

Abstract— Dynamic selection of services and by extension of

service providers are vital in today’s liberalized market of

energy. On the other hand it is equally important for Service

Providers to spot the one QoS Module that offers the best QoS

level in a given cost. Type of service, response time, throughput,

availability and cost, consist a basic set of attributes that should

be taken into consideration when building a concrete Grid

network. In the proposed QoS architecture Prosumers request

services based on the aforementioned set of attributes. The

Prosumer requests the service through the QoS Module. It is then

the QoS Module that seeks the Service Provider that best fits the

needs of the client. The aforementioned approach is well

supplemented with a data analytics/machine learning

architecture to further enrich the provisioning aspect this work is

bringing to the Smart Grid market of energy.

Index Terms—Data Mining, Machine Learning, QoS, Service

Oriented Architecture, Smart Grid

I. INTRODUCTION
N a constantly growing and demanding market of energy
environment, there arises the need for a Quality of Service
(QoS) mechanism to properly support the constraints that

are imposed by the consumers of energy, without neglecting
the importance of keeping the balance of energy flow in the
network in an as stable as possible level.

In today’s liberalized market of energy playground, it is
more crucial than ever to seamlessly provide the end users
with the requested services, without putting in jeopardy the
grid’s stability. In order to properly achieve this goal, an in
advance way of placing, scheduling, and assigning the
requests for energy consumption (or even for energy
production) should be considered. A mechanism with respect
to attributes like: type of service to be served, response time,
availability, cost and probably throughput should be developed
and adopted in order to smoothly pass from the classic energy

Manuscript received January 15, 2017; revised May 16, 2017. Date of
publication: June 1, 2017.

C. Chrysoulas is with the University of Essex, School of Computer Science
and Electronic Engineering, and Essex Business School, Wivenhoe Park,
Colchester CO4 3SQ, UK. (e-mail: cchrys@essex.ac.uk

M. Fasli is with the University of Essex, School of Computer Science and
Electronic Engineering, Wivenhoe Park, Colchester CO4 3SQ, UK. (e-mail:
mfasli@essex.ac.uk).

Digital Object Identifier (DOI): 10.24138/jcomss.v13i2.375

grid to this new more intelligently build Smart Grid era.

Throughout our study, we try to enforce the Service
Oriented Architecture (SOA) approach to the Smart Grid field.
That was triggered by noticing that in the Smart Grid field the
whole action is initiated by two main actors, namely the
Consumer (in our case the Prosumer/User) and the Provider
(in our case the Aggregator) of energy (the service). See Fig. 1
for an abstract representation. This is the angle from which the
SOA is superintending a system. Based on the
aforementioned, we tried to make use of what the SOA field
has to offer in order for different Providers to be able to
independently create their services and seamlessly “feed” the
Consumers. This approach is worth adapting to the Smart Grid
environment.

To efficiently deliver energy resources in the smart grid, an
energy resource management strategy needs to be developed
to balance the energy demand and supply. Developing
effective energy resource management schemes is challenging
due to numerous fluctuations the entities on both the demand
and supply sides experiencing. For example, on the supply
side, fluctuations could come from distributed renewable
energy resources due to solar irradiance, wind speed, etc. On
the demand side, numerous effects, including natural disasters,
plug-in vehicles, personal habits of using energy, weather and
temperature, etc., could make it difficult to predict energy
usage. In this paper, we develop techniques to effectively
manage energy resources and usage in order to provide the
needed stability to the grid. Particularly, to balance energy
demand and supply, we develop effective techniques to
accurately model and forecast the amount of energy generation
and demand over time.

The rest of the paper is structured as follows. In Section II,
the motivation for bringing QoS in SOAs is described. Section
III gives a detailed presentation of the proposed QoS
approach. Section IV presents the proposed mining approach
for the Smart Grid and how it can serve the demand –response
of energy. Section V presents how the results can be used for
visualization purposes, while Section VI provides the
conclusions, and outlines future work.

II. QOS IN SERVICE ORIENTED ARCHITECTURES – RELATED
WORK

SOA provides the means for developing software in the form
of interoperable services. Providing a common programming

Towards an adaptive SOA-based QoS &
Demand-Response Provisioning Architecture

for the Smart Grid
Christos Chrysoulas, and Maria Fasli

I

 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 2, JUNE 2017 77

1845-6421/06/8508 © 2017 CCIS

mailto:mfasli@essex.ac.uk
FESB
Typewritten Text

FESB
Typewritten Text

FESB
Typewritten Text

FESB
Typewritten Text
).

FESB
Typewritten Text

interface, through which any application can be accessed [1] is
the added value that the service-oriented development brings
to the IT world. So, any service is defined as a discrete unit of
functionality which is made available through a service
contract [2].

Fig. 1. Service Oriented Architecture Overview

A service contract specifies all interactions amongst the
various actors, and are: i) Service interface; ii) Interface
documents; iii) Service policies; iv) Quality of service (QoS);
and v) Performance.

The fact that a service is explicitly managed is what
differentiates a service from other software constructs like
components and/or objects. A service level agreement (SLA)
is responsible for the management of the QoS and the
performance. Additionally, the entire service life cycle is
managed (from design, to deployment, to enhancements, to
maintenance).

