

Investigating False Positive Reduction in HTTP via Procedure Analysis

A.A Abimbola, J.M Munoz and W.J Buchanan
a.abimbola@napier.ac.uk , School of Computing, Napier University, EH10 5DT, Scotland, UK

Abstract

This paper focuses on high false-positive rate of

attacks. First, the merits and demerits of research work
in curbing false positive rate of attacks in Intrusion
Detection Systems (IDSs) are discussed. Then we
present our research efforts in the form of an IDS
called NetHost-Sensor, recap on past NetHost-Sensor
research contributions and discuss in detail its novel
procedure analysis technique in curbing false-positive.
We discuss in detail, the NetHost-Sensor methodology,
its procedure analysis technique and report on our
experimental investigation that shows the reduction of
false-positives, using HTTP network communication as
a medium for analysis. Finally, we validate our
research work by comparing false-positives with Snort
IDS.

1. Introduction

The popularity of web servers and web-based
applications has increased, owing to the increase in
network connectivity [1]. To detect web-based attacks,
Intrusion Detection Systems (IDSs) are configured
with a number of intrusive signatures that detect
known attacks. For instance, Snort 2.3 IDS [2] devotes
more than 90% of its total intrusive signatures to
detecting web related attacks. Unfortunately, it is
difficult to update IDS intrusive signatures in respect to
the rate of new vulnerabilities discovered. Also, these
intrusive signatures are normally specific to pattern
matching variant of similar attacks [3]. To tackle these
issues, other subsets of signature-based techniques [4]
and a completely different approach called anomaly-
based detection technique, are employed [5]. This
paper presents the results of research aimed to reduce
false-positives. In section 2 it discusses the concept of
false-positives, and describes several intrusion
detection techniques employed, to date, to reduce it.
Section 3 presents our contribution to this effort in the
form of the IDS NetHost-Sensor [6], which uses an
intrusion detection technique called procedure analysis;
this technique is discussed in detail in this section. In
section 4 the results of experiments conducted using
procedure analysis are presented, and we validate our
methodology in reducing false-positives by comparing
them with results obtained using Snort IDS.

2. Background and Related Work

The term false-positive can be defined as alerting of
an intrusive event by an IDS, while in reality, the event
is non-intrusive. They are problematic, because they
trigger unjustified alerts and result in diminishing
value and urgency of real attacks. Other likely terms
use to define false-positives are false alarms and
benign triggers.

Several attempts have been made by the research
community to reduce false-positives [7], including:
Operating System Fingerprinting: This involves false-
positives that occur in a non-vulnerable scenario. This
scenario exists because most network IDS do not take
the host vulnerability profile into account when
detecting attacks. A possible key to reducing false-
positives in this scenario is to produce a context-based
alerting in which target host information is
incorporated into the detection framework. As a result,
monitored network packet details can be compared
with the target host operating system profile
information stored in an expert system database. If the
result of the comparison is positive, then an intrusive
detection analysis could be done, otherwise, the
network packet is dropped [7].
Alert-Flooding Suppression: This involves an alert on the
same intrusion that continually propagates throughout
the monitored network. An example includes the MS
Blaster or SQL Slammer outbreak [8], resulting in a
network IDS repeatedly alerting the same intrusion,
causing a flood of alerts. A possible solution will be to
pre-process “potential alerts” prior to notification on
the basis of rules using parameter that take into account
alert type, source and destination IP addresses, just to
name a few. These parameters will enable the IDS to
suppress identical alerts and log them for statistical
analysis [7].
Meta-Alert Correlation: They are generated by the
correlation of two or more alerts, possibly from
different detection sensors. Meta-Alert Correlation
enables the generation of a higher priority alert
whenever certain conditions related to lower-level
alerts are fulfilled. The absence of meta-alert
correlation will result in an IDS viewing intrusive
activities as isolated and discrete events, hence
possibly dismissing isolated events that, when
correlated, could result in an intrusive event. Meta-
Alert Correlation parameters will probably include

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

time window, event count and type, IP address and
port number [7].

