6.293e+02 1.182e+04 1.186e+04 4.259e+02
f3 2.063e+01 2.063e+01 4.067e-02 2.039e+01 2.040e+01 7.375e-03
f4 6.761e+09 6.453e+09 1.838e+09 6.460e+09 6.257e+09 1.181e+09
f5 2.565e+06 2.620e+06 3.951e+05 2.520e+06 2.556e+06 2.996e+05
f6 1.029e+06 1.027e+06 1.141e+04 1.056e+06 1.057e+06 2.036e+03
f7 9.130e+06 8.182e+06 4.156e+06 9.231e+06 8.929e+06 3.267e+06
f8 1.286e+13 1.128e+13 5.902e+12 1.234e+13 1.131e+13 5.245e+12
f9 2.671e+08 2.643e+08 2.874e+07 2.733e+08 2.758e+08 1.798e+07
f10 9.165e+07 9.153e+07 6.820e+05 9.364e+07 9.370e+07 2.641e+05
f11 2.279e+08 2.250e+08 5.528e+07 2.203e+08 2.127e+08 4.241e+07
f12 8.764e+03 8.250e+03 1.608e+03 7.481e+03 7.324e+03 8.482e+02
f13 4.565e+08 4.168e+08 1.653e+08 5.169e+08 5.010e+08 1.868e+08
f14 1.891e+08 1.456e+08 1.357e+08 2.215e+08 1.862e+08 1.697e+08
f15 1.573e+06 1.564e+06 2.062e+05 1.522e+06 1.491e+06 2.046e+05

Alg. de-sha
Func. Mean Median SD
f1 4.467e+02 2.659e+02 6.837e+02
f2 1.142e+04 1.135e+04 4.233e+02
f3 2.039e+01 2.039e+01 6.686e-03
f4 7.414e+09 7.140e+09 1.817e+09
f5 2.780e+06 2.812e+06 2.506e+05
f6 1.057e+06 1.057e+06 1.475e+03
f7 9.506e+06 9.153e+06 3.722e+06
f8 1.172e+13 1.090e+13 5.945e+12
f9 2.924e+08 2.930e+08 1.761e+07
f10 9.369e+07 9.375e+07 2.478e+05
f11 2.235e+08 2.240e+08 3.753e+07
f12 8.128e+03 7.667e+03 1.486e+03
f13 4.566e+08 4.422e+08 1.538e+08
f14 2.595e+08 2.165e+08 1.542e+08
f15 1.396e+06 1.345e+06 1.471e+05

Table 11: Pairwise statistical comparison among de-sha-sns, de-sha-gs, and de-sha considering their results achieved at the
end of 100 executions for problems f1–f15

de-sha-sns vs. de-sha-gs de-sha-sns vs. de-sha de-sha-gs vs. de-sha
Func. p-value Stat. p-value Stat. p-value Stat.
f1 1.140e-04 ↓ 1.662e-02 ↓ 1.646e-01 ↔
f2 2.241e-21 ↓ 1.494e-24 ↓ 5.147e-04 ↓
f3 5.936e-25 ↓ 6.237e-25 ↓ 1.949e-01 ↔
f4 6.898e-01 ↔ 1.715e-01 ↔ 2.109e-02 ↑
f5 6.256e-01 ↔ 1.497e-02 ↑ 5.761e-04 ↑
f6 2.868e-11 ↑ 4.533e-14 ↑ 8.883e-01 ↔
f7 5.059e-01 ↔ 2.939e-01 ↔ 7.338e-01 ↔
f8 8.708e-01 ↔ 5.250e-01 ↔ 6.739e-01 ↔
f9 3.233e-01 ↔ 1.594e-04 ↑ 1.126e-04 ↑
f10 5.228e-11 ↑ 4.286e-11 ↑ 4.923e-01 ↔
f11 5.444e-01 ↔ 7.222e-01 ↔ 3.912e-01 ↔
f12 2.921e-04 ↓ 4.595e-02 ↓ 1.008e-01 ↔
f13 1.171e-01 ↔ 8.476e-01 ↔ 1.558e-01 ↔
f14 2.036e-01 ↔ 1.300e-02 ↑ 1.316e-01 ↔
f15 1.137e-01 ↔ 4.101e-04 ↓ 1.905e-03 ↓

5. Conclusions and future lines of work505

We have introduced a novel sns procedure which is able to promote a suitable balance between exploration
and exploitation depending on the current stage of the search with the aim of improving the performance
on a test-suite of scalable optimisation problems. The method incorporates a selection procedure that takes
into account similarities among individuals, as well as information about the current stage of the search
process. This information is used to move the balance from exploration towards exploitation as the search510

progresses. We note, however, that other options, such as moving the balance from exploitation towards
exploration as the run advances, may be possible because of the generality of sns.