But what is the driving force for adopting SOAs? The need
for code and systems re-usability that SOAs offer is the reason
for shifting to SOAs [3] rather than using highly specialized
building blocks, which most of the times are application
specific. A service must come with the following
characteristics: i) hide its internal logic; and ii) be loosely
coupled, with no predefined connections, but with clearly
defined inputs and outputs. SOAs can easily support QoS
features and behavior by putting their characteristics in the
WSDL description of a requested or provided service. SOAs
message exchange is based on XML, so a flourishing in the
description is needed to make it possible.

QoS in Grid computing was studied in GARA [5]. In
GARA approach, the separation of resource reservation and
actual allocation is proposed for supporting critical requests.
Studies of Ran [6] and Tian [7] concentrated on extending the
first one the UDDI registry and the second one extended the
WSDL files in order to bridge the gap between the Web
Service layer and the network layer. To our knowledge both
approaches lack implementation and validation reports.

Numerous approaches for providing QoS support in
middleware based models, and specifically message oriented
middleware models can be found in the bibliography. The
Quartz [8] approach needs a large dataset (meaning large
number of attributes) in order to provide adequate QoS
support amongst different application areas. In [9] the QoS
negotiation is in advance takes place by communicating a QoS
contract amongst the involved parties. Our approach is in
position to also send alternative offers to the Prosumers.

Cucinota et al. [10] presented a SOA approach that allows
negotiation of the individuals QoS characteristics. In this way
any unwanted interference amongst different services can be
avoided. In [11], a negotiation architecture was developed
where a QoS Manager detects any possible QoS violations,
communicates with the resource manager and starts a new
negotiation among the interested parts. Our model is
proposing the most fitted to the Prosumer’s needs QoS offer
based on mining techniques and by processing the outcome
with the help of machine learning algorithms.

Papazoglou et.al. [15] present an overview of the current
research in service oriented systems and how SOAs are
aiming to the efficient and automated provision of managed
services which particularly during runtime are subject to
dynamic and adaptive change processes. The research is in
depth analyze what service management really is. The service
management not only has to cover the installation, first
configuration and monitoring of services but should also be in
position to serve the needs of re-configuration and life-cycle
management in order to support self-configuration, self-
adaptation, and self-healing. In this way the need for service
versioning and dependence management can also be achieved.

When it comes to the actual implementation, managing
dynamically adaptive service systems implies that the various
elements of the service implementations can suitably and
efficiently be managed at runtime. To serve this need, many
authors propose combinations of service oriented architectures
with software component based implementation approaches.
Chrysoulas et.al. [16] report on the FlexiNET project which
applies a special Grid-oriented component model in order to
master dynamic service deployment by means of component
management. The efficiency and the changeability of software
component based service system implementations can rise
substantially, if the software component structure is a real
refinement of the service structure supporting additional
opportunities for component reuse. As a consequence,
however, more rich dependency relations arise since each
software component may depend on certain versions of other
ones. Kon et.al. [17] propose the utilization of component
configurators which maintain and manage lists of dependency
hooks and client dependency references in order to cope with
the relevant dependence problems and their implications for
the reliability of complex distributed software systems. Chen
[18] proposes procedures for the monitoring, analysis and
reconfiguration of component structures to adequately address
the dynamic reconfiguration of a complex system. Component
replacement is the followed approach to tackle any
reconfiguration issues.

It is worth mentioning that the messages exchanging in
smart grids should be taken into consideration when studying
them. Based on the literature, the dominant standards are the
following three: i) Data Distribution Service framework
(DDS) [19]; ii) Extensible Messaging and Presence Protocol
(XMPP) [20]; and iii) RabbitMQ [21]. By carefully analyzing
the aforementioned frameworks we reached the conclusion
that the QoS capabilities of XMPP are limited which are
mostly supported by protocol extensions. On the other hand,

78 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 2, JUNE 2017

DDS targets distributed real-time systems and therefore it is
capable of addressing very complex distributed applications,
where QoS requirements have to be guaranteed, while,

RabbitMQ is used for high performance distributed system
applications, and is mostly focused on high performance (not
predictability). It is therefore straightforward to conclude that
DDS is the most suitable candidate for smart grid applications
which come with high QoS requirements.

The challenges associated with the forecasting and demand
response associated with energy usage were also discussed in
[23]. Energy usage forecasting can be categorized into short-
term, medium-term, and long-term forecasting. Hong et al.
[24] adopted a multiple linear regression mechanism for
conducting short-term forecasting, which provides an
interpretability of the behavior of the electricity usage in the
service territory. A semi-parametric additive model proposed
by Fan et al. in [25] used a regression mechanism and
investigated the nonlinear relationships between energy usage
data and variables in the short-term time period. In addition, a
human-machine construct intelligence framework was
proposed in [26] to determine the horizon year load for a long
term load forecasting. Machine learning methods such as
SVMs and neural networks have been used in carrying out
forecasting [27, 28, 29, 30, 31, 32, 33, and 34]. For example,
Shi et al. [28] developed a SVM-based model for one-day-
ahead power output forecasting using the characteristics of
weather classification. Research has been conducted in
predicting energy consumption for smart homes. In [35], a
method for predicting energy usage using data collected from
CASAS Smart Environment System is introduced. People’s
activities, overall movement in the home, and frequency of
sensor data events are used to predict energy usage.

