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ABSTRACT Edge computing is a research hotspot that extends cloud computing to the edge of the
network. Due to the recent developments in computation, storage and network technology for end devices,
edge networks have become more powerful, making it possible to integrate locator/identity separation
protocol (LISP) into these networks. Accordingly, in this paper, we introduce LISP into edge routers at
the edge network, focusing primarily on the delay problem of mapping resolution and cache updating in
LISP with the help of edge computing. To solve this delay problem, we first analyze the communication
process of the locator/identity separation network and consider using the prediction method to underpin this
research. In order to achieve a good prediction result, we propose and implement a Fixed Identity Mapping
Prediction Algorithm (FIMPA) based on collaborative filtering, and further verify the effectiveness of the
proposed algorithm through experiments on real-world data.

INDEX TERMS Edge computing, LISP, mapping resolution, prediction, recommendation.

I. INTRODUCTION
In recent years, an increasing number of computing technolo-
gies (such as cloud computing [1], [2], cluster computing,
IPTV [3], etc.) have emerged and been widely applied in
various fields. However, all of them are designed so that the
majority of functions are processed in the core (datacenter),
while the terminal is relatively thin and sometimes even has
no functions to process. Due to developments in the com-
putation ability and storage technology of terminal devices,
some tasks or functions may be offloaded to terminals from
the core, which is the approach adopted by edge computing
[4]–[6]. Edge computing, which has become a new research
hotpot and an expansion of cloud computing, involves push-
ing computing, data, storage, and networking services away
from centralized nodes to the logical extremes of a network.

Edge computing is an efficient method for optimizing
cloud computing by performing data processing at the edge
of the network, near the source of the data. This approach

The associate editor coordinating the review of this manuscript and
approving it for publication was Ying Li.

has many advantages [4]: (a) it reduces the communication
bandwidth required between edge nodes and the datacen-
ter by performing computation and storage at or near the
original location of the data; (b) it may limit or remove
a major bottleneck and a potential point of failure in the
cloud computing environment; (c) it improves data security,
as data is encrypted before being moved to the network core;
(d) it achieves good scalability due to the virtualization in
most edge nodes. Fog computing [7], [8], similar to edge
computing, was first proposed by Cisco. It refers to extending
cloud computing to the edge of an enterprise’s network, facil-
itating the operation of computation, storage, and networking
between end devices and cloud data centers.

Researchers at Cisco proposed and implemented the LISP
protocol in its routes deployed in some networks with the
aim of resolving issues related to mobility, multi-homing and
the IP semantic overload problem. The LISP protocol splits
existing IP addresses into entity identity (EID) and router
identifier/locator (RLOC); moreover, it describes the loca-
tor/identity separation protocol on the network perspective,
meaning that it can prevent the end hosts’ network protocol
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architecture from changing while only changes the working
mode of network devices. In a LISP network, EID is indepen-
dent of network topology, and is used to identify an end host
when communicating with other hosts. EID can be allocated
reasonably according to the deployment requirements of the
mapping system.

Moreover, since the computation, storage, and networking
resources are offloaded from the datacenter to the edge net-
work, it is also feasible for the edge network to solve the
traditional problems associated with LISP, such as delay of
mapping resolution, limited storage of mapping entries, and
so on. Therefore, it represents a feasible way to integrate edge
computing and LISP. Our aim is to solve some issues in the
integration process.

With the help of edge computing, we focus on the delay
problem of mapping resolution; this problem arises when an
identity cannot be resolved locally, which triggers a mapping
resolution request to the mapping system and waits for the
response.

This paper first analyzes the communication process of the
Locator/Identity separation network, focusing on the delay
problem of mapping resolution in LISP and the update mech-
anism of mapping the cache in edge routers. Subsequently,
we propose a Fixed Identity Mapping Prediction Algorithm
(FIMPA) based on collaborative filtering. Finally, we verify
the effectiveness of our proposed algorithm through experi-
mentation. The experimental results illustrate that the FIMPA
algorithm can significantly improve the hit rate and reduce the
delay.

