
Exploiting Voting Strategies in Partially Replicated
IEC 61499 Applications

Mário de Sousa, Christos Chrysoulas, and Aydin E. Homay
INESC TEC - INESC Technology and Science, and

Electrical and Computer Engineering Dept, Faculty of Engineering, University of Porto
{msousa, chech, homay}@fe.up.pt

Abstract — In a modern industrial environment control
programs are distributed among several devices. This raises new
issues and challenges especially in failure modes. Building fault
tolerant applications can be the solution in order a failure of one
sub-component not to jeopardize the execution of the whole
application. The authors have proposed a framework to support
replicated IEC 61499 applications. In this paper we augment this
framework with the support for different voting strategies,
propose an extension of the replication communication protocol,
and analyse the resulting fault-tolerance semantics. A limited
implementation of the framework is also described.

Keywords—IEC 61499; fault tolerance; replication

I. INTRODUCTION

The IEC 61499 [1] standard introduces a new paradigm
where a single distributed control application may be built to
automate the entire process, but its execution is distributed
amongst the several execution devices. The main novelty
brought by this standard is an event driven execution
approach, which provides the synchronisation primitives
between the sub-applications that compose the distributed
control application. However, in a distributed environment
partial failures during the execution of the program may occur,
and the developer must take into consideration how the
application will react when these partial failures happen. A
typical approach to overcome these failures is based on
building fault tolerant applications that exploit redundancy,
where the failure of one sub-component will be masked by the
continued execution of its redundant partner.

The authors have defined a framework that supports
tolerating partial failures of a distributed IEC 61499
application. This framework takes special care in guaranteeing
that all replicas are kept with the same synchronized internal
state, so that changing from one replica to another does not
impact the remainder of the distributed application [2].

The IEC 61499 standard is summarized in section II of this
paper, where an updated version of the previously proposed
replication framework is also presented. Section III explains
the communication protocol used to support the replication
framework, and section IV discusses the resulting fault-
tolerance semantics that can be obtained. In Section V a
slightly modified version of the protocol is presented and its
advantages are discussed. An example application and an
initial implementation of the proposed framework based on
the FORTE [3] IEC 61499 execution environment is given in
section VI. Section VII gives a brief reference to related work,
and conclusions are presented in Section VIII.

II. IEC 61499 AND REPLICATION FRAMEWORK

IEC 61499 defines the syntax of a graphical programming
language, as well as the semantics of the platforms required to
execute programs written in this language. Applications (the
name given to programs in IEC 61499) are composed by a
network of Function Blocks (FBs) which exchange data and
events through separate data and event connections. A FB is
only activated when it receives an input event, upon which it
will sample its data inputs, executes its internal algorithms,
update its data outputs, and eventually emit one or more output
events. The semantics of IEC 61499 applications may therefore
be described as event based.

Each FB may itself be constituted by another internal FB
network, whose evaluation follows the same rules as the
evaluation of an applications' FB network – these are known as
composite FBs. The hierarchical levels of FBs based on other
FBs is not limited by the standard, however there comes a time
when the desired algorithm can no longer be expressed using a
FB network. In this case a basic FB is used, where the internal
algorithms are expressed using any other programming
language (e.g.: Java, C, IEC 61131-3 languages, etc.). Basic
FBs also contain an internal state machine (known as the ECC
– Execution Control Chart) whose state transitions may depend
on the receipt of input events, or the state of an input, output or
internal variable. The activation of a state can be configured to
trigger a single execution of one of more of the internal
algorithms, as well as the triggering of an output event. The
data outputs are changed by the execution of the algorithms.

An application (a graphical network of FBs) may be
executed within a single execution device (basically any
computer that implements the IEC 61499 execution semantics).
In spite of this, the main advantage of IEC 61499 is to allow
applications to be distributed amongst several devices, as long
as each basic or composite FB is allocated inside a single
device. Execution devices must be connected to a common
data communication network which is used to transfer the
events and data between the FBs residing on distinct devices.
This exchange of data and events is not automatic – the
programmer or application installer is required to manually
insert special communication FBs (known as communication
Service Interface FBs – SIFBs) at both ends of every data or
event connection that has to traverse a data communication.
The IEC 61499 standard defines a standard interface for these
SIFBs, covering both the publish/subscribe and the
client/server interaction models. Different implementations of
each interface are allowed, therefore supporting distinct
communication protocols as well as physical networks.