III. PROPOSED QOS ARCHITECTURE
The QoS architecture presented in the paper consists of the

following components: the Aggregator [4], the Aggregator
Agent (AA), the Prosumer/User [4], the Flex-Offer Agent
(FOA) [4], the QoS Agent, the Aggregator Registration, and

databases: to store information regarding the Prosumers/Users,
the Contracts (closed, served, etc.), and information regarding
the available Aggregators and their characteristics. See Fig. 2.

The Prosumers/Users send their micro flex-offers to the
Aggregator, through the FOA and QoS Module. A micro flex-
offer states the possibility of a Prosumer/User to consume a
certain amount of energy and the time interval during which it
has the flexibility to schedule that consumption. There is also
the possibility the flex-offer to be generated by the Flex-Offer
Agent or by a Flex-Offer Agent that resides on the
Aggregator’s side, but we will not consider these two options
in the present work.

The Aggregators are capable of joining several micro flex-
offers into larger macro flex-offers, which are then placed on
the electricity market. The energy market will answer with
bids to buy and sell energy at given times. Aggregators receive
and respond to the bids which allocate energy consumption
periods to the macro flex-offers. After, they disaggregate
macro flex-offer responses and send an answer to the
Prosumers/Users which specify the periods of time to consume
the required energy amount from the grid at a lower cost. It is
the QoS Module that has the responsibility to find the best
matching between the Prosumer’s request for a service and the
Aggregator that best covers its needs, in terms of response
time, availability, and cost.

A. Aggregator

The Aggregator is responsible for the handling of flex-
offers from the FOA, joining (aggregating) several micro flex-
offers into a larger macro flex-offer, placing the macro flex-
offer on the Virtual Market of Energy, disaggregating
scheduled macro flex-offers, sending scheduled micro flex-
offers to FOAs, controlling the execution of a micro scheduled
flex-offer, determine if the execution of the flex-offer by the
Device had been done according to the scheduled flex-offer.
Each Aggregator can be specialized on different types of
devices, by running the most adequate algorithms for the
aggregation and disaggregation of flex-offers.

B. Aggregator Agent (AA)

Every Aggregator has an agent that provides information to
the QoS Module. The Aggregator provides information to the
QoS Module that has to do with the number of the users it is
able to serve, possible cost of the provided service, time to
respond to the Prosumer’s request. It can also provide
information regarding the type of services it can provide. It is
common in the energy market to have a range of different type
of Aggregators to cover the needs for home appliances (e.g.,
washing machines, heat pumps, etc.) and different ones to
cover the needs of Electric Vehicles charging. This
information is of great importance to the QoS Module in order
to correctly and fast identifies the most appropriate Aggregator
to deliver the service to the Prosumer. The AA is indirectly
connected to Flex-Offer Agent (FOA) via the QoS Module.

C. Aggregator Registration

The Aggregator Registration allows Aggregators, through

 Fig. 2. Proposed QoS Architecture

C. CHRYSOULAS et al.: TOWARDS AN ADAPTIVE SOA-BASED QoS FOR THE SMART GRID 79

the Aggregator Agent (AA) to submit: their id, service
descriptions, cost functions, availability, and number of
Prosumers/Users they can serve, to the QoS Module.

D. Prosumer/User

A Prosumer (or User) owns devices and has an agreement
with an Aggregator regarding utilizing the devices power
consumption or production flexibility. Devices are the end
equipment that consume or produce the energy belonging to a
flex-offer, e.g., an EV, a heat pump or a washing machine.
Devices can have the capability of being remotely controlled
or might not have any computer interfacing capabilities. The
Prosumer has to set up all relevant constraints/comfort
requirements, which the flex-offer must fulfill. The Prosumer
might be a household, factory, an office building, i.e. a legal
entity that owns devices. A Prosumer uses a Flex-Offer Agent
to generate flex-offers or it can configure these parameters
through a user interface.

E. Flex-Offer Agent (FOA)

Every Prosumer/User has an agent that provides
information to the QoS Module. FOA is a software module,
which acts as an intermediate between Devices and
Aggregators, being able to be executed on a variety of hard-
ware platforms and easily configured to use different
protocols. Based on constraints set up by the Prosumer and on
power consumption measurements taken from devices it uses a
specific algorithm to automatically generate micro flex-offers.

Other inputs like weather forecasts might also be used. The
FOA can send the micro flex-offers to the Aggregator and
receive the micro scheduled flex-offers from it. Another kind
of information the Prosumer/User passes to the QoS is the type
of service it needs (domestic appliances, heat pumps, or EVs).
As in the case of the Aggregator Agent, this information is of
great importance to the QoS Module in order to correctly and
fast identifies the most appropriate Aggregator to deliver the
service to the Prosumer. The Flex-Offer Agent passes the
request for a service to the QoS Module through the QoS
Agent.

