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Abstract

Non-linear dynamic systems, such as those associated with structural testing of
vehicles, are considered. The vehicle, or a substructure, is mounted in a test rig that
is normally driven by servo-hydraulic actuators. The specimen and test rig form a
non-linear dynamic system. These test systems assure the durability of vehicles by
reproducing a structural response time history that has been measured in a road
test of a vehicle. For this, a force or displacement input to the actuators’ control
system must be determined as a function of time.

Current practice employs an iterative algorithm, using a frequency response func-
tion to represent the system. The conventional iteration is a particular version of
well established numerical techniques for solving non-linear systems. However, the
success of the iteration is dependent on the degree of non-linearity and on the level
of noise in the signals coming from the system.

This paper advocates identifying the system to improve its representation in the
iterative algorithm. The theory underpinning the alternative algorithm is presented
and a comparison is made between the performances of the two algorithms, using
computer simulations based on Duffing’s equation. These simulations show that,
even for this simple model, the alternative algorithm is faster, more reliable and
more tolerant of response noise.
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1 Introduction

The situation addressed in this paper is described in Roberts and Hay [1]
which discusses methods for determining the force input as a function of time,
known as a ‘drive file’, to a non-linear dynamic system such that a specified
response history is reproduced. This occurs in laboratory simulation testing
of vehicles in which a response that is measured during road testing must be
reproduced in the laboratory by a specially constructed test rig. In [1] it is
explained how the conventional algorithm developed in the 1970’s - see e.g
[2] - may be viewed as an instance of more general numerical algorithms for
solving non-linear equations, Newton’s method being the most well known.

In application, the system is not known explicitly. However, the system can
be modelled by measuring a frequency response function by applying a known
excitation and measuring the subsequent response. This function is used in
two ways. It is employed in estimating the initial drive file and in forming an
approximate Jacobian for use in numerical techniques. The conventional labo-
ratory simulation algorithm uses this linear estimation as a constant Jacobian
in an iteration to determine the updated drive file. An alternative method,
due to Broyden [3–5], was also described in [1]. In the latter technique, the
Jacobian is progressively updated. Roberts and Hay [1] also discuss search
methods leading to a determination of the iteration gain.

The conventional and Broyden’s method were found to be of limited success
in experiments using a mathematical simulation based on Duffing’s equation
in situations of high non-linearity. The performance deteriorated in additional
numerical experiments in which the data were corrupted by noise, as is in-
evitably the case in practice. The work for [1] led the authors to believe that
it was the representation of the system that was crucial to the performance
of the iterative algorithm and that system identification should be examined.
Techniques for system identification can be found, for example, in Ljung [6].

In the following, the framework for discussing and testing the algorithms is re-
constructed. The conventional and Broyden’s method are then described. The
shortcomings of these algorithms under high non-linearity and in the presence
of noise is demonstrated using a one degree of freedom damped spring mass
system containing a non-linear spring and represented by Duffing’s equation.
To illustrate the approach advocated in this paper, a simple, readily imple-
mented method of system identification, which involves the idea of frequency
response functions, is then described and applied under similar circumstances
of high non-linearity and noise corrupted signals. The method is shown to be
a significant improvement over the earlier approaches.

n.hay@napier.ac.uk (N. C. Hay).
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2 Framework for numerical techniques

A given non-linear system is excited by a signal represented by the components
of a vector x := (x0, x1, . . . , xN−1). The response is sampled, yielding y :=
(y0, y1, . . . , yN−1) , where, for signals of period T, yi := y(ti) with ti := iT/N
for i = 0, 1, . . . , N − 1. The response vector is a function of the input signal:

y = f(x) (1)

or, in component form:

y0 = f0(x0, x1, . . . , xN−1)

y1 = f1(x0, x1, . . . , xN−1)
...

yN−1 = fN−1(x0, x1, . . . , xN−1)





(2)

The problem considered in this paper is, given a particular response yD, deter-
mine an input signal which induces this response. That is, solve the following
vector equation for x:

f(x)− yD = 0. (3)

Here, the target response comes from exciting the system using bandlimited
white noise. Portions of a typical excitation and target response are shown in
Fig. 1 for a nonlinearity coefficient k′ = 0.4 c.f. Eq. (9).

