
X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

1

Abstract
Mismatches between pre-qualified existing components and the particular reuse context in

applications have been a major factor hindering component reusability and successful
composition. Although component adaptation has acted as a key solution of eliminating
these mismatches, deep adaptation is often either impossible or incurring heavy overheads in
the components. This paper proposes an approach, namely Scenario-based dynamic
component Adaptation and GenerAtion (SAGA), to achieve deep adaptation with little code
overhead through XML–based component specification, interrelated adaptation scenarios
and corresponding component adaptation and generation.

Keywords—Component Reuse, Scenario-Based Adaptation, Component Generation,
Component Composition, Component Definition Language, XML.

1. Introduction
 Component–Based Development (CBD) has shown very successful improvement on
efficient, high quality and low cost software design and development. One obstacle of reuse
and smooth composition is the high variability of reuse context, such as constant changes in
data model, architectural mismatch, and application specialty.

The rationale of CBD is that a component is an independent reuse unit to construct an
application. The current state of the art is that not many components can actually be reused
without adaptation. The problem is partially caused by incomplete component specifications,
and the mismatches between components and the reuse context, including the application
architecture, state and other collaborating components. To tackle this problem, complete
component specification and deep component adaptation technology are required
[6][12][15][18].

In this paper, to achieve smooth and seamless component composition in system
development, a Scenario based dynamic component Adaptation and GenerAtion technology
(SAGA) is developed within a generative and component-based reuse framework as the core
technique for deep adaptation with little overheads in the target component code. It is often
the case that provisionally qualified components still have some architectural and behavioral
inconsistency with the requirements of a specific application system. To eliminate these
inconsistencies, adequate adaptation technology must be applied to the components. For
adaptation in depth, a new derivative of the component may need to be created with
generation technology. In this paper, we propose to use a set of scenarios defined in XML to

Achieving Seamless Component Composition Through
Scenario-Based Deep Adaptation And Generation

Dr. Xiaodong Liu*, Beihu Wang and Prof. Jon Kerridge

Napier University, Edinburgh EH10 5DT, UK
{x.liu, t.wang, j.kerridge}@napier.ac.uk

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

2

record the design configuration of components reused in specific applications. Scenarios
may be adjusted, composed or associated interactively to cope with complex reuse cases.

An XML formatted Component Definition Language (CDL) is designed to represent
component specification, which facilitates component understanding, use and
implementation.

Database-oriented client server applications have been selected as the sample application
domain of this project due to their popularity in reuse.

The remainder of this paper is organized as follows: section 2 summarizes the related
work; section 3 describes the proposed approach, including the framework, scenario-based
adaptation and generation; section 4 demonstrates the approach and prototype tool with an
example of the adaptation and generation of an invoice_manager component; section 5
presents the conclusion.

2. Related works

2.1. Genesis and Avoca
Genesis and Avoca are successful examples of software component technologies and

domain modeling. Genesis is the first building blocks technology for a database management
system [3][4]. Using a graphical layout editor, a customized DBMS can be specified by
composing prefabricated software components. Avoca is a system for constructing efficient
and modular network software suites with a combination of pre-existing and newly created
communication protocols.

Although Genesis and Avoca are steps in a component based approach to improve
reusability, they are highly dependent on domain model, and the modification of components
is restricted on options, preset by component developers. Component developers are
supposed to have tremendous knowledge of a certain domain, and need to consider every
possible modification to the component, and give a solution to each modification. These
obstacles make component development extremely difficult, and restrict reuse.

2.2. Superimposition
A number of component adaptation technologies [1][2][6][12][13] have been proposed.

Superimposition [2] is a successful adaptation technology based on blackbox adaptation. It
allows the software engineer to adapt a component with a number of predefined adaptation
behaviors that can be configured for a specific component.

The notion of superimposition has been implemented in the layered object model
(LayOM), an extensible component object language model. The advantage of layers over
traditional wrappers is that layers are transparent and provide reuse and customizability of
adaptation behavior.

Superimposition uses nested component adaptation types to compose multiple adaptation
behaviors for a single component. However, due to lack of component information,
modification is limited at simple level, such as conversion of parameters, refinement of
operations, modification of access mechanism, and extension of functionality. Moreover,
with more layers of code imposed on original code, the overhead of the adapted component
increases heavily, which will degrade system efficiency.