F. QoS Agent (QA)

QoS Agent (QA) is responsible for evaluating the Prosumer
request, and identifies an Aggregator that properly meets the
client’s needs. The QoS Agent receives the request from the
Flex-Offer Agent (FOA) and evaluates the Prosumer/User
request against each available Aggregator in order to identify
the one that best fits the Prosumer/User needs. A Prosumer’s
request will probably contain a service type, cost constraint
and the preferred comfort level. Once the time the mapping is
succeeded the micro flex-offer is passed to the Aggregator to
continue with the building of the macro flex-offers and the
placement to the market of energy.

G. User Interface

The User Interface can take care of the interactions among

the Prosumers/Users, the FOA, and QoS Agent through a web-
based interface. It can be used to allow generation of flex-
offers by a Prosumer/User or just to enforce attributes like a
particular comfort level to the QoS Module.

H. Gateway

The Gateway can be seen as a device that converts between
the protocols used internally on a Home Area Network and the
internet. It is possible to have the capability of executing the
Flex-Offer Agent.

I. Contracts and Aggregator Information Databases

The Contracts Information Database is a database to store
SLAs, closed, scheduled, and served contracts. The
Aggregator Information database is a database for keeping
information regarding the Aggregators, Aggregator’s
information like type of services, availability, response time
and cost models. Also the id of the Aggregator is stored on the
Aggregators Information database. The id of the Aggregator is
important in order the Prosumer/User through the FOA, and
the QoS Module to identify the correct one.

J. Prosumer/User Database

The Prosumer/User Database is a database that holds
information regarding the Prosumers/Users. Information like:
power consumption, type of Prosumer/User (flex-offer
enabled or legacy device), if he was served or not.

K. QoS Module Interactions

The available Aggregators register themselves to the QoS
Module and particular to the Aggregators Information Data-
base, providing information like type of provided services,
response time and cost models. The Prosumer asks for a
service, which in our case is a need for energy consumption.
This type of information is named micro flex-offer. It is then
the responsibility of the QoS Module to perform all the needed
steps in order to spot the Aggregator that best serves the needs
of the Prosumer. Figure 3 (see p. 5) presents the interactions
between the Prosumer, the QoS Module and the Aggregator:

1. Aggregators register themselves (with their id), and their
services (type of services, response time, cost models, and
number of Prosumers/Users each can serve) with the QoS
Module.

2. A Prosumer/User initiates the sequence of steps, by
sending to the QoS Module a QoS request (pointing out the
requested service type, amount of needed energy, cost
constraints, time flexibility).

3. The QoS Module identifies the Aggregator that best fits
the needs of the Prosumer/User. The QoS Module creates a
token that includes information like the id of the Aggregator, a
session id, the service id, expiration date and time for the
offer.

80 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 2, JUNE 2017

4. If the Prosumer accepts the offer, the QoS Module saves
it in the Contract database. The Prosumer only needs the
created token to request the service in the given time.

5. The Prosumer makes a service request to the Aggregator
using the created token.

6. The Aggregator creates the macro flex-offer and places a
bid to the Virtual Market of Energy. The market answers back
with a schedule.

7. The Aggregator sends the Schedule to the
Prosumer/User, through the Flex-Offer Agent.

8. The Prosumer consumes the service and reports back to
the Aggregator the power consumption.

IV. APPLYING MINING & MACHINE LEARNING TO SMART
GRID

In classical machine learning, the complexity and diversity
of the field is controlled by the “Black-box” principle, where
each machine learning method is expected to fit a simple
mold. We will try to provide some insight to the “Black-box”
in order to present its architecture and functionality. The
Query Results Management (QRM) component/module will
be responsible for managing the data that are extracted from
the queries to the QoS system and for assembling the dataset
that will be fed to the machine learning algorithm. In Figure 4,
an illustration of where the QRM manager component is
situated in relation to QoS’s system and to the Machine
Learning module is presented. The QRM module, a
fundamental component of a more complete system, will be
responsible for supporting the following functionalities:

1. Establishing a safe connection to the QoS databases;
2. Querying the databases, receiving the data; and
3. Saving the data in a file and in the proper format for

the Machine Learning Management (MLM) module.
Even though many of the algorithms are different there are
some common steps that should be followed while developing

and applying a machine learning algorithm. These
needed/common steps are the following:

1. Data Collection: Meaning the method for collecting
the data. It varies from obtaining the data through an
API, RSS feed, or even a device that collects data and
sends them to you, etc.

2. Data Preparation: Making sure that the data are in a
usable format. Some algorithms need features in a
special format. Some can deal with features and
variables as strings, and some others need them to be
transformed into integers.

3. Training the algorithm: In this step, you feed the
algorithm with “clean” data from the previous steps
and obtain knowledge and insight from the data. In
the case of unsupervised learning, there is no training
step, since there is no target value.

4. Testing the algorithm: In this step, the evaluation of
the algorithm takes place. In the case of supervised
learning, you have known values for evaluating the
algorithm (i.e. you have examples of data known as
the ground truth that you can check against the
performance of the algorithm). In unsupervised
learning, there is a need to use other metrics like

Fig. 3. Proposed QoS Architecture

 Fig. 4. QRM Component’s Interactions

C. CHRYSOULAS et al.: TOWARDS AN ADAPTIVE SOA-BASED QoS FOR THE SMART GRID 81

support and confidence to evaluate its success.
5. Usage: The actual implementation of the algorithm in

practice that includes all the previous steps. There is
also a need to continuously check if all the previous
steps are working as expected. The QRM component
will be responsible for the two first steps of the
aforementioned procedure.