The system of Eqs. (3) may be solved numerically using iterative methods that
are variations of Newton’s method for many variables — for example [3,4] and
[5]

x(n+1) := x(n) + λnp
(n) (4)

where p(n) is given by:

p(n) := [Bn]−1[yD − y(n)] (5)

and the λn , for n = 0, 1, . . . are real numbers lying between 0 and 1. The
matrix Bn is an approximation to the Jacobian Jf (x

(n)) of the vector-valued
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Fig. 1. Typical drive and response signals against time for k′ = 0.4 with 5% noise.
Dashed line — the specified response
Solid line — the excitation to be determined.

function f evaluated at x(n)

[Jf (x)]i,j :=
∂yi

∂xj

for i, j = 0, 1, . . . , N − 1 (6)

in which the partial derivatives are evaluated at x.

A sequence of excitation vectors x(n) for n = 0, 1, . . . is produced for which the
corresponding response vectors y(n) , hopefully converge to yD. The iteration
is stopped when the fractional Euclidean norm of the error vector, given in
(7) and (8), falls below a prescribed tolerance (tol).

|ey(n)|/|yD| < tol (7)

where

ey(n) := yD − y(n) (8)

The success of these methods depends on how close the initial excitation x(0)

is to the solution and on the accuracy of the approximation Bn. Both of these
aspects depend on how well the function f is represented.
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3 The non-linear system

Numerical experiments comparing approaches were conducted using a model
problem consisting of a non-linear spring as furnished by Duffing’s equation:

m
d2y(t)

dt2
+ c

dy(t)

dt
+ ky(t)[1 + k′y(t)2] = kx(t) (9)

subject to the initial conditions y(0) = ẏ(0) = 0.

The mass is taken to be 100kg, and the natural frequency (in Hz) [fn =

1/2π
√

k/m of the linear system, when k′ = 0] is taken as unity. Similarly, the
damping coefficient ‘c’ is defined by choosing a damping ratio of the linear
system as 0.1.

An effective frequency response function of this system is measured by a spec-
tral analyser which averages over 10 frames of data. Examples of this function
are shown in Fig. 2 for a non-linearity coefficient, k′, of value 0.4 using band-
limited random noise. One is measured at an excitation level with a standard
deviation of unity, while in the other, the standard deviation is 0.1 to reduce
the effect of the non-linearity in the spring. Both include 5% noise.

As in [1], the frequency response function is smoothed using a least squares
fit to produce a rational function which has as numerator a linear polynomial
and as denominator a quadratic polynomial in frequency. The effect of the
non-linearity may be seen from this graph. Note that, for low amplitudes,
spectral analysis yields a good approximation to the (k′ = 0) linear response,
Hlin — see Eq.(16). Fig. 2 also shows |Hlin|, but it is indistinguishable from
the system measured at low amplitude.

4 Application of conventional algorithm and related schemes

In the conventional algorithm, the system is treated as linear i .e.

y = f(x) ≈ h ∗ x (10)

in which the measured impulse response is denoted by h. The convolution
may be replaced by a matrix multiplication y = Chx where Ch is the N ×N
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Fig. 2. Frequency response functions for k′ = 0.4 and 5% noise using 10 frames to
average.
The dotted line is a plot of the measurement at an amplitude of 0.1 and of |Hlin|
itself.
The solid line is the measurement at an amplitude of 1.0 before smoothing.
The dashed line is the smoothed measurement at amplitude 1.0.

circulant matrix:

Ch =




h0 hN−1 hN−2 . . . h1

h1 h0 hN−1 . . . h2

...

hN−1 hN−2 hN−3 . . . h0




(11)

Hence, the approximation to the Jacobian is a constant matrix

Bn := Ch n = 0, 1, 2, . . . (12)

The initial excitation is given by

x(0) := f−1(yD) = Ch
−1yD (13)

The conventional iteration follows (4) in which λ is set by the operator.

In Broyden’s method, the same initial input is employed, but the estimate of
the Jacobian is updated on each iteration starting from B0 = Ch. Again, the
gain is set by the operator, or, to aid global convergence, a search method
may be used to determine an optimal value — see [1] for more details.