978-1-4799-8244-8/15/$31.00 ©2015 IEEE

We exploit this last facet of the IEC 61499 design to create
a framework to support the replication of IEC 61499
applications. This framework is based on providing specific
implementations of these communication SIFBs that take into
account the existence of FB replicas. Note that our architecture
for replicated IEC 61499 applications allows that these only be
partially replicated. We expect that the application designers
will choose to replicate only those FBs whose execution have a
higher impact on the safety of the overall system, or those FBs
executing on devices with a higher failure probability.

Several versions of the replica supporting communication
SIFBs are required, depending on whether the sender, the
receiver, or both are from/to replicated FBs. Fig. 1 provides a
visual description of the several possibilities, whereas Fig. 2
highlights the distinct versions of the communication SIFBs
that are required to support replication.

For scenario 1 (Fig. 1), standard communication SIFBs
that do not support replication may be used. For scenario 2 we
provide a set of publish/subscribe communication SIFBs
whose implementation implicitly assumes the one-to-many
scenario. For scenario 5 we also provide a set of
publish/subscribe communication SIFBs, where the subscriber
FB expects to receive a message from each replica before
sending out the data from both messages simultaneously.
Several versions of the subscribe FB are needed as the number
of data outputs must match the number of replicas – one
version for a specific number of replicas. This scenario also
requires the use of a voting FB, that will consolidate both
outputs into a single value. Unlike previous versions of our
replication framework, by separating the voter from the
subscriber it now becomes possible to have different voting
strategies implemented in distinct voting FBs, and therefore
allow the application designer the choice of which voter to use
for each specific situation (e.g., majority voting, median
voting, average voting, etc.).

Scenario 4 uses a mixture of FBs already provided for
scenarios 2 and 5. We re-use the publishers from the one-to-

many publish/subscribe pairs, and the subscribers from the
many-to-one pairs. The voter FBs are also the same as those
used for scenario 5.

III. COMMUNICATION PROTOCOL

In the described replication framework the correct
execution of the replicated IEC 61499 application depends on
maintaining synchronised the internal state of all replicas of the
same FB. If this were not the case, in a non-failure situation
each replica would send distinct output data for the same input
event making it impossible to correctly determine what should
be the value of the consolidated output to be generated by the
voting FBs.

Replicas may become de-synchronised when the
communication delays are not identical between all replicas,
or the time to execute a replica differs between execution
devices. The most simple situation occurs when a FB A
receives data/events from two FBs B and C. If FB A is
replicated (two replicas A1 and A2), then it becomes plausible
that two events sent out by FBs B and C may arrive in one
order at replica A1, and in the inverse order at replica A2.
Depending on the internal algorithms in FB A, the processing
of the input data/events in the reverse order may lead to the
replicas A1 and A2 becoming de-synchronised.

To maintain all replicas with the same internal state (i.e.,
replica synchronism) we must therefore guarantee that all
messages are processed in the same order in all replicas, and
that the algorithms executed by all replicated FBs must be
deterministic (for example, may not depend on reading a
random value). To achieve this we have implemented the
timed messages protocol [4] on the communication SIFBs for
all scenarios 2, 4 and 5.

The publish FBs all add an extra time-stamp to every
message that is sent, representing the time at which the
message should be accepted and processed by the subscriber.
This time-stamp is determined by adding a fixed offset to the
time at which the message is being sent. The fixed (per
publisher) offset is determined off-line as a ceiling of the worst
case transmission time of the message to each replica.

When a scenario 2 subscriber FB receives a message it
stores the message until the current time matches the time-
stamp of the message itself, at which time the message is
processed and events/data are sent onwards. Messages arriving
at a time later than their time-stamp are simply discarded.
Assuming that all execution devices maintain synchronised
clocks, we can guarantee that all messages are processed in the
same order. For messages that happen to have the exact sameFig. 1. Data/Event passing scenarios.

Fig. 2. Communication SIFBs and voting FBs used in each Data/Event passing scenario.

time-stamp, a second parameter is used to break the tie (in our
case, the network address of the sender).

Similarly, when a scenario 5 subscriber receives a message,
it will store that message until the clock reaches the value in
the time-stamp. At this time all messages with the same time-
stamp are collected, and their outputs placed on the FBs output
to be voted upon by the subsequent voting FB.

The pairing of received messages based on time-stamps
will only work if both replicas send the message with the exact
same time-stamp. For this reason, publishers of scenario 5
cannot use the local time to generate the time-stamp as there is
no guarantee that both replicas will execute at the exact same
instant. In this case the time-stamp is determined by adding a
fixed offset to the time-stamp of the message that arrived at
the subscriber FB at the beginning of the FB network, and that
started the execution of the event sequence. This source event
may be substantially distant from the publishing FB, and may
have gone through several intermediary FBs (scenario 4 in
Fig. 1). Passing the time-stamp information along with the
internal events therefore requires an extension to IEC 61499.