A wide experimental assessment of sns was performed by hybridising it with explorative and exploitative

20

versions that make use of the parameter adaptation mechanisms provided by one of the most frequently
applied adaptive de schemes: jade. Both explorative and exploitative de versions combined with sns515

were termed as de-rand-sns and de-curr-sns, respectively. In order to measure the contribution of sns,
both de-rand-sns and de-curr-sns were compared to de-rand-gs and de-curr-gs, which are hybrid
schemes combining the same aforementioned explorative and exploitative de versions with a state-of-the-art
global neighbourhood search (gs) selected for comparison purposes. At the same time, both de variants
were executed isolatedly with the aim of studying if it is worth hybridising them with an additional search520

procedure. They were referred to as de-rand and de-curr, respectively. Finally, sns and gs were also
combined with shade in order to extend our analyses. Three different approaches were considered in this
particular comparison: de-sha-sns, de-sha-gs and de-sha, with the latest scheme being the original
implementation of shade. All the above methods were applied to a well-known suite of scalable continuous
problems.525

From the results, we can conclude that it is worth hybridising an explorative de version, such as
de/rand/1/bin, with the novel sns, as well as with the gs selected for comparison purposes. The per-
formance of that particular explorative de variant was significantly improved by combining it with sns and
gs taking into account a wide range of problems (12 and 11 test cases, respectively). At the same time, the
clear superiority of sns with respect to gs was also shown. de-rand-sns was able to statistically outperform530

de-rand-gs in 10 out 15 problems.
Similar conclusions can be extracted when sns is combined with an exploitative de variant, like de/current-

to-pbest/1/bin. Since sns is able to induce a proper balance between exploration and exploitation, it could
be hybridised with both explorative and exploitative de versions in order to increase their performance when
tackling continuous problems with a significant number of dimensions. However, the combination of the gs535

selected for comparison purposes with an exploitative de variant did not provide any advantage for a wide
range of test cases.

It is worth mentioning that for those functions where sns clearly showed a significantly better behaviour
than the rest of approaches in terms of convergence and solution quality, the diversity of the population
played a major role. In that regard, we reported and observed that, while de and gs attained a very diverse540

population along generations, sns promoted it in a much smarter way. This points out the importance that
a proper management of the diversity may cause over the performance of de.

Finally, the third experiment revealed that the hybridisation of shade with either sns (de-sha-sns) or
gs (de-sha-gs) provided better performance in 11 out of 15 test cases—presenting statistically significant
differences in 6 out of those 11 problems—in comparison to the original implementation of shade (de-sha),545

which did not make use of any additional procedure to improve the search process.
Due to the generality of the novel sns, an interesting line of future research would be to assess its

performance with other definitions of the functions l(ω) and u(ω). Furthermore, not only knowledge about
the current stage of the search, but also additional information of the search procedure may be used by the
individual selection mechanism of sns. Finally, the incorporation and contribution analysis of our approach550

in solution frameworks ensembling different de variants such as edev (Wu et al., 2018) would be another
line worth being explored.

Credit Author Statement

Eduardo Segredo: Conceptualization, software, data curation, methodology, validation, formal analysis,
investigation, resources, writing - original draft, writing - review & editing, visualization, supervision555

Eduardo Lalla-Ruiz: Conceptualization, software, data curation, methodology, validation, formal analy-
sis, investigation, resources, writing - original draft, writing - review & editing, visualization, supervision

Emma Hart: Conceptualization, validation, formal analysis, investigation, writing - review & editing
Stefan Voss: Conceptualization, validation, formal analysis, investigation, writing - review & editing

21

Acknowledgements560

We are grateful to the anonymous referees for their constructive and valuable comments that helped to
improve this manuscript.

Funding. This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness as
part of the “i+d+i Orientada a los Retos de la Sociedad” programme [contract number tin2016-78410-r].

References565

Das, S., Abraham, A., & Konar, A. (2008). Particle swarm optimization and differential evolution algorithms: technical
analysis, applications and hybridization perspectives. In Y. Liu, A. Sun, H. T. Loh, W. F. Lu, & E.-P. Lim (Eds.), Advances
of Computational Intelligence in Industrial Systems (pp. 1–38). Berlin, Heidelberg: Springer.

Das, S., Mullick, S. S., & Suganthan, P. (2016). Recent advances in differential evolution – An updated survey. Swarm and
Evolutionary Computation, 27 , 1 – 30.570

Ghasemi, M., Aghaei, J., Akbari, E., Ghavidel, S., & Li, L. (2016). A differential evolution particle swarm optimizer for various
types of multi-area economic dispatch problems. Energy, 107 , 182–195.

Guo, H., Li, Y., Li, J., Sun, H., Wang, D., & Chen, X. (2014). Differential evolution improved with self-adaptive control
parameters based on simulated annealing. Swarm and Evolutionary Computation, 19 , 52 – 67.

Guo, Z., Liu, G., Li, D., & Wang, S. (2017). Self-adaptive differential evolution with global neighborhood search. Soft575

Computing, 21 , 3759–3768.
Karafotias, G., Hoogendoorn, M., & Eiben, A. E. (2015). Parameter control in evolutionary algorithms: trends and challenges.

