Scenario-based Creation and Digital Investigation of Ethereum ERC20 Tokens

Simon Dyson, William J Buchanan, Liam Bell

Blockpass ID Lab, School of Computing, Edinburgh Napier University

Abstract

This paper examines the Ethereum network in the context of an investigation. The validation of data sources is achieved through
different client software on both the Ropsten network and the live blockchain. New scenarios are also used test common patterns in
order to track for start and end points for Ethereum and ERC20 tokens.

Keywords: Blockchain, Cryptocurrency, Ethereum

1. Introduction

1.1. Introduction

Due to the large sums of money that have become synony-
mous with cryptocurrency a rise in criminal activity has been
recorded. These range from attempts to phish users in chat
rooms to large scale protocol vulnerabilities notable, the “Dao”
hack that netted the attacker millions of pounds worth of bounty
from a code error [1]. Chainanalytics report that $225 million
was made by criminals targeting Ethereum and coin offerings in
August 2017. Reports of a large-scale mixer involved in tum-
bling nearly 68% of total Ethereum transactions also reveals
how little is known about the billion-dollar infrastructure [2].

This paper investigates Ethereum blockchain technology in
order to understand the transactional structures and outputted
data. The data will be reviewed for evidential benefit, associa-
tion, and attribution in order to apply a method for investigative
processes, and investigates the tokens supported on its internal
infrastructure, such as the ERC20 token standard [3]. The pur-
pose is to create a method for investigating transactions across
the network understanding the protocol and identifying tools for
use by investigators. It outlines a methodology for recording
transactions for timing and set in a certain order so that when
data is recovered it can be tested against a known sequence of
events. The testing is conducted on a testnet work that repli-
cates the live network in order to gather data without costing
for transactional testing. Ultilising the method of a known se-
quential order the data retrieval can take place and the quality
of the data analysed for use to the objective set out. The use of
a number of different data sources will ensure reliable source
data that can be validated and replicated.

In addition to the transactional nature of blockchain tech-
nology Ethereum has implemented smart contracts that con-
tain computational steps that operate on the blockchain, so how
do the contracts store and retain data, what can an investiga-
tor see when an entity transacts with a smart contract? Where
is a contract deployed or controlled and what information can
be attributed to linked accounts or the owner? The Ethereum

Preprint submitted to Digital Investigation

Naming Service assigns humanly readable addressing to com-
plex hash addressing, what information linked records or detail
can be obtained by querying the system. Comparing the trans-
actional events using multiple data sources and tools enables
a comparison of core data fields and the ability map the fields
where they differ in a standard naming convention.

The key themes that will be addressed through this paper are:

e Scenario Design, develop a set of scenarios that will repli-
cate real-world transactions and use the protocols and ac-
tivate responses for analysis.

e Scenario Set-up, complete all the stages in order to set-up
the scenario this will include system and software set-up
creation of accounts and obtaining of test ETH. Creating
the transactions and recording the details.

e Data extraction, using identified systems and services ob-
tained from the data on the network. This will replicate
the observer following an event. The data will be obtained
for further analysis.

e Data Analysis, compare the quality of the data for its use
in the set objective and comment on further use cases.
Develop key fields mirrored on the data sets to create a
keymap.

o Feedback, review the above steps and if any key failings
or key findings found and require expanding, validating or
new scenarios devised then detail and implement.

e Present Data, use the obtained data to create a visual or
present data in order to assist a non-technical viewer or
ease the analysis by visualizing the data.

e Create Method review data source analysis the data qual-
ity and the presentation phase. Create a method that will
enable a consistent approach to transaction tracking and
account identification that will serve as a base procedure.