A possible solution to address high false-positives
will be to design smarter intrusive detection engines,
which may include enterprise context for detection
analysis, alerting on parameterised rules and
correlation and aggregation of rules. Another
alternative in curbing false-positives could model the
communication protocol and then use the syntax and/or
semantics associated with that protocol to design
intrusive signatures. The latter is our main contribution
in this paper. Most Network Based Intrusion Detection
System (NBIDS) are typical signature based. Examples
are Snort and Bro [9], which offer a straightforward
way to write signatures to restrict services to a range of
trusted addresses. However, it is a little more
challenging to relieve the network administrator of the
task of keeping the signatures updated by monitoring
the traffic to determine normal usage patterns. Systems
such as ADAM [10], NIDES [11], SPADE [12], and
Emerald [13] do just that. These mentioned IDS
systems use an expert system database consisting of
intrusive signature, encoded with knowledge gleaned
from security experts to test files or network traffic for
patterns known to occur in attacks. Therefore, minor
variations in attack method can often defeat such
systems. None of these IDS’s aim to enhance their
detection technique to reduce false-positives, but
simply implement established signature pattern
matching techniques.

The research work carried out by Estevez-Tiapador
et al. [14], can be expressed in two steps: first, some
statistical analysis of both normal and hostile traffic is
presented. The experimental results of this analysis
reveal that certain features extracted from HTTP
requests can be used to distinguish anomalous (and
therefore, suspicious) traffic that corresponds to correct
normal connections. The second part of their research
presents a new anomaly-based technique to detect
attacks carried out over HTTP traffic. The technique
introduced is statistical and makes use of Markov
Chains [15] to model HTTP network traffic. The
incoming HTTP traffic is parameterized for evaluation
on a network packet payload basis. Thus, the network
packet payload of each HTTP connection is segmented
into a certain number of contiguous blocks, which are
subsequently quantized according to a previously
trained scalar codebook. Finally, the temporal
sequence of the symbols obtained is evaluated by
means of a Markov model derived during their training
phase. A simple visual inspection is carried out on
payload length to compute payload histogram and
standard deviation, via grouping network traffic into
protocol and services. Unlike our NetHost–Sensor
procedure analysis presented below, knowledge of the

associated network traffic is not used to determine
intrusions and reduce false positive rate of attacks.

NETAD [16], describes a two stage anomaly
detection system for identifying suspicious traffic. This
was done by filtering traffic to pass only packets of
interest e.g. the first few packets of incoming server
request. In addition, they model the most common
protocols (IP, TCP, Telnet, FTP and others) at the
packet byte level to flag events (byte value) that have
not been observed for a long time. Reported results
showed that the system detected 132 of 185 attacks in
the 1999 DARPA IDS evaluation data set [17] with
100 false alarms, after training on one week of attack-
free traffic. NETAD makes an effort to reduce false-
positives by only analysing the first few network
packets of an incoming web server request. As a result,
it ignores non-IP, SYN-ACK, and all outgoing network
packets. It models 48 attributes, consisting of the first
48 bytes of the network packet, starting with IP and
TCP headers, then TCP payload. An anomaly
threshold score is computed from these attributes and if
exceeded in a training phase, the weighting of the
associated intrusive signature that triggered this
anomaly is lowered. Thus, the overall false-positive
rate is reduced. This research differs from ours, as it
does not enhance the analysis of the network packet
payload with context aware knowledge of the
monitored network traffic, but reduces false-positives
via lowering its detection threshold.

3. NetHost-Sensor An Overview

In this section we present our research: - NetHost-
Sensor. This involves investigative experiments of
scenarios where End-To-End (ETE) encrypted
communication like IPSec [6] technology between
participating peers will elude the scrutiny of a network
based IDS, as network packet’s payload will be
encrypted. In addition, since the network based IDS is
between both hosts, it is susceptible to network
fragmentation, evasion and insertion attacks [6].

3.1. NetHost-Sensor’s Procedure Analysis
Methodology

Our current research uses the data captured by

NetHost-Sensor to perform a procedure analysis
technique that models HTTP network data to detect
and reduce false-positives. The work carried out is
expressed in two main steps: first, data modelling of
HTTP request information is performed, second, based
on this HTTP data model a procedure protocol that
uses formal syntax and semantics is designed to create
intrusive signature to reduce false-positives. The

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

following subsection below describes the first step, and
the next, describes the second.

 HTTP Data Model
Our procedure analysis approach focuses on the

GET request in an HTTP protocol that uses parameters
to pass values to server programs.