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

3

2.3. Customizable component
As a part of COMPOSE project [6], an environment for building customizable software

components is developed. It is an approach to expressing customization properties of
components. The declarations enable the developer to focus on what to customize in a
component, as opposed to how to customize it. Customization transformations are
automatically determined by compiling both the declarations and the component code; this
process produces a customizable component. Such a component is then ready to be custom-
fitted to any application.

In this work, the customized components generated for various usage contexts have
exhibited performance comparable to, or better than manually customized code. However,
component adaptation is only limited to pre-defined optional customization, deeper
adaptation is not support in this work.

3. The approach framework
The general process of our approach is given in figure 1. Our research concentrates on the

reuse of components and presumes that component mining part has already been done, i.e.,
reusable components, including their Component Specification (CS) in CDL, default
adaptation scenarios and primitive component code have already been developed with
appropriate component mining approaches and stored in the component repository.

The start point of component reuse is requirement analysis. In this stage requirements will
be decomposed and represented with extended use cases, which is an extension of UML use
cases with more rigorous descriptions. In the architectural design stage, based on the
requirements expressed in extended use cases, the architecture of the application system will
be developed. Suitable components will be selected from the repository based on the system
architecture in parallel with architectural design to ensure that the pre-qualified components
comply with the system architecture.

To achieve highly and flexible reuse, the mismatches between pre-qualified components
and current reuse context need eliminated. In component adaptation stage, adaptation
requirements are collected interactively with the application developer, and recorded in the
format of adaptation scenarios (applicable scenarios). The default adaptation scenarios are
defined by the component developer to cover some typical adaptations and may be used as
templates to create applicable scenarios. A scenario collects series of component adaptation
actions to satisfy particular adaptation requirement. From the applicable scenarios, the
original component specification (CS) will be changed by the component adaptor and finally
a specification of the adapted component, namely Component Derivative Instance
Specification (CDIS) will be generated. The final products of architectural design and
component adaptation include the adapted CDIS and the architectural model.

The next stage is component generation and integration. The target code of the adapted
component will be generated based on its CDIS and its primitive component code (fetched
from the repository). Then the target component code needs to be verified against the current
reuse context. If the target component code does not fit, the adaptation scenarios will be
refined further to fit, and more suitable components may be adapted and generated until the
application developer is satisfied.

Finally, the components (implementation) will be integrated into the application system.

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

4

The application system will be tested, refined if necessary and released to the user.

4. Scenario-based component adaptation and generation

4.1. Component Definition Language (CDL)
A reusable component can be described in many ways. An ideal description is the 3C

model, i.e., concept, content and context [7][10]. A comprehensive, easy to understand
component specification is the prerequisite of successful qualification, adaptation and
integration [11][14].

 We advocate that a specification of a component should consist of views at various
abstraction levels. In our approach, a user view represents the definition of the public
interface of the component at specification level, and a comprehensive view covers both the
component interface and internal implementation details, such as XML formatted meta-code
of methods. The user view is designed for software engineers to understand the structural
and services of the component, and then based on this view to select pre-qualified

Fig. 1. The Process of SAGA Approach

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

5

components and to describe the adaptation requirement. The comprehensive view is
machine-oriented; it is designed to facilitate deep component adaptation and generation.

Based on the collected scenarios, the comprehensive specification of a component (CS)
will be adapted and the specification of a new derivative suitable for use in current
application (CDIS) will be generated. Therefore, the statements of CDL are classified into
two categories: statements of CS and statements of CDIS. CDIS is an adaptation and
possibly also an extension of CS based on features of the current application.

In CDL, components are characterized as independent entities and in terms of their usage
and interactions with other components. The overall structure of a component definition
includes the following six aspects. A basic structure of CDL is given in figure 2.
• The signature of the component, which is the basis for the component’s interaction with

the outside world. The signature includes all the necessary mechanisms for such
interactions, i.e., properties, operations and events.

• The constraints on the component signature in terms of their proper use.
• Design configurations. This section depicts the typical reuse contexts and corresponding

adaptation actions in the form of scenarios.
• Non-functional properties. The non-functional properties occupy a special place in the

component interface structure, and may interact with the interface signature and
configuration.