The efficacy of the above methods is demonstrated using the Duffing model.
Fig. 3 illustrates the convergence of the iterations based on the conventional
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algorithm and on Broyden’s method for a non-linear coefficient of k′ = 0.3
and an iteration gain factor of 0.5.
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Fig. 3. The fractional error in the response as a function of the number of sys-
tem runs, both for the conventional (*) and Broyden (+) methods. The nonlinear
coefficient is k′ = 0.3. There is no noise and the iteration gain is 0.5.

When the non linearity, k′, is increased above 0.4, and no noise is present,
neither method converges for an iteration gain of 0.5. In industrial practice,
the gain is then adjusted by the operator to facilitate convergence, if possi-
ble. Plots corresponding to an iteration gain of 0.2 are included in Fig. 4.
Not surprisingly, when noise corrupts the response, the convergence is further
compromised.
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Fig. 4. The fractional error in the response as a function of the number of system
runs, both for the conventional (*) and Broyden (+) methods with an iteration
gain of 0.5. Also plotted are the results when the gain is reduced to 0.2 – conven-
tional(open circle) and Broyden (box). All for k′ = 0.4 and no noise.
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5 System Identification

These iterative schemes are now shown to be improved by determining a better
approximation to the vector-valued function f , rather than using the approx-
imation (10), which is based on the effective impulse response h obtained by
regarding the system as linear.

A more accurate representation of f may be achieved by identifying the sys-
tem. There is a large body of literature on system identification — see, for
example, [6] for references. However, the aim of this paper is to demonstrate
the advantages of employing system identification techniques in the algorithms
applied to the testing of dynamic systems in the laboratory. In order to keep
the presentation self-contained and transparent, a straightforward form of sys-
tem identification is adopted. The approach involves the use of frequency re-
sponse ideas which are employed in the conventional algorithm. This works for
the simple model described earlier and is readily implemented. For higher di-
mensional systems with more complex non-linearities, resort may be made to
more appropriate techniques of system identification. The only requirements
are that the method used generates an approximation to the inverse function
f−1 and the corresponding Jacobian, as in Eqs. (20) and (22).

The method used in this paper starts from the observation that discretisation
of the differential Eq. (9), leads to the approximation:

kxi = [mÿ + cẏ + ky(1 + k′y2)]t=ti ≈ k[Cy]i + kk′y3
i (14)

in which C is a circulant matrix, such that the ith component of the Discrete
Fourier Transform of the vector [Cy] is given by

Yi

H lin
i

(15)

where Hlin is the transform corresponding to the discretised version of

k

−ω2m + jωc + k
(16)

at the discrete frequencies ωl := 2πl/T for l = 0, 1, . . . N/2.

This yields the relationship:

x = Cy + g(y) = f−1(y) (17)
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where [g(y)]i := k′y3
i . Thus the detail of the model yields an explicit form for

the function inverse of f .

Indeed, consideration of the model problem leads to an approximation of the
function f−1 consisting of two operations. Firstly, the linear part of Eq. (17),
characterised by C, may be estimated ( yielding a circulant matrix C̃ cor-
responding to an impulse vector h̃ ), by measuring the frequency response
function using a low amplitude drive (e.g. 10 percent of full amplitude). The
excitation is a band-limited white noise random signal. Under these condi-
tions the contribution from the non-linear term g(y) is relatively small. The
modulus of the measured frequency response and that of Hlin are plotted in
Fig. 5 for k′ = 0.4 and noise level of 5%.
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Fig. 5. Plot of the magnitude of frequency response functions for k′ = 0.4 and noise
of 5%..
The dashed line is the function measured at amplitude 0.1.
The solid line is the smoothed function using least squares.
The dotted line is that of |Hlin|.

To estimate the non-linear part of the system g(y), a higher amplitude drive
signal, x, is chosen and the response y recorded. The non-linear term in Eq.(17)
may be isolated and then approximated by observing the following relation
between input and output

[x− Cy]i = k′yi
3. (18)

The higher amplitude drive may be chosen to be band-limited white noise,
noise with a shaped spectrum, for example 1/f , or a simpler input such as
a sinusoid of a suitable amplitude and frequency. To obtain a more accurate
approximation of the nonlinearity, especially if white noise is chosen, five runs
are repeated using the same input. The responses are then averaged. An ex-
ample of [x − C̃y]i plotted against yi for i = 0, 1, . . . N − 1, is presented in
Fig. 6 for the system of Eqs. (17) with k′ = 0.4, no noise present and the
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system excited by a sinusoid whose amplitude is 2.0 and whose frequency is
1.4Hz.
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Fig. 6. Estimation of non-linearity for k′ = 0.4 using a sinusoid of amplitude 2.0
and frequency of 1.4Hz with no noise – full record with outliers.