We expressed formally HTTP request as the set
}..,{ 21 mUUUU = of URLs extracted from a successful

GET request. A URL iU can be expressed as the
composition of path to the desired resource)(ipath , an
optional path information component)(ipathfo , and an
optional query string (q). The query string is used to
pass parameters to the referenced resource and it is
identified by a leading ‘?’ character. A query string
consists of an ordered list of ‘n’ pairs of parameters
(or attributes) with their corresponding values. That is

),(),...,,(),,(2,211 mn vavavaq = where ,1 Aa ∈ is the set

of all attributes, and 1v is a string. The set qS is

defined as the subset { kj aa ,....., } of attributes of
query q. Figure 1 shows an example of an entry from a
web server log and the corresponding elements that are
used in the analysis. For this example of query q, qS =

(kj aa ,.....,) and /lame.cgi or any string coming after
the cgi-bin could be the optional path (pathfo).

The analysis process focuses on the association
between program, parameters, and their values.
Therefore, each referred program ‘r’ is assigned a set
of corresponding rU . Our procedure analysis model
will apply to each rU , independently, and are not
implemented on current IDSs like Snort. Snort’s
detection rule options uses context keyword that allows
a user to set rules that search for specific content in a
packet payload using six modifiers:- depth, offset,
distance, within, nocase and rawbytes. Using Snort
modifiers, it is not possible to create an intrusive
signature that will include)(ipath and a non-adjacent
query string)(

22
va = . It is only possible to create

intrusive signatures that will include)(ipath alone or

)(ipath plus all query string

),(),...,,(),,(2,211 mn vavavaq = or)(ipath plus adjacent

query string values)(
11

va = or just a query string

),(),...,,(),,(2,211 mn vavavaq = . Our HTTP data model
cannot be implemented using current IDSs like Snort
because of the limitation of their detection rule options;
as a result, these IDSs are more prone to false positive
rate of attacks.

 Figure 1: Practical example of HTTP data model used.

 Procedure Analysis Attack Scenarios
We describe a possible HTTP false positives attack

scenarios below, and with the aid of Snort signatures,
malicious and false positive attacks network packet
payload, design new intrusive signature pattern via our
HTTP data model for NetHost-Sensor’s procedure
analysis.
Web-Client JavaScript URL Host Spoofing Attempt (CVE
2002-0815): this attack occurs when a client on the
protected network visits a website containing malicious
JavaScript code, that will access sensitive information.
For example, certain version of Mozilla and Netscape
may allow script code to access local cookie data. To
curb this exploit, Snort IDS’s community have
introduced associated intrusive signature in their expert
system database, as shown in Figure 2(a). Although,
efforts have been made to accurately design this
signature, reports that peer-to-peer applications may
cause associated alerts are known
(http://www.snort.org/pub-bin/sigs.cgi?sid= 1841). An
example of an actual web-client JavaScript URL host
spoofing exploit network packet payload is presented
in Figure 2(b), while normal network packet’ payload
that may trigger this intrusive signature is shown in
Figure 2(c).

 Figure 2: Web-Client JavaScript URL host spoofing
attempt network packet payload scenarios. a:- Snort
IDS’s signature, b:-actual attack exploit and c:-false-
positives.

In designing our intrusive signature for NetHost-
Sensor’s procedure analysis using our HTTP data
model,)(ipath was set to GET/cgi-bin/xxx.html, while

),(),...,,(),,(2,211 mn vavavaq = to (javascript,
window.open). The overall intrusive signature was a

22
va =

path
11

va =

q

http://host/cgi-bin/lame.cgi?page=Is%20-al

22
va =

path
11

va =

q

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

combination of the two. Other attacks scenarios used
include: web-misc invalid http version string (Bugtraq
9809) and web-client Microsoft emf metafile access
(CVE 2003 0906) just to name a couple.

4. NetHost-Sensor’s Procedure Analysis
Experiment

This section describes our experimental
investigation in evaluating NetHost-Sensor’s procedure
analysis technique in reducing false-positives. Our
experiments had the following main objectives:-

1. Validate the performance of NetHost-Sensor
procedure analysis technique to reduce false-positive in
comparison with Snort. Snort’s architecture does not
facilitate the usage of procedure analysis, only strict
signature pattern matching technique.
2. Measure the computational overhead introduced by
intrusive signature derived from our HTTP data model
used in our NetHost Sensor IDS and those used in
Snort IDS.