• Serializeable classes. All the sub-component classes which involve in the definition of
the data model of the component and possible mapping to background database will be
listed in this section.

Fig. 2. The main structure of CDL

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

6

• Non-serializeable classes. Sub-component classes other than serializeable classes will
be considered as non-serializeable classes. The relationship among these classes and
sub-components may be architectural, such as aggregation and association, or
collaboration, i.e., interaction or service requests.

 4.2. Scenario
The conflicts between a component and specific reuse requirements need to be eliminated

with component adaptation. Certain types of adaptation actions may affect multiple parts of
the component. The component-user needs to assure the consistency of the component by
propagating the actions to all the affected parts of the component. A scenario of adaptation
captures a series of adaptation actions to satisfy certain application requirements. The
adaptation actions are classified into various types, namely adaptation types, because the
same type of actions will impose common affects on component structures. An adaptation
type can be used as a template to generate similar adaptation actions.

Scenario-based adaptation is a suitable technique to adapt components in component
based application development. The rationale underlying is that adaptation actions in a
scenario are designed for specific reuse contexts of particular applications, and this also
makes the adaptation types reusable in other reuse contexts. Therefore, the activity of
constructing an application with reusable components becomes one of selecting or building
correct scenarios of pre-qualified components, then to do the adaptation actions based on the
scenarios, and then to generate the target code of the components based on the adapted
CDIS.

Based on the above observation, we have identified that component-based development,
in addition to a set of reusable components, requires a set of scenarios. A scenario is
composed of a series of adaptation actions, which are defined in adaptation types. With
scenarios, and generation deep component adaptation becomes feasible.

Scenarios may be required in three aspects: 1) the component may be used in different
reuse contexts; 2) the component may be used under different constraints; 3) the component
may act in different roles in given reuse contexts. Scenarios can be composed, associated
and adjusted to tackle various and complex reuse cases. The role of scenarios can be defined
as the design configuration of components in specific kinds of applications.

The pre-qualified component is defined in a Component Specification (CS). Scenarios
aim to perform the adaptation actions on CS instead of component code. The result will be
the specification of the adapted component derivative, namely CDIS.

4.3. Component adaptation types

4.3.1 A taxonomy of component adaptation types

 We have identified the following five typical categories of component adaptation types:
• Coordination of Component Interface. A typical situation in the development of a

component-based system is that a component has been provisionally qualified for the
reuse in the system, but its interface has some mismatch with the interface expected by
the system. This may be because of differences in operation signatures, or extra
functions, or unsuitable constraints. In such situations, the interface of the component
needs to be adapted to match the expected interface. We call this category of adaptation

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

7

Coordination of Component Interface, which may include the following types: provided
service adaptation, required service adaptation, property adaptation, and constraint
coordination.

• Component Composition. In component-based development, the functionality that a
component should provide may not be fulfilled by a single available component.
However, a combination of two or more components is able to provide the required
functionality. In such cases, the components have to be composed into a single
component. This adaptation category may include component aggregation, and
component association.

• Component Interoperability. A set of interacting components will be selected to
construct specific application. The relationships between the components are specific in
the current application [15], hence, component interoperability is a crucial part of the
component adaptation. There are many aspects related to component interoperability,
such as message passing, implicit invocation, and state and event invocation.

• Performance Adaptation. This kind of adaptation is motivated by performance
correction reasons or environmental changes, which will result in modifications to the
implementation of the component, for example, replacing with a new version of a
component library, adopting a new programming language, upgrading to a new
operating system, or upgrading to a new database system.

4.3.2 Definition of component adaptation types

Adaptation actions are grouped into relevant component adaptation types. An adaptation
action is defined with the following attributes and sub-statements:
• name, which is the identity of the action;
• type, which indicates the type the action;
• requirement, which shows the reuse context the adaptation action suits for;
• position, which shows a position in CS where the actions to be done;
• extra detail, which covers other details needed by the action.
 A typical definition of component adaptation types is given in figure 3. Sample definitions
can be found in the example section.