A. Query Results Management (QRM) Module

The QRM module will be responsible for the two first
steps of the aforementioned procedure. Figure 5 presents
the interactions of the QRM module with the Databases and
the Machine Learning Module.

QRM will communicate with the RDF Database to query it
and get the results. The results could be in XML, JSON, CSV
or TSV format. The QRM Manager Component will be
responsible to Securely Accessing the QoS’s Databases by

setting up a two way Secure Sockets Layer (SSL) connection
to the Apache Jena Fuseki server [22] in order to securely
query the RDF databases.

TABLE I
Setup two way SSL

System.setProperty("javax.net.ssl.keyStore",
"./keystores/fuseki.jks");
 System.setProperty("javax.net.ssl.tr
ustStore", "./keystores/truststore.jks");
 System.setProperty("javax.net.ssl.ke
yStorePassword", "********");
 System.setProperty("javax.net.ssl.tr
ustStorePassword", "password");

TABLE II
Execute a SPARQL query against the endpoint

final String serviceUri =
"https://test.uoe.com:9000/servicePaths/quer
y";
 final String query = "SELECT
?userUri ?typeOfService ?serviceAvaliability
?serviceCost ?aggregatorUri\n" +
"\n" +
"WHERE {\n" +
"\n" +
"?userUri
<http://www.uoe.com/ontology#completedBy>
?userUri .\n" +
"\n" +
"?typeOfService
<http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> ?typeOfService .\n" +
"\n" +
"?serviceAvaliability
<http://www.w3.org/2000/01/rdf-
schema#subClassOf>+
<http://www.uoe.com/ontology#serviceAvaliabi
lity> .\n" +
"\n" +

"?serviceCost
<http://www.uoe.com/ontology#associatedWith>
?typeOfService .\n" +
"\n" +
"?aggregatorUri
<http://www.uoe.com/ontology#basedOn>
?aggregatorUri .\n" +
"\n"
"}";

B. Machine Learning Management (MLM) Module

The MLM module will be responsible for the three last
steps of the aforementioned procedure (steps 3 to 5). It will
provide the needed functionality for the system to be in
position to get the clean data, pass them to the machine
learning algorithm and return useful conclusions. The MLM
module should be in position to find interesting relationships
in a large dataset. Quantifying interesting relationships is
twofold. The first way is a frequent itemset, and the second is
the one measuring interesting relationships in association
rules.

One such approach is the Apriori [12] algorithm. Apriori
uses the so-called Apriori principle to reduce the number of
sets that are checked against the dataset. The Apriori principle
denotes that if an item is infrequent, then supersets containing
that specific item will be infrequent too. Apriori starts from
single itemsets and creates larger sets by combining sets that
meet the minimum support measure. Support is used to
measure how often a set appears in the original dataset. Once
frequent itemsets are found, someone may use them to
generate association rules. The importance of an association
rule is measured by the confidence. Confidence denotes the
number that this rule applies to the frequent itemsets. The
pseudocode of the Apriori algorithm is presented in Algorithm
1.

Algorithm1. The Apriori algorithm.

Ck: Candidate itemset of size k
Lk : frequent itemset of size k

(1) L1 = {frequent items};
(2) for (k = 1; Lk != ∅; k++) do begin
(3) Ck+1 = candidates generated from Lk;
(4) for each transaction t in database do
(5) increment the count of all candidates in
(6) Ck+1 that are contained in t
(7) Lk+1 = candidates in Ck+1 with min_support
(8) end
(9) return ∪kLk;

Another approach is the FP-growth [14] algorithm. The FP-
growth algorithm is another efficient way of finding frequent
patterns in a dataset. Even though it follows the Apriori
principle, it is much faster than the Apriori one, since it goes
over the dataset only twice. The data is stored in an FP-tree
structure. Afterwards it is straightforward to find frequent

82 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 2, JUNE 2017

itemsets by finding conditional bases for an item, and
eventually building a conditional FP-tree.
The aforementioned process is repeated, by conditioning on
more items, until the conditional FP-tree has only one item.
The pseudocode for the FP-growth algorithm is presented in
Algorithm 2.

Algorithm2. The FP-growth algorithm.

Input: constructed FP-tree

Output: complete set of frequent patterns

Method: Call FP-growth (FP-tree, null).
Procedure FP-growth (Tree, α)
{

(1) if Tree contains a single path P then
(2) for each combination (denoted as β) of the nodes
 in the path P do

(3) generate pattern βυα with support = minimum

 support of nodes β

(4) else for each ai in the header of Tree do {

(5) generate pattern β = aiυα with
 support = ai.support;

(6) construct β’s conditional pattern base and
 then β’s conditional FP-tree Treeβ
(7) if Treeβ != ∅
(8) then call FP-growth (Treeβ, β)
}

C. Finding Frequent Itemsets

The support of an itemset is defined as the percentage of the
dataset that contains this frequent itemset. Frequent itemsets
are a collection of items that frequently occur together. For
instance in our dataset, a series of interactions (users served,
services asked, aggregators involved, etc.). In our specific case
an itemset is having the following format:

{userId, serviceType, serviceAvaliability, aggregator
Id, serviceProvider, serviceCost, responseTime}

Support applies to an itemset, so we can define a minimum

support and get only the itemsets that meet that minimum
support. Support can range from 0 to 1. The confidence is
defined for an association rule like {User 1} ➞ {Service 1}.
The confidence for this rule is defined as support ({User 1,
Service 1})/support ({User 1}). The support and confidence
are ways someone can quantify the success of our association
analysis. Let us assume we want to find all sets of items with a
support greater than 0.6. We could generate a list of every
combination of items and then count how frequently these
occur.