Procedure Analysis Experiment Test Data and
Equipment

A 2 months, 6 hours a day “in the wild”, trace of
HTTP request network traffic was collected in one of
the School of Computing laboratories at Napier
University, Edinburgh, Scotland, and used as our test
data. The laboratory has several internal hosts, and the
test data was collected on its Gbps access link to the
Internet. The laboratory trace total 20Gb, 15.million
packets, and 220k connections. The machines used
where Microsoft Windows 2003, IIS 6, and several
web application and their associated cgi scripts. We
performed all measurements on a 550MHz Pentium 3
system containing ample memory.

 Procedure Analysis Experimental Details
Each section of an HTTP GET Request has its own

set of allowed values according to its purpose and
semantic, hence the probability of certain strings
occurring within each section of the payload will not
be uniform throughout the request. As a result, we will
be able to differentiate between strings that constitute
innocuous and harmful HTTP request. With this in
mind, false-positives can be reduced by an IDS like
Snort, that implement signature-based detection
technique for HTTP network data by adjusting
signature attack strings patterns to include more
harmful and less innocuous string patterns.

This is performed experimentally using a controlled
environment that includes windows IIS web-server and
Common Gateway Interface (CGI) programs that are
prone to generate high false-positives, as described in
[18]. These CGI programs were installed in the IIS

web-server and used to generate HTTP innocuous
request.

In addition, we also tried to attack or hack into
these CGI programs and associated web sites, as a
result generated harmful HTTP request to do just that.
In our controlled lab, we use these innocuous and
harmful HTTP request to generate corresponding false-
positives via Snort IDS. Then model this request using
our NetHost-Sensor HTTP data model technique to
isolate strings consistent to the harmful but not to
innocuous HTTP request generated during our initial
training phase. While in our evaluation phase,
NetHost-Sensor was exposed to “in the wild” normal
HTTP network GET request via Napier University
local network and false-positives were measured for
both Snort and NetHost-Sensor IDS. Figure 3, presents
our experimental set-up.

In our modelling phase, we use these innocuous
HTTP requests to generate corresponding false-
positives via Snort IDS. Then model these requests
manually using our NetHost-Sensor HTTP data model
technique to isolate strings consistent to the real attacks
the intrusive signature was designed to detect and not
our innocuous HTTP request. The intrusive signatures
that resulted from our HTTP data model technique
were stored in NetHost-Sensor expert system database
awaiting evaluation and were over 50 in number.

In the evaluation phase, two main issues were
tackled: -

1. Performance comparison of Snort IDS to NetHost-
Sensor procedure analysis technique in reducing false-
positive,
2. The computational overhead introduced by our
NetHost-Sensor procedure analysis technique in
comparison with Snort IDS.

 In tackling issue “1”, we expose both Snort IDS
and NetHost-Sensor to normal HTTP network GET
request via Napier University local network and false-
positives were measured for both IDSs. Figure 4
presents the results of this experiment.
 While in tackling issue “2”, we measured the
computational overhead on the Central Processing Unit
(CPU) introduced both IDS intrusive signatures. Figure
5 presents the result of this experiment.
 Evaluation of Experiments Analysis

In modelling NetHost-Sensor intrusive signature
we used our HTTP data modeling technique, described
earlier in this paper. We expressed a HTTP Get request
as the set }..,{ 21 mUUUU = of URLs extracted from a
successful GET request. Also, we express each iU as a
path to the desired resources)(ipath , and an optional
query string (q). Further still, we express the query

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

string “q” as a list of parameters and their
corresponding value. That is

),(),...,,(),,(2,211 mn vavavaq = where ,1 Aa ∈ the set of

all attributes, and 1v is a string or value.

Figure 3: NetHost-Sensor’s Procedure Analysis
Experiment Set-Up. The above Figure illustrates the
experimental set-up and procedure we carried out in
deriving our intrusive signatures via novel HTTP data
modeling technique.

Evaluation of NetHost-Sensor procedure
analysis technique to reduce false

positive rates of attacks

0

5

10

1 2 3 4 5 6 7 8

No: of weeks

N
o:

 o
f f

al
se

po

si
tiv

e
ra

te
s

of
 a

tta
ck

NetHost-
Sensor
Snort IDS

Figure 4: Compares NetHost-Sensor and Snort IDS in terms
of false-positives triggered within an 8-week period. Our
experimental results show that NetHost-Sensor’s procedure
analysis performed better than Snort IDS’s pattern matching
detection algorithm within this period. A difference of 28-
triggered false-positives was observed between both IDS. All
efforts were made to update Snort’s expert system database
and use all relevant pre-processors in detecting true
positives.