4.3.3 Propagation relationship

During adaptation, to keep the consistency of the component and the application system,
necessary changes must be propagated to all the affected parts of the component and other
interrelated components. In SAGA, this is achieved with a set of propagation relationships,
which are classified into the following types:
• Triggering. If the change imposed by an adaptation action causes more related changes

to a component, the adaptation action will trigger other adaptation actions or scenarios

Fig. 3. A structure of component adaptation type

<adapt_action name="xxxxx " type="xx_xxx">
 <requirement>xxxxxx</requirement>
 <position>xxx.xxx.xx</position>
 …… extra detail ……
</ adapt_action>

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

8

to make the required change. If the original change and the incurred change apply to the
same component, more adaptation actions will be triggered, and the relationship is
called intra-component triggering. Otherwise, if the original change and the incurred
change apply to different components, other scenarios will be triggered, and the
relationship is called inter-component triggering.

• Requiring. An adaptation action may require changes to be done to a component as
prerequisite, i.e., to be carried out before the execution of the action. In such cases, the
adaptation action will require the execution of other relevant adaptation actions or
scenarios beforehand. If the required change happens to the same component, relevant
adaptation actions will be required to execute, and the relationship is called intra-
component requiring. Otherwise, if the required change happens to different
components, scenarios will be triggered, and the relationship is called inter-component
requiring.

 An adaptation action is also given an execution priority of the following three levels in
order to make adaptation more sensible. 1) High level priority. If an adaptation action
involves changes to the properties of a component, it will be assigned a high level priority.
2) Medium level priority. Adaptation types that involve changes to the operation or events of
a component will have a medium level priority. 3) Low level priority. For adaptation types
that make changes to constraints of a component, a low level priority will be assigned.

With propagation relationships, complex adaptation scenarios can be composed to
implement deep or large-scale component adaptation. An example is given in section 5 to
show how to use priorities and propagation relationships to copy with adaptation in the
prototype tool.

4.3.4 Component generation

With component generation technology [9][16][17], the target components will have less
overheads in functionality and more efficient performance. This technology is particularly
suitable for those components that are not standalone, and designed to be plug-compatible
and interoperable with other components. Component generation requires information not
only from a component developer but also from a component user. Component developers
provide primitive component code, which is the unchanged part of the code of the pre-
qualified component. The CDIS of the adapted component, which includes the configuration
of changes to the pre-qualified component, is created by the component adaptor through

Fig. 4. The process of component generation

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

9

scenarios selected or created by component users. With those inputs, the component
generator will generate new target code of the adapted component. The component generator
will generate the target industry-standard components automatically since the necessary
information has been collected interactively in the adaptation stage.

 The process of component generation is given in figure 4. Firstly the CDIS of the pre-
qualified component is parsed. As the CDIS includes implementation and modification
detail, target code of the adapted classes will be generated by the component generator. Then
the component generator integrates the adapted classes code with the primitive component
code to create the complete code of the adapted component. Finally, for smooth deployment
of the generated component into a target application, the generator will provide as much as
possible the information of environment modification, such as database schema and database
connection update.

Java-based client-server database applications have become very popular nowadays. Our
component generator aims to generate the component in the form of JavaBeans and EJBs.

5. Example
 Invoice_manger is a popular component used in business applications. In this paper, it is
used as an example to explain how the proposed approach and prototype tool work. The
prototype tool consists of the following parts: 1) a CS viewer for component-users to view a
component interactively, 2) a scenario editor for component-users to make and edit
adaptation scenarios, 3) a component adaptor to perform adaptation actions and then create a
CDIS of the component based on scenarios, 4) a component generator to automatically

Fig. 5. The class diagram of invoice_manager component

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

10

generate the code of an adapted component based on the CDIS and primitive code of the
component.

The invoice_manager component provides the services needed in common business
invoice management. Presume that the invoice_manger component is a typical database-
oriented client server component. It consists of a serial of classes or subcomponents, such as
the component interface class, data structure classes, and collaborating classes. The
component provides three services in the form of class methods, i.e., Print_report to print a
simple invoice report, Add_invoice to save an invoice object into database, and Import_XML
to import an XML formatted invoice and save it to the database. The class diagram of
invoice_manager component is given in figure 5.