D. Mining Association Rules from the Extracted Itemsets

To find association rules, we first start with a frequent
itemset. Association rules suggest that a strong relationship
exists between two items. We know this set of items is unique,
but we want to see if there is anything else we can get out of
these items. One item or one set of items can imply another
item. From the dataset we have, if we have a frequent itemset,
{User 1, Service 1, Cost 1}; one example of an association

rule is Service 1 ➞ Cost 1. This means if someone chooses
Service 1 Cost 1, then there’s a statistically significant chance
that the User will choose Service 1. The converse does not
always hold.

In Section IV.C, an itemset is quantified as frequent if it
met our minimum support level. There is a similar
measurement for association rules. This measurement is called
the confidence. The confidence for a rule P ➞ H is defined as
support (P | H)/ support (P).

Similarly to the frequent itemsets generation in Section
4.3, we can generate many association rules for each frequent
itemset. It would be desirable if we could reduce the number
of rules to keep the problem tractable. We can observe that if a
rule does not meet the minimum confidence requirement, then
subsets of that rule also will not meet the minimum. We can
use this property of association rules to reduce the number of
rules we need to test.

V. RESULTS
A series of tests performed in order to check the validity of

the proposed approach that was first presented in [36]. Python
used for the implementation of the machine learning proposed
approach/architecture. The outcome of the association and
data analysis that took place has shown that the proposed
framework is in position to provide an insight on the behavior
of the users - Prosumers, meaning how they interacted with
the system and spot common patterns that lead or not to a
successful completion of an asked service.

The results in this section contain the full information of the
users that served by the available providers. The format is:
{userId, serviceType, serviceAvaliability, aggregatorId,
serviceProvider, serviceCost, responseTime}. From the above
returned dataset and by applying data analysis someone can
easily extract useful groups of characteristics per User, per
Service, per Aggregator, etc., and combinations of them.

An example on how a visualization of the aforementioned
results may be used can be found in Figure 6. The bar chart
gives an insight on how well each requested service (blue part
– providing the percentage) was served and by how many
providers (orange part – providing the absolute number). For
example the first from below requested service was served in a
100% and it was only provided by one service provider. This
can be used by the Market of Energy for an in advance
prediction of the customers’ behavior to better arrange its
production, thus avoiding any possible energy shortage and/or
fluctuation.

Fig. 5. Proposed QoS and Machine Learning Abstract Architecture

C. CHRYSOULAS et al.: TOWARDS AN ADAPTIVE SOA-BASED QoS FOR THE SMART GRID 83

VI. CONCLUSION
In this paper we presented a complete Quality of Service

architecture targeting the Smart Grid world. All the involving
parts were in detail described and documented. QoS attributes
like: type of service to be served, response time, availability,
and cost where taken into consideration while sketching the
proposed architecture. Future work will include definition of
algorithms to be used for the QoS provisioning and
implementation of the proposed architecture. Another equally
important step is handling the different ways that a flex-offer
can be generated and come up with an as common as possible
approach. In this paper we considered the flex-offer to be
created by the Flex-Offer Agent that is actually connected to
the Prosumer/User. Other identified formal cases are the
generation of the flex-offer on the Aggregator, by using power
measurement data available on the cloud, and the flex-offer to
be initiated by the Prosumer/User, through a User Interface
provided by the Flex-Offer Agent.

We also presented an initial supplementary architecture to
mine the information stored in the databases and further
process the data with the use of machine learning algorithms
to extract useful information, like identifying common patterns
amongst multiple users/prosumers. Some initial results from
the proposed approach were also presented. An unsupervised
approach based on the Apriori algorithm was used to serve our
needs. Common patterns for instance in electricity usage in
terms of time and amount. In this way the market of energy
will be in position to better regulate its production thus leading
to a more stable and economically sustainable power grid.
Possible supervised approaches based on neural networks,

random forests or Support Vector Machines (SVMs) should
also consider in order building a multilevel and an
autonomous as possible predictive model.

ACKNOWLEDGMENT
The authors wish to thank the former WP5 partners from the

Arrowhead project [13], for sharing their views and thoughts
on defining a QoS architecture for the Smart Grid. Part of the
work was also supported by the HEFCE UK Catalyst project.

REFERENCES
[1] E. Newcomer, G. Lomow, “Understanding SOA with Web

Services,” ISBN-10: 0321180860, ISBN-13: 9780321180865,
Publisher: Addison-Wesley Professional, Copyright: 2005.