Outliers, or stray points, are apparent due to the discontinuity in the response
arising from the discrete Fourier transform treating the data as periodic func-
tions. This compromises the estimates of the derivatives in Eq. (14). These
outliers may be eliminated by removing the beginning and end parts of the
frame of data or by using a suitable window. The resulting data are shown in
Fig. 7 and may be used as the basis of a least squares fit. In the results to
follow, the full response, including outliers is used.
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Fig. 7. Estimation of non-linearity for k′ = 0.4 using a sinusoid of amplitude 2.0
and frequency of 1.4Hz with no noise – reduced record which removes outliers.

In the above examples, the system was excited by a sinusoid. Exciting the sys-
tem with band-limited white noise of constant spectrum provides comparable
results. Fig. 8 shows the function identified by such an input. More scatter is
apparent since the signal is less smooth throughout the time period.
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Fig. 8. Estimation of non-linearity for k′ = 0.4 and no noise, using a random drive.

The cubic nature of the relationship is apparent and a ready estimate of the
polynomial may be made using the facilities in MATLAB to perform a least
squares fit to produce a vector valued cubic:

[q(y)]i := a0 + a1yi + a2yi
2 + a3yi

3 (19)

A more rigorous approach may be adopted, which would also check the appro-
priate polynomial degree, and, in more general circumstances, other approxi-
mation methods, such as cubic splines, may be employed

The predictions of the coefficients of Eq. (19) by sinusoid, with and without
outlier removal, and using band-limited white noise, are presented in Table 1.

Coefficient a0 a1 a2 a3

random 0.0032 -0.0385 -0.0023 0.4096

(a) sine 0.0192 0.0324 -0.0056 0.4084

(b) sine 0.0004 0.0296 -0.0002 0.4084
Table 1
Table of estimated polynomial coefficients for non-linearity k′ = 0.4 and no noise,
using random input or sinusoid of (a) full record or (b) reduced record.

Based on the coefficients determined by least squares fit, the following approx-
imation to the system is obtained:

x = f−1(y) ≈ C̃y + q(y) (20)

where C̃ is determined from an estimate of the linear response.

Given the target response yD, the initial excitation may be constructed from

x(0) := C̃yD + q(yD) (21)
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The Jacobian matrix is now estimated from Eq. (20)

[Jf (x)]−1 = Jf−1(y) =
[
∂xi

∂yj

]
≈ C̃ + q′(y) =: [J̃(x)]−1 (22)

where,

[q′(y)]ij := [a1 + 2a2yi + 3a3yi
2]δij (23)

which only contributes to the diagonal terms.

The iteration scheme described earlier may now be initiated with the starting
vector x(0) and implemented with:

Bn := J̃(x(n)) (24)

defined on each iteration. This provides a better starting point and a more
accurate Jacobian for the iteration algorithms. This is apparent in Fig. 9 which
is comparable to Fig. 4 for the conventional and Broyden methods (Note the
different scales on the vertical axes).
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Fig. 9. Fractional error in response using system identification for k′ = 0.4 and
no measurement noise. The drive used to estimate the nonlinearity is bandlimited
white noise.

A comparison of the convergence using bandlimited white noise or a sinusoid
to characterise the non-linearity is presented in Table 2
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Runs 0 1 2 3 4 5 6 7 8 9

random 100 5.41 3.24 1.98 1.24 0.80 0.54 0.37 0.27 0.20

(a) sine 100 9.99 4.93 2.58 1.40 0.78 0.45 0.27 0.16 0.10

(b) sine 100 9.41 4.69 2.47 1.35 0.75 0.43 0.25 0.16 0.10
Table 2
Table of percentage error in the response for non-linearity k′ = 0.4 and no noise,
with constant λ = 0.5. Results obtained using (a) full record and (b) reduced record.

6 The effect of noise

In this section, the effect of noise on the measurement of the response y is
considered. The noise level is expressed as the ratio of the rms of the noise
signal to the rms of the target response.