5.1 Invoice_ manager component CS
In the prototype tool, the CS can be read by component-users in different views, i.e., user

view, tree view and comprehensive view. User view gives the component-user an interactive
view of the component CS. With it, the component user can easily understand the
component, such as objective, required services, provided services and data structure.
Component-users may need more detailed CS information, so they can use the
comprehensive view to see the complete component CS. Figure 6 shows the three CS views
of

invoice_manager component.
 Component-users may want to modify a component’s context and content to fit-in certain

applications, so CDIS will be generated, which is a derivative instance of CS with the
change made by component-user. As CDIS and CS have similar structure. Users can use the
same viewer to visualize CDIS.

 Fig. 6 The multiple views of component specification

Tree
View

User View

Comprehensive
View

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

11

5.2 Component Adaptation

5.2.1 Scenario

Let us assume there are the following adaptation requirements to the invoice_manager
component when reused in an application. A scenario is developed to tackle the adaptation.
Adaptation actions will be added into the scenario to reflect the adaptation requirement.

In the original data structure of invoice_manager, the invoice class and item class has a
one to one aggregation relationship, however, in current application, the relationship needs
to be changed to a one to many relationship. It means the Invoice class needs a collection to
hold a group of Item objects. A new operation, namely “add_Items” will be introduced to
Invoice class to allow Item objects be added into the collection. Since “add_Items”
operation is a consequence or incurred change of one to many association, a intra-
component triggering relationship is set up between action “Association_modify” and action
“new operation”. The full definition of the scenario is given in figure 7.

As shown in the example, the adaptation actions in the scenario give the information
needed for the adaptation change, i.e., the position of the change, and how to make the
change. The component adaptor will follow the guide to make the change. For each
adaptation type, component adaptor not only makes the changes but also propagates the
change effects to other parts of the component being affected through the rules built-in. The
final product from the component adaptor is a CDIS of the invoice_manager component,
with all changes done.

5.2.2 Scenario Editor

<Scenario Demo1>
 <adapt_action name="Association_modify" type="serialization_relationship_one2many ">
 <requirement>one_to_one relationship change to one_to_many </requirement>
 <position>CS.serialiseclass</position>
 <relationship type="triger">Demo1.adapt_action(new operation)<relationship>
 <class_one> serialiseclass.Invoice</class_one>
 <class_many> serialiseclass.Item</class_many>
 </adapt_action>
 ………..
 </adapt_action>
 ……….
 <adapt_action name="new operation" type="interface_operation_new ">
 <requirement>a new operation is added </requirement>
 <position>CS.signature.operations</position>
 <new>
 <operation name="add_Items">add new items into database
 <paramin name=“method" type="Vector“ by_valuse="" />
 <paramout type="void" />
 <add object=“method" />
 </operation>
 </new>
 <adapt>
 ……….
 </Scenario>

Fig. 7. An example of scenario definition

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

12

 As shown in figure 8, a user-friendly scenario editor is developed to manage component
adaptation scenarios. It consists of four areas, namely, 1) adaptation type pane, to list
currently available adaptation types in a tree structure; 2) scenario pane, to list adaptation
actions contained in current scenario; 3) scenario editor pane, to edit propagation
relationships graphically; 4) text pane, to display the full XML formatted scenario definition.

With the scenario editor, users can easily create a scenario in three steps: 1) drag an
adaptation type from adaptation types pane and drop it into scenario pane; 2) an adaptation
action will be automatically created in the scenario, and user can see the change in scenario
pane, scenario editor pane and text pane; 3) graphically modify the propagation relationships

in scenario edit area.

5.3 Component generation

An adapted invoice_manger component is finally generated by the component generator.
Most parts of the code of the original invoice_manager component are copied into the target
code of the adapted invoice_manager component. Only the code of the classes with changes
will be generated and then replaced by the component generator. The change is shown in the
figure 9. The classes on the left are original classes, those on the right are the classes
generated.

Fig. 8 The Scenario Editor

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

13

6. Conclusion
Based on the observation that similar design circumstances recur frequently in the

development of software application systems, we concluded that raising reusability in
applications would improve the efficiency of development greatly. The fact that existing
reuse approaches and tools are weak in providing a mechanism to adapt components with
high flexibility and low overheads to fit into various reuse contexts triggered the research in
this paper.