[2] M. Rosen, B. Lublinsky, T.K. Smith, J.M. Balcer, Applied SOA:
Service-Oriented Artchitecture and Design Strategies. John
Wiley & Sons; Pub. Date: June 16, 2008 , Print ISBN: 978-0-
470-22365-9; Web ISBN: 0-470223-65-0, 2008.

[3] E. Thomas, SOA Design Patterns. Prentice Hall PTR, ISBN:
0136135161, 2009.

[4] L.L. Ferreira, L. Siksnys, P. Pedersen, P. Stluka, C. Chrysoulas,
T. Guilly, M. Albano, A. Skou, C. Teixeira, T. Pedersen,
“Arrowhead compliant virtual market of energy,” in Emerging
Technology and Factory Automation (ETFA), 2014 IEEE, Sept
2014, pp. 1–8, 2014.

[5] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A.
Roy, “A distributed resource management architecture that
supports advance reservations and coallocation,” in: Proc. Intl.
Workshop Quality of Service 1999, UCL, 1–4 June, London,
1999, pp. 27–36, 1999.

[6] S. Ran, “A model for web services discovery with QoS,” ACM
SIGEcom Exchanges 4 (1) 1–10, 2003.

Fig. 6. Visualization of Served Service percentage Per Service Provider

84 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 2, JUNE 2017

[7] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller, “A
concept for QoS integration in web services,” in: Fourth Intl.
Conf.Web Information Systems Engineering Workshops,
WISEW’03, Roma, Italy, December 2003, pp. 149–155, 2003.

[8] F. Siqueira, V. Cahill, “Quartz: A QoS architecture for open
systems,” in: The 20th Intl. Conf. Distributed Computing
Systems, ICDCS 2000, 10–13 April, Taipei, Taiwan, 2000, pp.
197–204, 2000.

[9] D.L. Tien, O. Villin, C. Bac, “Resource managers for QoS in
CORBA,” in: Second IEEE International Symp. Object-Oriented
Real-Time Distributed Computing, 2–5 May, Saint-Malo,
France, 1999, pp. 213–222, 1999.

[10] T. Cucinotta, A. Mancina, G. Anastasi, G. Lipari, L. Mangeruca,
R. Checcozzo, F. Rusinà, “A real-time service-oriented
architecture for industrial automation,” IEEE Trans. Ind.
Informat., vol. 5, no. 3, pp. 267-277, 2009.

[11] C. Cavanaugh, L.R. Welch, B. Shirazi, E. Huh, S. Anwar,
“Quality of service negotiation for distributed, dynamic real-
time systems,” in: IPDPS Workshop on Bio-Inspired Solutions
to Parallel Processing Problems, BioSP3, 15 April, Fort
Lauderdale, FL, 2002, pp. 757–765, 2002.

[12] R. Agrawal, R. Srikant, “Fast algorithms for mining association
rules,” in: Proc. 20th Int. Conf. Very Large Data Bases, VLDB,
1994, pp. 487–499, 1994.

[13] The Arrowhead project: http://www.arrowhead.eu/ [accessed
December 2016]

[14] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Chang, “PFP:
Parallel FP-Growth for Query Recommendation,” RecSys 2008,
Proceedings of the 2008 ACM Conference on Recommender
Systems, pp. 107-114, 2008.

[15] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann,
“Service oriented computing: State of the art and research
challenges”, Computer, no. 11, pp. 38–45, 2007.

[16] C. Chrysoulas, G. Kostopoulos, E. Haleplidis, R. Haas, S.
Denazis, O. Koyfopavlou, “A decision making framework for
dynamic service deployment”, in Proc. 15th IST Mobile &
Wireless Communications Summit, Mykonos, Greece, volume
3, 2006.

[17] F. Kon, R. H. Campbell, “Dependence management in
component-based distributed systems”, IEEE concurrency, no.
1, pp. 26–36, 2000.

[18] X. Chen, “Dependence management for dynamic
reconfiguration of component-based distributed systems”, in
17th IEEE International Conference on Automated Software
Engineering. Proceedings. ASE 2002, pp. 279–284, 2002.

[19] Object Management Group, Inc. (OMG): Data Distribution
Service for Real-Time Systems Specification, Version 1.1,
formal/05-12-04, December 2005.

[20] P. Saint-Andre, K. Smith, R. Tronc, “XMPP: The Definitive
Guide”, O’Reilly, 2009.

[21] J. Videla, J.W. Williams, “RabbitMQ in Action: Distributed
Messaging for Everyone”, MEAP Edition, Manning Early
Access Program, 2011.

[22] Fuseki: serving RDF data over HTTP. https://jena.apache.org/
documentation/serving_data/, 2016.

[23] P. Luh, L. Michel, P. Frieland, C. Guan, and Y. Wang. Load
forecasting and demand response. In Proceedings of IEEE
Power and Energy Society General Meeting, pages 1–3, 2010.

[24] T. Hong, M. Gui, M. Baran, and H. Willis. Modeling and
forecasting hourly electric load by multiple linear regression
with interactions. In Proceedings of IEEE Power and Energy
Society General Meeting, pages 1–8, 2010.

[25] S. Fan and R. J. Hyndman. Short-term load forecasting based on
a semi-parametric additive model. IEEE Transactions on Power
Systems, 27(1):134–141, 2012.