Figure 5: Computational Overhead
Introduced by Both NetHost-Sensor and

Snort IDS intrsuive Signatures

0
10
20
30
40

Time scale in Seconds (
from 2-64)

C
PU

 %
 U

se
d

Snort IDS
intrusive
signatures
NetHost-Sesnor
intrusive
signatures

 normal HTTP Matt Kruse Calendar (www.
mattkruse.com /scripts) Get request, it alerted on a
false-positive. The intrusive signature that was
triggered was “calendar” and the normal HTTP that
caused the trigger was http://host/cgi-bin/calender/
calender.pl and an actual attack could be
http://host/cgi-bin/calender/calender.pl?config=xx , or
http://host/cgi-bin/calender/calender.pl?password=xx
or http://host/cgibin/calender/calender.pl? username
=xx. To apply our procedure analysis data model to
the above, we take into account both Snort IDS
intrusive signature that was triggered and the actual
http attack strings. For this illustration, we manually
use as)(ipath “/calendar.pl? and q either config=xx or
password=xx or username=xx. A combination of

)(ipath alongside each q will be our NetHost-Sensor
intrusive signature that is stored in its expert system
database. By including the intrusive signature derived
from our procedure analysis data modeling in NetHost-
Sensor expert system database, we will be able to
reduce false-positive. In addition, since Snort IDS
intrusive signatures are in most cases a rough subset of
the derived NetHost-Sensor intrusive signatures, a
possible inference from this and also proven during our
experiments is that the true-positive detected for both
NetHost-Sensor and Snort IDS were on the average the
same.

A likely side effect of increasing the strings of any
intrusive signature could be an increase in
computational overhead. The difficulties that may arise
in measuring the overhead of two distinct IDSs are
their architectural differences, such as pattern
matching, methodology, computation of algorithm and
size of expert system database, amongst others. Any
architectural differences could be the main culprit of a
high percentage of CPU usage. Hence, we measured
the CPU usage of NetHost-Sensor exposed to normal
HTTP traffic then replaced all the intrusive signatures
that were stored NetHost-Sensor’s expert system
database with corresponding Snort IDS signatures and
then perform the same experiment. In evaluating our

Experiments Set –Up

Normal HTTP Request

Napier University
Network

Modelling Phase

Using the corresponding actual
attack and associated Snort IDS
intrusive signature that triggered the
false positives, alongside our HTTP
data modelling technique.

Snort IDS ISS Web-Sever &
CGI Programs

Evaluation Phase

Intrusive signature derived from
our HTTP data modelling is
inserted in NetHost-Sensor's
expert system database. Then
both Snort IDS and NetHost-
Sensor were exposed to Normal
HTTP request and thei r results

Experiments Set –Up

Normal HTTP Request

Napier University
Network

Modelling Phase

Using the corresponding actual
attack and associated Snort IDS
intrusive signature that triggered the
false positives, alongside our HTTP
data modelling technique.

Snort IDS ISS Web-Sever &
CGI Programs

Evaluation Phase

Intrusive signature derived from
our HTTP data modelling is
inserted in NetHost-Sensor's
expert system database. Then
both Snort IDS and NetHost-
Sensor were exposed to Normal
HTTP request and thei r results

As an illustration, when Snort IDS was exposed to

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

research methodology in this paper, we choose to use
only Snort IDS as it is the de factor standard in
intrusion prevent and detection [19].

Inferences from our experiments show that our
procedure analysis does detect less false-positives in
comparison with Snort IDS, but with a side effect of a
higher computational overhead. Therefore, our
procedure analysis technique could be used in
enterprises with large processing power and a high
demand for valid true positive rate of attacks.