Components in our approach aim to be highly adaptable in order to fit smoothly into more
flexible reuse context. This is achieved with three key techniques: 1) XML-based
comprehensive and multiple-viewed component specification, 2) scenarios to capture
adaptation requirements in particular applications, and 3) component generation through the
derivative specifications of the adapted component and primitive component code. These
components are the reusable blocks to build a new application system. Existing expertise and
idioms of software design can be recorded in these components. Components are described
in the XML-based Component Definition Language and stored in the component repository.
The CDL is a structural and semantic specification language. The features inherited from
XML make the specification of components easy to understand, to exchange and to
propagate over software tools and communities.

The SAGA technology gives a great potential for coping with component

Fig. 9 The changes in InvoiceManager and Invoice class

X. Liu, B. Wang, J. Kerridge / Science of Computer Programming

14

incompatibilities, It meanwhile reduces the overheads in components. A scenario gives
component-users understandable and interactive component adaptation information, and
components generated based on the scenarios will enjoy high suitability and efficiency in
particular applications. As a project, the work presented in this paper is ongoing. Our case
studies have shown the work is promising.

7. References
[1] Antônio Augusto Fröhlich, "Scenario Adapters: Efficiently Adapting Components", Proceedings

of the 4th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
USA, July 23-26, 2000.

[2] Bosch. J, “Superimposition: A Component Adaptation Technique”, Information and Software
Technology, Volume 41, No. 5, March 1999.

[3] Batory. D., “Composition Validation and Subjectivity in GenVoca Generators”, IEEE
Transactions on Software Engineering (Special Issue on Software Reuse), pp. 67-82,Feb. 1997.

[4] Batory. D., “Intelligent components and software generators”, Technical Report 97-06,
University of Texas at Austin, 1997.

[5] Beihu Wang, Xiaodong Liu and Jon Kerridge, “A Pattern-Based Framework for Database
Reusability”, International Conference on Software Engineering: Research and Practice
(SERP'02), Las Vegas, USA, June 2002.

[6] B.Kucuk, M.N.Alpdemir, “Customizable Adapters for Blackbox Components”, Proceedings of
the 3rd International Workshop on Component Oriented Programming, 1998, pp. 53-59

[7] Biggerstaff. T.J., “A characterization of generator and component reuse technologies”, presented
at the GCSE 2001, Germany, 2001.

[8] C.J.EGYHAZY, “From software reuse to database reuse”, International journal of software
engineering and knowledge engineering, 10: pp. 227-249, 1998.

[9] Hans de Bruin, H.v.V., “The future of component-based development is generation”,
Proceedings of ECBS'02 Workshop on CBSE -- Composing Systems from Components, Lund,
Sweden, 2002.

[10] Han, J., “A comprehensive interface definition framework for software components”,
Proceedings of 1998 Asia-Pacific Software Engineering Conference, Taipei, Taiwan, 1998,pp.
110-117.

[11] Han. J., “Characterization of componts”, Proceedings of International Workshop on Component-
Based Software Engineering, Kyoto, Japan, Apr. 1998.

[12] Geoge T. Heineman, H.M.O., “An evaluation of component adaptation techniques”, the 2nd
Annual Workshop on Component-Based Software Engineering, Los Angeles, CA, May 17-18,
1999.

[13] George T. Heineman, “A Model for Designing Adaptable Software Components”, Proceedings of
the 22nd Annual International Computer Science and Application Conference (COMPSAC-98),
Vienna, Austria, 1998.

[14] Motta, E., Fensel, D, “Specifications of Knowledge Components for Reuse”, Proceeding of the
11th International Conference on Software Engineering and Knowledge Engineering, 1999.

[15] Ralph keller, U.H., “Binary Component Adaptation”, Proceedings of ECOOP'98, Belgium, 1998.
[16] Ulrich Breymann, K.C., “Generative components: one step beyond generic programming”,

presented at Generic Programming, SchloB Dagstohl, April 27-30, 1998.
[17] V. Singhal, D. Batory, "P++: A Language for Large-Scale Reusable Software Components",

Proceedings of the Sixth Annual Workshop on Software Reuse, Owego, New York, Nov 1993.
[18] W. Lowe, M. Noga, “Component Communication and Data Adaptation”, Proceeding of the 6th

World Conference on Integrated Design and Process Technology, 2002.