The contribution of our work mainly lies in that solving
some issues (such as delay problem of mapping resolution
and cache updating) in LISPwith the help of edge computing.

The remainder of this paper is organized as follows.
In section II, we introduce some background concepts,
including the communication process of the LISP net-
work and the delay problem. We provide our motivation
in Section III, while the FIMPA algorithm is proposed in
Section IV. In Section V, we conduct some experiments and
evaluations. Finally, we present the conclusion and discuss
future work in Section VI.

II. BACKGROUND
A. EDGE COMPUTING
In recent years, there has been a large body of research
focusing on cloud computing. Cloud computing is an on-
demand computing model that enables on-demand access
to a shared pool of configurable networked resources (e.g.,
CPUs, storage, VMs, networks, applications, servers) that
can be rapidly provisioned with minimal management effort.
Service providers offer clouds with predefined quality of
service (QoS) terms to interested clients through the Internet
on a subscription basis, providing them with a set of easy-to-
use, scalable, and inexpensive services. In cloud computing,
almost all functions are processed in the core (datacenter),
while the client is relatively thin and may even have no pro-

cessing functionality, making it a server-centric computing
paradigm.

Although cloud computing has several advantages includ-
ing easy maintenance, centralized management, and high
server utilization, its limitations have been exposed in the
mobile Internet era: for example, the terminals should have
higher processing capability, there are some security prob-
lems with the terminals, etc. Accordingly, transparent com-
puting [16], [17] proposes a promising solution for themobile
Internet. The core idea is that all data and software – including
operation systems, apps, and user information – are stored
on servers, with data computing being performed on termi-
nals. This approach has a number of advantages: it reduces
terminals’ complexity and cost, improves user experience,
and offers high-level security and compatibility for cross-
platform applications [17]. This is also suitable for access
control [18].

Edge computing has become a research hotspot due to
the rapid development of the IoT (Internet of Things) over
the past three years, meaning that applications, data and
networking services are being pushed away from centralized
nodes in datacenters to the end devices. This approach takes
advantage of the terminal’s powerful computation and storage
capabilities by offloading some tasks or functions to clients
from the core; doing so has a number of advantages, including
reducing the communications bandwidth between edge nodes
and the datacenter, eliminating or removing bottlenecks and
potential failures point in the cloud environment, improv-
ing data security, and achieving good scalability. Additional
research into edge computing can be found in [19]–[21],
which considers using blockchain [22].

B. CACHE UPDATE MECHANISM
Regarding the update mechanism of the mapping cache in
edge routers, the related research both at home and abroad
can be broadly divided into two categories: namely, cache
replacement algorithms and cache prediction/prefetching
algorithms.

Cache replacement algorithms are primarily focused on
how to replace the mapping entries in the cache under condi-
tions of limited space. Research in this area typically focuses
on either temporal locality or spatial locality.

LRU (Least Recently Used) [23] is a traditional algorithm,
which assumes that recently visited objects are themost likely
to be visited again in the future. Thus, it always removes
the oldest object that has not been accessed from the cache.
Although LRU is simple, it is also the most popular algo-
rithm of its kind; however, due to involving the object time
factor, its effectiveness is not high. The 2Q (Two queues)
algorithm [25] is an improved approach based on the LRU-2
algorithm that divides the cached pages into ‘cold’ and
‘warm’, then maintains two FIFO queues to cache them.
When a page is first accessed, it will be inserted into the cold
page queue; if the accessed page is already in the cold queue,
it may be considered a warm page and put into the warm
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page queue. Both of these algorithms are based on temporal
locality. However, they are not suitable for all situations.

Moreover, the LFU (Least Frequently Used) algorithm [26]
considers the access frequency of recent objects, taking full
advantage of the historical scheduling information in the
cache and removing the last least-visited objects from the
cache. The LFU algorithm takes full advantage of the fre-
quency characteristics of user access to preferred resources;
however, it cannot distinguish between objects that are fre-
quently accessed in the early stage or the later stage. In addi-
tion, it may keep ‘‘expired’’ objects to occupy the cache
space, causing a serious cache pollution problem. The LFU-
Aging algorithm is an improved optimization algorithm for
LFU that solves one of its key problems, namely that the
access frequency of resources in the cache is constantly
increasing and never decreases. LFU-Aging [27] consid-
ers both the access frequency and the survival time of the
resource in the cache, and therefore proposes that the value
of access frequency is inversely proportional to the sur-
vival time. In the end, the access frequency of the long-
lost resources in the cache will become smaller and smaller
until it is eliminated. These two algorithms are based on
spatial locality; however, there are some cases in which these
algorithms cannot work.