[26] T. Hong, S. Hisiang, and L. Xu. Human-machine co-construct
intelligence on horizon year load in long term spatial load

forecasting. In Proceedings of IEEE Power and Energy Society
General Meeting, pages 1–6, 2009.

[27] Z. A. Bashir and M. E. El-Hawary. Applying wavelets to short-
term load forecasting using pso-based neural networks. IEEE
Transactions on Power Systems, 24(1):20–27, 2009.

[28] J. Shi, W.-J. Lee, Y. Liu, and Y. Yang. Forecasting power
output of photovoltaic systems based on weather classification
and support vector machines. IEEE Transactions on Industry
Applications, 48(3):1064–1069, 2012.

[29] Z. Yun, Z. Quan, and S. Caixin. Rbf neural network and anfis-
based short-term load forecasting approach in real-time price
environment. IEEE Transactions on Power Systems, 23(3):853–
858, 2008.

[30] Y. Wang, Q. Xia, and C. Kang. Secondary forecasting based on
deviation analysis for short-term load forecasting. IEEE
Transcation On Power Systems, 26(2):500–507, 2011.

[31] M. Afshin, A. Sadeghian, and K. Raahemifar. On efficient
tuning of ls-svm hyper-parameters in short-term load
forecasting: A comparative study. In Proceedings of IEEE
Power Engineering Society General Meeting, pages 1–6, 2007.

[32] W. Li and P. Choudhury. Probabilistic planning of transmission
systems: Why, how and an actual example. In Proceedings of
IEEE Power and Energy Society General Meeting Conversion
and Delivery of Electrical Energy in the 21st Century, pages 1–
8, 2008.

[33] T. Hong, P. Wang, A. Pahwa, M. Gui, and S. M. Hsiang. Cost of
temperature history data uncertainties in short term electric load
forecasting. In Proceedings of International Conference on
Probabilistic Methods Applied to Power Systems, pages 212–
217, 2010.

[34] P. Pinson, C. Chevallier, and G. N. Kariniotakis. Trading wind
generation from short-term probabilistic forecasts of wind
power. IEEE Transactions on Power Systems, 22(3):1148–1156,
2007.

[35] C. Chen, B. Das, and D. J. Cook, “Energy prediction based on
resident’s activity,” in Proceedings of the International
workshop on Knowledge Discovery from Sensor Data, 2010.

[36] C. Chrysoulas, and M. Fasli, “A service oriented QoS
architecture targeting the smart grid & machine learning
aspects”, in SpliTech 2016, IEEE Co-Sponsored International
Multidisciplinary Conference on Computer and Energy Science,
13-15 July, Split, Croatia, 2016.

Christos Chrysoulas received his
Diploma and his Phd in Electrical and
Computer Engineering from the
University of Patras in 2003 and 2009
respectively. During his Phd (2004-2009)
and PostDoc studies (2010-2015) his
research was focused on Machine
Learning, Big Data, E-Learning systems,
Computer Networks, High Performance

Communication Subsystems Architecture and Implementation,
Wireless Networks, New Generation Networks Architectures, Service
Oriented Architectures (SOA), Resource Management and Dynamic
Service Deployment in New Generation Networks and
Communication Networks, Grid Architectures, Semantics, Semantic
Grid, Smart Grids, and IoT. He joined CISTER Research Center as
an Invited Researched in 2013. He joined University of Porto as Post-
Doc Research fellow in 2014 and from July 2015 he is with the
University of Essex, holding a Senior Officer Researcher position.
The outcome of this effort was properly announced in more than 25
technical papers (1 Book Chapter, 6 Journal Papers, and 19
Conference papers) in these areas.

C. CHRYSOULAS et al.: TOWARDS AN ADAPTIVE SOA-BASED QoS FOR THE SMART GRID 85

https://jena.apache.org/%20documentation/serving_data/
https://jena.apache.org/%20documentation/serving_data/

Dr. Chrysoulas participated as Senior Research/Engineer in both
European and National Research Projects, and also participated in the
OPC Standardization Foundation.

Maria Fasli received her BSc in Informatics
from the Technological Education
Institution, Department of Informatics,
Thessaloniki, Greece in 1995 and her PhD in
Computer Science from the University of
Essex in 2000. She joined the Department of
Computer Science at the University of Essex
as a Senior Research Officer in August 1999
and took on the position of Lecturer in 2000.

She became Senior Lecturer in 2007 and Professor in 2012. She
served as Head of School of Computer Science and Electronic
Engineering between 2009-2014. Since 2014 she has been the
Director of the Institute for Analytics and Data Science at the
University of Essex. Her research interests lie in artificial
intelligence, agents and multi-agent, machine learning, data
exploration, analysing and modelling complex data (structured and
unstructured), Big Data, as well as semantics-based techniques for
user profiling and adaptation including modelling context. She has
published over 110 papers in the field of artificial intelligence and
multi-agent systems and has been involved in organising/chairing
international events.

Prof. Fasli was awarded a National Teaching Fellowship (NTF)
by the Higher Education Academy (HEA) UK for her innovations
and contributions to education and supporting the student experience
in 2005, and in 2016, she was awarded the first UNESCO Chair in
Analytics and Data Science.

86 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 2, JUNE 2017