IEEE Transactions on Evolutionary Computation, 19 , 167–187.
Kazimipour, B., Li, X., & Qin, A. (2014). Effects of population initialization on differential evolution for large scale optimization.

In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 2404–2411).580

Kovačević, D., Mladenović, N., Petrović, B., & Milošević, P. (2014). DE-VNS: Self-adaptive differential evolution with crossover
neighborhood search for continuous global optimization. Computers & Operations Research, 52 , 157–169.

LaTorre, A., Muelas, S., & Peña, J. M. (2015). A comprehensive comparison of large scale global optimizers. Information
Sciences, 316 , 517 – 549.

León, C., Miranda, G., & Segura, C. (2009). METCO: a parallel plugin-based framework for multi-objective optimization.585

International Journal on Artificial Intelligence Tools, 18 , 569–588.
Li, X., Tang, K., Omidvar, M., Yang, Z., & Qin, K. (2013). Benchmark Functions for the CEC’2013 Special Session and

Competition on Large Scale Global Optimization. Technical Report Evolutionary Computation and Machine Learning
Group, RMIT University Australia.

Lozano, M., & Garćıa-Mart́ınez, C. (2010). Hybrid metaheuristics with evolutionary algorithms specializing in intensification590

and diversification: overview and progress report. Computers & Operations Research, 37 , 481 – 497. doi:10.1016/j.cor.
2009.02.010.

Mahdavi, S., Shiri, M. E., & Rahnamayan, S. (2015). Metaheuristics in large-scale global continues optimization: a survey.
Information Sciences, 295 , 407 – 428.

Neri, F., & Tirronen, V. (2010). Recent advances in differential evolution: a survey and experimental analysis. Artificial595

Intelligence Review , 33 , 61–106.
Parouha, R. P., & Das, K. N. (2016). A robust memory based hybrid differential evolution for continuous optimization problem.

Knowledge-Based Systems, 103 , 118–131.
Segredo, E., Paechter, B., Segura, C., & González-Vila, C. I. (2017). On the comparison of initialisation strategies in differential

evolution for large scale optimisation. Optimization Letters, .600

Segura, C., Coello Coello, C. A., Segredo, E., & Aguirre, A. H. (2016). A novel diversity-based replacement strategy for
evolutionary algorithms. IEEE Transactions on Cybernetics, 46 , 3233–3246.

Segura, C., Coello Coello, C. A., Segredo, E., & León, C. (2015). On the adaptation of the mutation scale factor in differential
evolution. Optimization Letters, 9 , 189–198.

Storn, R., & Price, K. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous605

spaces. Journal of Global Optimization, 11 , 341–359.
Tanabe, R., & Fukunaga, A. (2013). Success-history based parameter adaptation for differential evolution. In 2013 IEEE

Congress on Evolutionary Computation (pp. 71–78).
Trivedi, A., Srinivasan, D., Biswas, S., & Reindl, T. (2015). Hybridizing genetic algorithm with differential evolution for solving

the unit commitment scheduling problem. Swarm and Evolutionary Computation, 23 , 50–64.610

Tvrd́ık, J., Poláková, R., Veselský, J., & Bujok, P. (2013). Adaptive variants of differential evolution: towards control-
parameter-free optimizers. In I. Zelinka, V. Snášel, & A. Abraham (Eds.), Handbook of Optimization: From Classical to
Modern Approach (pp. 423–449). Berlin, Heidelberg: Springer.

Črepinšek, M., Liu, S.-H., & Mernik, M. (2013). Exploration and exploitation in evolutionary algorithms: A survey. ACM
Comput. Surv., 45 , 35:1–35:33. URL: http://doi.acm.org/10.1145/2480741.2480752. doi:10.1145/2480741.2480752.615

Wang, H., Sun, H., Li, C., Rahnamayan, S., & Pan, J.-S. (2013). Diversity enhanced particle swarm optimization with
neighborhood search. Information Sciences, 223 , 119 – 135.

22

Wang, Y., Cai, Z., & Zhang, Q. (2011). Differential evolution with composite trial vector generation strategies and control
parameters. IEEE Transactions on Evolutionary Computation, 15 , 55–66.

Wu, G., Shen, X., Li, H., Chen, H., Lin, A., & Suganthan, P. N. (2018). Ensemble of differential evolution variants. Information620

Sciences, 423 , 172–186.
Xin, B., Chen, J., Zhang, J., Fang, H., & Peng, Z.-H. (2012). Hybridizing differential evolution and particle swarm optimization

to design powerful optimizers: a review and taxonomy. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42 , 744–767.

Xu, Q., Wang, L., Wang, N., Hei, X., & Zhao, L. (2014). A review of opposition-based learning from 2005 to 2012. Engineering625

Applications of Artificial Intelligence, 29 , 1 – 12.
Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. IEEE Transactions

on Evolutionary Computation, 13 , 945–958.

23