Based on the spatial locality of resources, cache predic-
tion/prefetching algorithms can predict which resource are to
be accessed in the future using the current access, push the
prediction content to the local cache, and replace the mapping
item in the cache using the cache replacement algorithm.
As the prefetching algorithm uses a prediction model to
describe the mapping request, its prediction hit rate is closely
related to that of the prediction model. At present, frequently
used prefetching models include those based on data min-
ing [28], multitask [29], Web semantics [30], the Markov
model [24], probabilistic model [31], and so on. The prefetch-
ing model based on data mining predicts the users’ potential
next page by mining a large amount of potential information
contained in the users’ browsing history, while the model
based onWeb semantics extracts the feature key and analyzes
user behavior to predict the next request.Moreover, themodel
based on the Markov model uses the transition probability
matrix to describe the users’ request behavior and thereby
predicts the users’ next request. However, the quality of
these algorithms depends on the accuracy of the prediction
algorithm. The feature key can be obtained using the method
in [32].

III. MOTIVATION
To solve the delay problem, we first analyze the communi-
cation process of the Locator/Identity Separation network.
Subsequently, we discuss the delay problem in LISP.

A. COMMUNICATION PROCESS OF THE LISP NETWORK
Much like common networks, end hosts in a LISP network
can also be divided into two types: namely, fixed hosts and
mobile hosts. In order to quickly distinguish between these

FIGURE 1. An instance of Location/Identity separation network.

two host types, the LISP protocol uses a specific EID seg-
ment to represent mobile nodes, while the remaining address
segments are assigned to fixed nodes.

Considering the fixed hosts managed by an access router,
their EIDs can be allocated regularly and aggregated into one
EID-prefix, which can be used for EID mapping resolution.
The mapping system stores the EID-to-RLOC (for mobile
hosts) or EID-prefix-to-RLOC (for fixed hosts) mapping
entries. The RLOC is the edge router’s IP address used for
forwarding packets in the core network, which is usually
related to the network topology. The RLOC can be obtained
by querying the EID-to-RLOCmapping database in a router’s
local cache or mapping system, as shown in Fig.1.

In addition, LISP introduces the concept of Ingress Tunnel
Router (ITR) and Egress Tunnel Router (ETR), which are
used to encapsulate/decapsulate packets for identifier com-
munication. ITR is the first-hop access router of the sender
end host, while ETR is the last-hop access router of the
receiver end host. ITR receives a LISP packet sent by one
end host, which contains the EID of both communication
parties in the form of a source and destination address in
a LISP header of the packet. ITR uses the destination EID
as the keyword to query the EID-to-RLOC mapping, either
locally or remotely, in order to obtain the RLOC of the access
router served for the destination end host. After that, ITR
constructs a new packet and forwards it to the core network,
encapsulating this LISP packet with an outer header in the
process. For the outer header, the destination address is the
RLOC of the access router at the destination, and the source
address is the RLOC of the ITR. ETR receives this new packet
encapsulated by ITR, strips the outer header, and forwards the
inner LISP packet to the destination end host indicated by the
destination EID.

If there is no mapping entry EID-to-RLOC of the destina-
tion EID in the ITR local buffer, it will wait for a long time to
receive the mapping response from the mapping system after
initiating a mapping query request to the mapping system;
this increases the delay in the mapping resolution and affects
the communication quality and performance. The key issue
here is that of how to resolve the delay problem of mapping
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resolution. Some research has proposed a data-driven method
to model the Internet route [10], adopted evolutionary game
theory in the Internet of Vehicles [11], or used transformation-
based process in IoT [12]. We consider deploying our
work in a smart campus [13] and privacy issue [14] in the
future.