The effect of noise on the system identification process of the previous section is
illustrated by considering the example of a noise level of 5% and a nonlinearity
of 0.4, values for which the conventional algorithms fail. As in the case of no
noise, an estimate of the linear part of the Jacobian is made using band-limited
noise whose standard deviation is 0.1 of operating levels and smoothed by
least squares. Note that a 5% level of noise in the response at full amplitude
is equivalent to a 30% noise level at the reduced amplitude.

The system is now excited using a sinusoid of frequency 1.4Hz and an am-
plitude of 2.0. To reduce the effect of noise, five runs are repeated using the
same input, as for the case of no noise. The responses are then averaged, and
estimates of the coefficients of the cubic polynomial are made. For compari-
son, this procedure is repeated using band-limited white noise. The results of
the various ways of estimating the coefficients are presented in Table 3 which
shows them to be little different.

Coefficient a0 a1 a2 a3

random 0.0022 -0.0408 -0.0036 0.4078

(a) sine 0.0123 0.0498 -0.0067 0.4018

(b) sine -0.0062 0.0887 0.0013 0.3923
Table 3
Table of estimated polynomial coefficients for non-linearity k′ = 0.4 and a noise
level of 5%. Results obtained using (a) full record and (b) reduced record.

The effect of the noise on the estimate of these coefficients is demonstrated
by increased scatter in the plot of [x− C̃y]i against yi as shown in Fig. 10 for
the application of the sinusoid.

Now that the estimate of the function f−1 has been obtained, the starting value
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Fig. 10. Plot of (x−C̃y)i vs yi for k′ = 0.4 and 5% noise, using a sinusoid of reduced
record.

x0 is computed from Eq. (21) and the Jacobian from Eq. (24). The iteration of
Eqs. (4) and (5) is now implemented. The convergence is illustrated in Table
4 and in Fig. 11. Note that it is impossible to iterate to a tolerance below the
level of noise.
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Fig. 11. Results of applying the method using system identification for various levels
of noise. The drive used to estimate the non-linearity, k′ = 0.4, is band-limited
random noise, employing the full record.
Noise level: (+) 10% , (*) 5% , (×) 2% , solid line – no noise.

The convergence behaviour contrasts with the conventional approach and that
using the Broyden update, which two methods fail to converge when noise is
present at this level of non-linearity.

Fig. 12 compares the desired response and that achieved by the new method
for a high level of measurement noise.
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Runs 0 1 2 3 4 5 6 7 8 9

random 100 9.23 6.65 5.91 6.09 6.01 5.62 5.78 6.15 6.13

(a) sine 100 16.14 9.28 6.66 6.15 6.05 5.58 5.78 6.13 6.04

(b) sine 100 18.53 10.62 7.27 6.34 6.15 5.61 5.80 6.16 6.04
Table 4
Table of percentage error in the response for non-linearity k′ = 0.4 and noise level
of 5%, with constant λ = 0.5. Results obtained using (a) full record and (b) reduced
record.
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Fig. 12. Part of the desired and achieved response signals using system identification
for k′ = 0.4 and 10% noise.
The dotted line represents the desired response
The solid line represents the achieved response.

7 Conclusions

A method for reproducing a specified response history from a non-linear dy-
namic system has been presented. The method has been tested by applying
it to a single degree of freedom, non-linear spring mass system based on a
model described by Duffing’s equation. Simulations show that the method is
substantially better than current iterative methods and is applicable to much
higher levels of non-linearity. In the simulations, it was shown that the method
tolerates noise in the response signals from the non-linear system. Even so, for
much higher levels of nonlinearity it may be necessary to reduce the iteration
gain or to employ a search method in order to achieve convergence.

In practical situations, the method described here must be developed for ap-
plication to multiple input-output systems and to other system configurations,
such as base excitation. Also, the non-linearity in Duffing’s equation may be
simplistic compared to that of a practical system and alternative forms of
non-linearity must be tested. In tackling these more complicated problems,
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resort may be made to alternative, more sophisticated techniques of system
identification.

The work presented in this paper is a consequence of reforming current al-
gorithms in terms of well-established computational techniques and exploring
the detail of the model problem. It is clear that the use of system identification
in drive file iteration is worthy of further development.
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