5. Conclusion

In this paper we focused our research efforts on

suppressing false-positives using NetHost-Sensor’s
procedure analysis technique. We initially described
possible types of detection techniques implemented in
the IDS community and narrow our efforts to specific
IDSs. Alongside this, we discussed about the causes
and research efforts in thwarting false-positives. We
then recapped on our previous research project the
“NetHost-Sensor” and described its novel features and
its contributions. In addition, we presented our latest
novel contribution: - NetHost-Sensor’s procedure
analysis and its HTTP data model technique. This is
based on HTTP GET requests that it expresses in terms
of paths, resources, optional paths information
components, and optional query string. Our rational
behind our HTTP data model techniques was to
express the syntax of a HTTP GET request. As a
practical example, we introduced possible attack
scenarios, in relation with their Snort intrusive
signature, true and false-positives network packet
payloads, to aid in the design of intrusive signatures
using our HTTP data modelling technique. To validate
our research efforts in reducing false-positives,
investigative experiments were carried out to compare
NetHost-Sensor’s procedure analysis technique with
Snort’s pattern matching algorithm and our results
showed that NetHost-Sensor showed more accuracy
than Snort, by alerting 28 less false-positives over an
8-week evaluation period.
Future research experiments should investigate the
detection rate of varied IDS detection algorithm, when
implementing different detection techniques like
procedure analysis and stringent string pattern
matching; the results generated from these experiments
would provide an alternative means of testing the
effectiveness these detection techniques. Also our
novel procedure analysis approach could be used on
other communication protocols like Simple Mail
Transfer Protocol (SMTP). A key difficulty that may
hinder these experiments, is that many IDSs, either free
or commercial, do not provide access to their detection
algorithm source code.

6. References

[1]Computer Crime Research, http://www.crime-
research.org/news/11.06.2004/423/ , 2005
[2]M.Roesch, “Snort-lightweight Intrusion Detection for
Network”, Proceeding of USENIX LISA 99, pp: 229-238
[3]C.Kruegel, G.Vigna and W.Robertson, “A Multi-Model
Approach to the Detection of Web-Based Attacks”,
Computer Networks, V(48), Iss(5), pp:717-735, 2005
[4]P.Porras, “STAT-A State Transition Analysis Tool for
Intrusion Detection”, Technical Report TRCS93-25,
Computer Science Department, University of California at
Santa Barbara, 1993
[5]G.H.Kim, E.H.Spafford, “Experiences with Tripewire
using Integrity Checker for Intrusion Detection”, SANS
Conference III, USENIX, 1994
[6]A.A.Abimbola, J.M Munoz and W.J Buchanan,
“Investigating the capture of End-To-End Encrypted
Intrusive Data”, accepted to Journal of Computer and
Security, 2006
[7]A.Yee, “Marking False Positives Go Away”,
ComputerWorld, www.computerworld.com, 2006
[8]E. Schultz, J.Mellander and D.Peterson “The MS-SQL
Slammer Worm”, Network Security, V(2003), ISS(3) , pp:
10-14
[9]V.Paxson, “Bro: A System for Detecting Network
Intruders in Real-Time”, Computer Networks, V(31) Iss (23-
24), pp:2435-2463, 14 December 1999
[10]D.Barbora and W.S.Jajodia, “Detecting Novel Network
Intrusion Using Bays Estimators”, First SIAM International
Conference on Data Mining, 2001
[11] Anderson et al, “Detecting Unusual Program Behaviour
Using the Statistical Component of the Next Generation
Intrusion Detection Expert System (NIDES),” Computer
Science Laboratory SRI-CS2 95-06 , May 1995
[12]SPADE,SiliconDefence, http://www.silcondefence.com
/software/spice, 2005
[13] P.Neumann and P.Porras, “Experiment with EMERALD
to Date”, Proceeding 1st USENIX Workshop and Intrusion
Detection and Network Monitoring , pp:73-80, 1999
[14]J.M.Estevez-Tapiador, P.Garcia-Teodoro, J.E.Diaz-
Verdejo, “Measuring Normality in HTTP Traffic for
Anomaly-Based Intrusion Detection”, Computer Networks
V(45), 175-193, (2004)
[15]G.Benrit, “Application of Markov Chains in an
Interactive Information Retrieval System” Information
Processing & Management, Vol(41), Iss(4), pp: 843-857,
July 2005
[16]M.V.Mahoney, “Network Traffic Anomaly Detection
Based on Packets Bytes”, SAC 2003
[17]R.Lippmam et al, “The 1999 DARPA Off-Line Intrusion
Detection Evaluation”, Computer Network V(34), Iss(4), pp:
579-595, 2000
[18] S.Patton,W.Yurcik and D.Doss, “An Achilles’s Heel in
Signature-Based IDS: False Positives in Snort” RAID 2001
[19] “NDIS”, www.ndis.org. June 2000

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