B. THE DELAY PROBLEM IN LISP
In the study of LISP architecture, we mainly use the local
mapping cache and identity mapping prediction/prefetching
technology to solve the identity mapping resolution delay
problem. The local mapping caching technology requires
the edge router to cache the mapping entry of the identity
obtained by mapping resolution in its local cache. Because
this technology uses the temporal locality principle of map-
ping requests, it can thus reduce sending the mapping reso-
lution request to the mapping system in order to reduce the
mapping resolution delay.

However, given the increasing update frequency of net-
work resources, the cache performance brought about by the
upgrade cannot meet the performance needs. Accordingly,
to further reduce the mapping resolution delay, mapping
prediction/prefetching technology is introduced. This tech-
nology is used to forecast the future access according to the
currently available historical information. However, success-
fully integrating the caching and forecasting technology to
further reduce the mapping resolution delay remains a chal-
lenge.

As shown in Fig.1, host EID1 in an edge network
Site1 wants to communicate with host EID2 in another
edge network Site2. Their communication process can be
described via the following steps:
• Host EID1 sends a LISP packet (packet1) to the edge
router ITR of Site1, setting its own EID1 and the host
EID2 as the source and destination identifier of packet1,
respectively. According to the local buffered EID-to-
RLOC mapping entries, the ITR of Site1 acquires the
corresponding address RLOC of Host EID2 (for exam-
ple, RLOC2 in Fig.1). If there is no local mapping entry
for EID2, the ITRwill send amapping resolution request
to the mapping system and store a new mapping entry in
its local buffer after receiving the mapping response.

• The ITR encapsulates packet1 with an outer packet
header to construct a new packet (packet2), which uses
RLOC1 (RLOC of ITR) as the source address, and
chooses RLOC2 (RLOC of ETR) as the destination
address. Subsequently, the ITR forwards packet2 to the
core network.

• This new packet (packet2) is routed to the ETR of
Site2 through the core network, according to the desti-
nation address RLOC2.

• The ETR decapsulates this new packet (packet2) and
sends the LISP packet (packet1) toHost EID2, according
to the destination identifier EID2.

If no mapping entry EID-to-RLOC of EID2 is found in the
local mapping buffer of ITR, the ITR will initiate a mapping

query request to the mapping system; it may then have to
wait for a long time to obtain the mapping response from
the mapping system. This may consequently increase the
mapping resolution delay and thus affect the communication
quality and performance. If we could accurately predict the
destination identifiers with which a user will communicate
in the future, and if the mapping system supported pushing
the mapping entries of certain identifiers to edge routers,
this could effectively reduce the mapping resolution delay.
Furthermore, we could also integrate caching and forecasting
technology together to reduce this delay even further.

It should be noted here that Internet users in different edge
networks may have different access interests. Depending on
the social characteristics of the persons involved [33], a par-
ticular group of persons may exhibit particularly frequent
patterns of access to certain network resources. For example,
persons on a campus network may frequently visit Google
Scholar or Baidu Academic to search for scientific papers.
Similarly, if the access resources of the persons in two edge
networks are similar, it is reasonable to push the resources
frequently accessed by persons in one edge network to per-
sons in another edge network. In the future, we will consider
using the key management means in sensor networks [34],
[35] and blockchain technology [36] to design an effective
mapping management system, and will consider using deep
learning [37]–[39] to deal with unknown issues.

IV. THE FIXED IDENTITY MAPPING PREDICTION
ALGORITHM
In a locator/identity separation network, the edge router xTR
(denoting either ITR or ETR) in an edge network receives a
packet from its inner interface (that is connected to devices
in the edge network). It will first query the local cache for
the related EID-to-RLOC (for mobile EID) or EID-prefix-
to-RLOC (for fixed EID) mapping entry for the destination
identifier of the packet. If the local cache cannot find this
related mapping entry, a mapping resolution request will be
issued to the mapping system. Edge routers can record all
resources accessed by persons in this edge network, since all
the network’s import and export flows pass through them.