IV. TOLERATED FAULT MODELS

Assuming that no faults occur on the communication
networks, the fault models and the number of faults that can
be tolerated will depend on the voting algorithms in use.

When using non-majority voters that generate an output
event after receiving a single valid message (i.e., that is
received before the valid time expires), then only fail-stop
faults in the execution devices are tolerated. This is the
situation where a faulty device simply stops executing and
therefore also abstains from sending any new requests. With
this voting algorithm more complex fault models cannot be
masked. Consider for example the failure mode in which an
execution device stops receiving all messages, but is still able
to send out messages. A replica running on this execution
device may become de-synchronised with all other replicas as
soon as the remaining replicas receive an input message. The
de-synchronised replica may however still generate messages if
the replicated algorithm contains a local source of events (e.g.,
periodic timer). In this case the voting algorithm will receive a
single message from this failed replica, which will be
incorrectly passed onwards as if it were correct.

When voting uses a majority based algorithm then failed
execution devices do not need to become silent - any messages
generated by failed devices will be ignored by the voter as
long as they are a minority.

Note that execution devices may also control physical
outputs to which actuators are connected. In order to tolerate
faults in the execution devices each actuator must be
controllable by more than one execution device, in which case
several physical outputs (one from each execution device) will
be connected to the same actuator. These outputs must also be
voted upon, following whatever voting algorithm may be
considered appropriate for the application. Reliable voting
algorithms (e.g., at least one) can easily be built using relays in
series or parallel. Majority voting based on relays requires
circuits that grow exponentially with the number of replicas.

In summary, when using n replicas, the number of faults
that may be tolerated may be n-1 when using the fail-stop
failure model together with 1 out of n voting. When using
more permissive fault models and majority voting, then the
number of faults that can be tolerated reduces to floor((n-1)/2).

V. AUGMENTED COMMUNICATION PROTOCOL

The proposed framework is also sufficient to tolerate faults
in the communication network itself – in fact, many network
faults are equivalent to a fault in the execution device affected
by the network fault. For example, when a node becomes
permanently disconnected from the network it will behave as if
it had a fail-stop fault. An intermittent fault in the network that
results in a replica not receiving a message will make this
replica's internal state become de-synchronised, and therefore
all output messages will be voted out by subsequent voters in
the case that majority voting is being used.

However, in this last case it is possible to augment the
communication protocol so that incorrect internal state is
detected by the replica itself. This is done by adding a unique
identifier to each message based on a counter that is
incremented for each consecutive message sent by each FB.
When a message arrives at a replica, that replica will be able to
independently determine whether any previous messages have
failed to be delivered to itself, and in this case will take itself
out of commission (basically stop sending output messages).

If this mechanism is used, and if the replicated FB only
sends out messages (event or data) as a consequence of
receiving an input message (event or data), then the replica will
behave according to the fail-stop model. Notice that if the
replicated FB contains an internal event source, or if it handles
input events from physically connected inputs, then the
previous conditions are not met. For example, if a FB contains
an internal source of periodic events, then it may generate
output events without having received any input message. In
this case one replica may miss the receipt of a message, and
before it can detect this failure (by the receipt of the subsequent
message skipping an identifier) the internal event source fires
and an erroneous output message is sent. The same argument
applies if the event source comes from a physically connected
input – the physical inputs may be viewed as an out-of-band
communication channel between the replicas.

If the above conditions are met, using this mechanism
together with the use of the simpler 'one out of n' voting, a
higher number of faults may be tolerated using the same
number of replicas. Note however that the higher number of
tolerated faults is in the network itself, and not in the
execution devices – the execution devices must be working
correctly to detect that it has reached an inconsistent internal
state, and therefore stop sending output messages.

VI. IMPLEMENTATION - TEST APPLICATION

We have implemented this framework on FORTE, an open
source IEC 61499 execution environment which runs as a
virtual machine executing IEC 61499 applications. Each
instance of this virtual machine is therefore an execution
device from the point of view of an IEC 61499 application,
and in real-world use are expected to run on distinct

computing hardware. FORTE is developed in conjunction
with 4DIAC, a graphical development environment for IEC
61499 applications.

Our sample replication framework has been developed as
an extension of the communication SIFBs in FORTE. Since
FORTE implements the communication SIFBs using a layered
architecture, what we actually implemented were two new
layers – one for one-to-many replication, and the other for
many-to-one. We have also augmented the code in FORTE
that handles the transmission of events inside the FORTE
virtual machine, so that the time-stamp is implicitly
transferred from the first subscriber in a replica, to the final
publisher of that same replica. As explained previously, this is
required so that all messages arriving at the many-to-one
subscriber can be grouped together.