In terms of recently recommended techniques and algo-
rithms, collaborative methods based on collaborative filter-
ing [40] have been widely recognized and promoted by
researchers of late. The core idea behind these methods is to
use group wisdom for prediction and recommendation, deter-
mine the relevance of users or items by using information,
e.g. users’ hobbies, and then making predictions and recom-
mendations based on the correlation. Collaborative filtering
is divided into user-based collaborative filtering [9], item-
based collaborative filtering and matrix decomposition-based
collaborative filtering.

In a locator/identity separation network, the users in an
edge network have access preferences regarding network
resources, causing some edge networks to have a correlation.
We can use the idea of collaborative filtering to predict which
resources in an edge network will be accessed next time and
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TABLE 1. An array of request frequency data from edge routers.

thus push the corresponding identity mapping to edge routers
in advance.

We use the collaborative filtering idea on the fixed end
hosts case, and call this the Fixed Identity Mapping Predic-
tion Algorithm (FIMPA). The idea behind FIMPA can be
described as follows:

• collect the packets received by an edge router over a
given period of time;

• using statistics of the packets, get the request frequency
of different EID-prefixes over this period of time, then
upload the request frequency information to themapping
system;

• the mapping system calculates the prediction model
based on the collaborative filtering method, and makes a
fixed identification prediction for the edge router based
on the front prediction model;

• the mapping system actively pushes the correlationmap-
ping entries to the edge router;

• the edge router updates its mapping entries according to
the cache replacement policy.

A. SOME CRITICAL CONSIDERATIONS IN THE FIMPA
ALGORITHM
1) THE FREQUENCY STATISTICS OF THE FIXED EID-PREFIX
FROM THE HISTORY PACKETS
By using the request frequency statistics of the EID-prefixes
recorded in an edge router over a given period of time, we can
determine the data correlation, which is used as the basis for
forecasting/prediction. It is therefore important to collect the
packets received by an edge router over the specified period
of time.

For each packet in the fixed hosts case, the edge
router maps its destination identifier to the corresponding
EID-prefix, and searches to determine whether there is an
EID-prefix-to-RLOC mapping entry in the local cache. We
can thus record the corresponding request frequency of the
EID-prefixes accessed by the edge router over the specified
period of time. The edge router then sends the EID-prefix
request frequency data to the mapping system for centralized
processing.

The mapping system builds an array according to the EID-
prefix request frequency information from all edge routers in
the edge networks in order to access different EID-prefixes.
This array is presented in Table 1.

In this array, {S1, S2, . . . , Sm} represents the set of m
edge routers in the LISP network, while {D1, D2, . . . , Dn}
represents the set of n EID-prefixes in LISP network. The
request frequency data of an EID-prefix accessed by an edge
router is represented by a matrix m∗n, where Hij repre-
sents that the edge router Si has accessed Hij times on the
EID-prefix Dj.

2) MAKING PREDICTIONS BASED ON THE REQUEST
FREQUENCY INFORMATION
After the mapping system collects the EID-prefix frequency
information of all edge routers in the LISP network, it can
carry out the prediction of EID-prefixes for the fixed end
hosts based on collaborative filtering. More specifically,
we use matrix decomposition-based collaborative filtering to
handle all EID-prefix request frequency information.

The relationship between an edge router and an EID-prefix
can be implied by assessing the number of times that the edge
router accesses this EID-prefix. In other words, the higher the
number of times that the edge router accesses this EID-prefix,
the greater the likelihood that the edge router will access this
EID-prefix next time.

In general, it is not possible for an edge router to access
the whole set of EID-prefixes; thus, it can be seen that the
request frequency of all EID-prefixes in one edge router is not
all non-zero, meaning that the EID-prefix request frequency
matrix Rm∗n is sparse.

3) DEFINITIONS IN THE FIMPA ALGORITHM
The problem to be solved here is the calculation of themissing
values of the request frequency matrix Rm∗n, after which
prediction is carried out based on themissing values.We use a
matrix decomposition method to calculate the missing values
in the request frequency matrix. The idea here is that the
request frequency matrix can be decomposed into the product
of two small matrixes, with their product approximating the
request frequency matrix. The request frequency matrix is
sparse and contains a lot of zeros; however, the product of the
small matrix is dense and complements the missing element.
The key to FIMPA lies in the solution of the two small
matrices.

The request frequency matrix is denoted by Rm×n; more-
over, Rm×n is approximated by the product of two small
matrices Um×k and Vn×k: Rm×n ≈ Um×kVT

n×k, where k is
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much smaller thanm and n.Um×k is the characteristic matrix
of an edge router xTR,Vn×k is the characteristic matrix of an
EID-prefix, and k is the number of recessive factors. A target
is the error generated by reconstructing R through U and V,
which can be directly quantified. This can be done with other
method, such as fast classification [41].

We use the Frobenius norm ||R − UVT
||2F to quantify

the reconstruction error: that is, the score between each ele-
ment and the reconstruction matrix. In fact, only non-zero
frequency reconstruction error is required, meaning that the
target or loss function can be written as follows:∑

(i,j∈R)

(rij − uTi vj)
2

For the reconstruction error, R is the set of (edge router,
EID-prefix) corresponding to the non-zero request frequency,
uTi is the implied eigenvector representing the edge router i, vj
is the implied eigenvector representing the EID-prefix j, and
rij represents the request frequency of the edge router i on the
EID-prefix j. Moreover, the inner product of the vector sum
uTi vj is the approximation of the request frequency of the edge
router i on the EID-prefix j.

In order to prevent over fitting, a regularization term is
introduced, such that the loss function can ultimately be
written as follows:

C =
∑

(i,j)∈H

[(rij − (ui)vj)2 + λ(||ui||2 + ||vj||2)] (1)

Here, λ is the coefficient of the regularization term in (1).
The matrix U and V can be solved by minimizing the

loss function. To calculate the value of the matrix U and V,
we introduce the ALS alternating least squares method.

B. THE INTRODUCTION OF THE FIMPA ALGORITHM
An overview of the algorithm is presented in Algorithm 1.
Some details of the implementation are as follows:

Step 1: randomly generate a U(0), which can be set as the
global mean.

Step 2: fix U(0), and solve V(0).
At this point, the loss function can be expressed via the

following equation:

C =
∑

(i,j)∈H

[(rij − (u(0)i )vj)2 + λ(||u
(0)
i ||

2
+ ||vj||2)] (2)

Fixing j (j = 1,2, . . . ,n), the derivative of C is:

∂C
∂vj
= 2

m∑
i=1

[((u(0)i )T u(0)i )+ λ)vj − riju
(0)
i ] (3)

Let ∂C
∂vj
=0; thus, we get

m∑
i=1

[((u(0)i )T u(0)i + λ)vj] =
m∑
i=1

riju
(0)
i (4)

Equation (4) is equivalent to

(UUT
+ λE)vj = UrTj (5)

We define M1 = UUT
+ λE , M2 = UrTj , so that (5) can

be converted to

vj = M−11 M2 (6)

v1, v2 , . . . , vn are calculated in accordance with (6); thus,
we obtain V(0), which consists of v1, v2, . . . , vn.
Step 3: fix V(0), then solve U(1).
The loss function at this time is:

C =
∑

(i,j)∈H

[(rij − (ui)v
(0)
j )2 + λ(||ui||2 + ||v

(0)
j ||

2)] (7)

Similarly, we calculate the value of ui:

∂C
∂ui
= 2

n∑
j=1

[((v(0)j )T v(0)j )+ λ)ui − rijv
(0)
j ] (8)

Let ∂C
∂ui
= 0; thus, we get

n∑
j=1

[((v(0)j )T v(0)j + λ)ui] =
n∑
j=1

rijv
(0)
j (9)

Equation (9) is equivalent to

(VV T
+ λE)ui = VrTi (10)

We define M3 = VV T
+ λE , M4 = VrTi , so that (10) can

be converted to

ui = M−13 M4 (11)

u1, u2, . . . , um are calculated in accordance with (11);
thus, we obtain U(1), which consists of u1, u2, . . . , um.
The FIMPA algorithm loops the execution of Step 2 and

3, and stops after iterating N times. Following the execution,
we obtain the optimal solution U and V. The sum of the
optimal solution U and V complements the missing value
for the request frequency matrix R. For the edge router x,
we select the corresponding row of x from the matrix UVT

and sort the elements in the row from large to small after
removing the original values. The larger the value, the greater
the likelihood that edge router x will make an access request
to this EID-prefix in the future.