Some simple tests were run based on the trivial XPlus3
sample application that comes with the 4DIAC development
environment. The objective of these tests is only to make an
an initial validation of the implementation. The original
sample application (read input, add 3, print result)
simultaneously uses the FORTE and FBDK [3] execution
environments. Using the new replication layers a trivial
replicated version of this application has been tested, where
the Add FB is now replicated. This trivial replicated
application was successfully tested with all device instances
running on the same computer. Device failures were tested by
simply stopping and starting each of the devices running one
of the replicas. The results were as expected, where the
application was able to produce an output result as long as at
least one of the replica devices were executing.

Future tests of the replication framework will be run using
conveyors whose I/O is accessible over Modbus/TCP. The
Modbus servers in the conveyors will be used as voters for the
physical outputs.

VII. RELATED WORK

To the authors' knowledge, little work has been done
regarding the use of fault tolerance in the context of IEC
61499 applications. However, somewhat related is the use of
IEC 61499 in safety critical applications - [5] applies
formalisms to model and validate IEC 61499 applications.
Although not in the context of safety-critical application, a lot
of work has been done on formalising the IEC 61499
execution semantics [6-7]. Other somewhat related work
focuses on online reconfiguration of IEC 61499 control
applications, while guaranteeing the control application's real-
time requirements [8-10].

VIII. CONCLUSIONS

As was stated in the introduction, our work focuses on
providing support for tolerating partial failures of the
execution control devices. At first we only considered that the
execution devices would follow the fault-stop fault model. In
this paper we explore the changes required to the framework

to support the fault-silent fault model in the execution devices,
as well as intermittent failures of the communication network
itself. We do not yet consider how faulty execution devices
that have been repaired may be brought back into the running
application without rebooting the application itself, as this
requires that these devices be somehow reloaded with the
current internal state of a working replica. Although we have
not yet focused our attention to this issue, we currently believe
that the result of previous work regarding the on-line
reconfiguration of IEC 61499 applications is likely to be
applicable to this scenario.

In this paper we have also provided an updated version of
the IEC 61499 framework, that supports the existence of
several distinct voting algorithms from which the application
designer may choose from.

ACKNOWLEDGEMENTS

This work is financed by the ERDF-European Regional
Development Fund through the COMPETE Programme and
by National Funds through the FCT-Portuguese Foundation
for Science and Technology within project FCT EXPL/EEI-
AUT/2538/2013.

REFERENCES

[1] International Electrotechnical Commission, “IEC61499-1 ed2.0
Function blocks - Part 1: Architecture”, 2012-11-07.

[2] M. Sousa, “Guaranteeing Replica Determinism on IEC 61499”, in 19th

IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Barcelona, September 2014.

[3] FORTE Homepage: http://www.fordiac.org/8.0.html (accessed April
20, 2015).

[4] S. Zhang, A. Burns, J. Chen, and E.S. Lee, “Hard real-time
communication with the timed token protocol: Current State and
Challenging Problems”, Real-Time Systems, Volume 27, Issue 3,
pp.271-295, 2004.

[5] L. Yoong, “Modelling and Synthesis of Safety-Critical Software with
IEC 61499”, PhD Thesis submitted for Electrical and Electronic
Engineering, University of Auckland, 2010.

[6] G. Cengic, O. Ljungkratz, and K. Akesson, “Formal modeling of
Function Block applications running in IEC 61499 execution runtime”,
in 11th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA '06), Prague, September 2006, pp. 1269-
1276.

[7] V. Dubinin, and V. Vyatkin, “On Definition of a Formal Model for IEC
61499 Function Blocks”, EURASIP Journal of Embedded Systems,
2008.

[8] A.R. Sardesai, O. Mazharullah, and V. Vyatkin, “Reconfiguration of
Mechatronic Systems Enabled by IEC 61499 Function Blocks”, in
Australasian Conference on Robotics and Automation (ACRA '06),
Auckland, 6-8 December 2006.

[9] T. Strasser, I. Müller, C. Sünder, O. Hummer, and H. Uhrmann,
“Modeling of Reconfiguration Control Applications based on the IEC
61499 Reference Model for Industrial Process Measurement and Control
Systems”, in IEEE Workshop on Distributed Intelligent Systems (DIS
'06), Prague, June 2006, pp. 127-132.

[10] A. Zoitl, C. Siinder, and I. Terzic, “Dynamic Reconfiguration of
Distributed Control Applications with Reconfiguration Services based
on IEC 61499”, in in IEEE Workshop on Distributed Intelligent Systems
(DIS '06), Prague, June 2006, pp. 109-114.