We then take the Top-N EID-prefixes as the prediction for
this edge router x.

The mapping system establishes a time-push mapping
table timer. When the setting time is reached, the map-
ping system generates EID-prefix-to-RLOC mapping entries
according to the FIMPA algorithm and actively pushes them
to the edge routers. When the edge routers receive these EID-
prefix-to-RLOC mapping entries, they will update the map-
ping cache according to their cache replacement strategy (e.g.
LRU and LFU). It can be improved using semi-supervised
learning [38] in the future.

The FIMPA algorithm decomposes the request frequency
matrix into the product of two small matrices: the character-
istic matrix of an edge router and the characteristic matrix of
EID-prefixes. It then carries out the prediction based on the

VOLUME 8, 2020 17361



S. Zhang et al.: FIMPA Fixed Identity Mapping Prediction Algorithm

Algorithm 1 FIMPA Algorithm
Input: request frequency matrix R, iteration number T,
number of features k, an edge router x
Output: the prediction result set S for the edge router x
Data: U stands for the characteristic matrix of an edge
router,V for the characteristic matrix of EID-prefixes,map
for the key-value set of (EID-prefix i, prediction degree p)
The pseudo code of the FIMPA algorithm is as follows:
1. U←initM(k)
2. for i = 1 to T do

V←calV(U)
U←calU(V)

end for
3. for each EID-prefix i in getUnvisited(R, u) do

p←U[x]∗V[i]
map.add(i, p)

end for
4. S←getResult(map)

complete value of the product of these two matrices. Algo-
rithm 1 presents the pseudo code of the FIMPA algorithm;
here, initM(k) initializes the feature matrix according to the
number of features, calV(U) calculates U using V, calU(V)
calculates V using U, getUnvisited(R, u) returns a collection
of EID-prefixes that edge router u has not accessed, and
getResult(map) obtains the prediction by sorting the results.
The correction of FIMPA algorithm can be guaranteed by

the method of the matrix decomposition-based collaborative
filtering, which is proved to be a feasible solution for the
recommended problem.

V. EXPERIMENTS AND EVALUATION
In this paper, we implement the FIMPA algorithm with LRU
and LFU as mapping replacement algorithms, then conduct
comparisons with the existing LRU and LFU algorithms.

In this section, we evaluate the FIMPA algorithm using
two indicators: namely, the cache hit rate and the hit rate
convergence time. The cache hit rate is the ratio of the number
of requests hits in the local cache to the total number of access
requests in the time period.

The experimental data used in this simulation is real net-
work traffic data collected from the Internet, namely the
NLANRAuckland-VIII dataset, which represents the identity
mapping request traffic. The data format of the dataset is
ERF. In total, the dataset contains more than 6million packets
collected over 60 minutes. In order to evaluate the cache
performance and use this dataset with the FIMPA algorithm,
we need to map the source and destination IP addresses of
the packets to the corresponding prefixes. We use the BGP
prefix as the EID-prefix and download the BGP core routing
table from Route Views, which maps the IP addresses to
prefixes. In this paper, we used Java to implement the FIMPA
algorithm and ran the simulation program on a desktop PC,

FIGURE 2. Hit rate results with 24K cache.

which has an Intel i5-7200U CPU, 8GB memory and the
Windows 7 operating system.

According to the flow analysis statistics, the simulation
sets the statistical period to 11 minutes, and further selects
60 seconds as the prediction time period (hereafter ‘time
period’ for short). The FIMPA algorithm makes a prediction
based on historical packets every time period. The packet in
the first time period is the initial input data. The packets in the
same time period are divided into different subsets according
to the address prefix mapped by the source IP address. The
different subsets represent the messages received by different
edge routers. Subsequently, the packets in each subset are
processed as follows: map the destination IP address to the
address prefix; count the number of packets belonging to
different prefixes; and simulate the frequency with which the
edge router accesses the end host.

The simulator pushes all predicted results to the mapping
cache of the edge router. In the initial case, the mapping
cache table is empty and all predicted mappings are saved.
For the second time period, the destination IP address of each
packet is mapped to the BGP prefix. If the prefix is already
in the mapping cache table, the simulator will increase the
number of hits by one and process the next message; if no
mapping is found in the mapping cache table, the simulator
will record the mapping if the table is not full, or alternatively
perform a mapping update using a mapping replacement
algorithm if the table is full. After processing the second time
period, the simulator continues to forecast and push the pro-
gram forward using the second time period as the historical
data. The subsequent 9 time periods of packet processing are
similar.

A. EXPERIMENT FOR THE CACHE HIT RATE
In this paper, the size of the mapping cache table is set to
24K, 28K, and 36K respectively.We compare four algorithms
(LFU, LRU, FIMPA+LFU, FIMPA+LRU) on the mapping
cache table hit rate in the second to the eleventh periods,
named t1 to t10, as shown in Fig. 2, Fig. 3, and Fig. 4.

As shown in Fig. 2, when the size of the mapping
cache table is 24K, the mapping cache table hit rate when
FIMPA+LFU is used as the mapping strategy is 5% higher
than when LFU alone is used; moreover, this result is 6%
when comparing FIMPA+LRU to LRU.
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FIGURE 3. Hit rate results with 28K cache.

FIGURE 4. Hit rate results with 36K cache.

FIGURE 5. Hit rate convergence time.

Furthermore, when the size of the mapping cache table is
set to 28K or 36K, the mapping cache table hit rate when
FIMPA+LFU or FIMPA+LRU is used is 7% higher than
when LFU or LRU alone are used.

B. EXPERIMENT FOR THE HIT RATECONVERGENCE TIME
In the second period, the mapping cache table is initially
empty, and the hit rate of the mapping cache table gradually
stabilizes from zero when newmappings are added into cache
mapping table. The time duration from the initial state to
the steady state is the convergence time. Figure 5 presents
the comparison results of the convergence time for these
four algorithms (LFU, LRU, FIMPA+LFU, FIMPA+LRU)
while the cache map size is set to 24K. It can be seen from
the figure that the convergence times for LFU and LRU

are 45 seconds and 54 seconds, respectively. Due to the
prediction processes and active push in FIMPA+LFU and
FIMPA+LRU, the hit rate of the mapping cache table stabi-
lizes quickly for these algorithms, resulting in a convergence
time of only 10 seconds and 13 seconds respectively. In short,
these results show that the convergence time achieved by
FIMPA+LFU and FIMPA+LRU is a full 3 times faster than
LFU and LRU.

In summary, for these two indicators, the FIMPA
algorithm achieves better performance than the traditional
algorithm. In particular, FIMPA algorithm achieves a hit rate
convergence time that is 3 times faster than the comparison
algorithms.

VI. CONCLUSION AND FUTURE WORK
By combining the FIMPA prediction algorithm with the
replacement strategies (LRU and LFU), the hit rate of the
cache mapping table can be significantly improved, espe-
cially in the initial state. When the cache mapping table
is empty, the hit rate rapidly achieves higher stability in a
short convergence time. However, FIMPA gains this improve-
ment in hit rate by sacrificing the algorithmic performance,
meaning that the time complexity and spatial complexity of
FIMPA are relatively high and increase exponentially with
the number of edge routers. To address some security issues
in our work, we will consider using technologies such as
blockchain [42], [43], the Tor network [44], covert com-
munications [45], sensor networks [46], [47] and SDN net-
works [48] in our future work.

This paper aimed to solve the delay problem for the fixed
end hosts; we will consider solutions for the mobile identity
case in the future work. Possible solutions may include using
a tree storage structure for mobile identity mappings or incor-
porating blockchain technology [49], SVM algorithm [50],
among others.
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