February 13, 2020

1.2. Financial Investigations

In the tracking of assets across a network there needs to be
some understanding around the context of who is involved in
the movement. Let’s outline where tracking occurs following a
third-party theft, where criminals use the network to obfuscate
or transfer funds. Criminal gangs may utilise the international
and non-regulated nature of cryptocurrency to launder money
from any criminal activity. Ransomware utilises the medium of
cryptocurrency as a primary form of payment in order to extort
money from the victim. Large-scale attacks against the NHS,
such as Wannacry, demonstrate the highly disruptive nature of
such attacks. “Organised Cybercrime or Cybercrime that is or-
ganised?” [4], summarises some key concepts about the struc-
ture of organised cyber gangs. They establish that cyber of-
fenders work in connected groups and they educate each other
in order to upskill their criminal networks. The structure of
the groups fall into three distinct groups, although not a strictly
structured organisation. They comprise of “core members” who
are highly skilled and fully engaged in the crime, “enablers”
specialists for hire and “money mules” low paid members to fa-
cilitate the spread and conversion to value. The study involved
the analysis of a number of criminal gangs across the globe. It
also highlighted four types of networks:

1. Completely through off-line social contracts.

2. Off-line social contracts as a base and off-line forums to
recruit specialists.

3. On-line forums as a base and off-line social contacts to
recruit local criminals.

4. Completely through on-line forums.

The study found that criminal groups favoured (1) + (2) and
contained between 5 — 10 members [4]. This can focus the in-
vestigator’s mind that frust is favoured for criminal enterprise
despite the technological ability to work worldwide, criminals
prefer trusted social contacts. This approach will potentially
enable geo-location opportunities if presented and should be
sought to detect the group’s location.

The Internet has enabled criminals to virtually interface with
buyers directly in on-line markets that assist in lowering the risk
of detection. Illicit criminal markets operate on the darkweb a
privacy-centric part of the Internet that requires special soft-
ware to access. The software is free and tutorials are readily
available. The most famous criminal market was the Silk Road,
its prominence and links to cryptocurrency are significant and
merit discussion in a later section. Darkweb markets are similar
to e-Bay for banned items such as drugs, weapons and indecent
images of children.

A study into Internet drug selling activity highlights impor-
tant areas of potential detection using the Hancock and Laycock
script [S]. The conceptual framework identifies areas that crim-
inals can utilise to expand their ability to interact, in this case,
a drug supply operation over the Internet but it applies well to a
number of cyber-based criminal activity [5].

1. Communication — Messaging platforms, social media and
encrypted messaging.

2. Informational activities — Educational material, law.

3. Technical opportunities — Application of utilities to further
objective, logistics, execution.

4. Managerial opportunities — Monitoring, chain manage-
ment.

5. Organisational opportunities — Depending on crime type
adaptive layers new intermediary’s.

6. Relational opportunities — Expand or interact with new bad
actors or customers.

7. Promotional opportunities — Interact with markets.

8. Persuasive opportunities — Customer reassurance on the
safety of interaction and product.

9. Marketing and loyalty building — Customer building and
retention.

10. Countermeasure opportunities — Preconditions to detect

undercover officer activity.

The above categories demonstrate opportunities to connect
and link potential criminal activity to accounts or cryptocur-
rency movement following a theft or utilisation of a criminal
service. Investigators should trawl areas here for public ad-
dressing, for accounts belonging to criminals or utilised third-
party services. The area where a criminal enterprise intersects
with other legal or non-criminal enterprises provides possible
chances to attribute to identifiable accounts [6].

2. Ethereum

2.1. An Ethereum transaction

In order to discuss how the Ethereum protocol executes trans-
actions across the network a comparison against the Bitcoin
protocol will assist in highlighting its differences. Bitcoin is the
most well know and largest blockchain or decentralised ledger
technology currently in operation. Bitcoin operates by utilis-
ing cryptographic public / private key signing of the transac-
tion hash. A transaction is commenced by sending the amount
of Bitcoin required along with the hash value of the previous
block. The transaction is signed with a private key of the sender
and the public key of the receiving party. This creates a chain
that is verified at each stage. Bitcoin needs additional features
to prevent double spend and secure the network. It requires that
a time server hash is built in to ensure the time of transaction is
recorded and becomes part of the signature negating forgeries.
The transactions are then sent to the chain to be mined in the
(POW) proof of work algorithm.

The Bitcoin chain takes the recorded ledger and creates the
hash of the entire system and all the accounts. It then will al-
low user A to reduce their account balance and send to user B
and add the value to user B including any return outputs. The
snapshot of this new updated true state is then captured with
the hash and signed with receivers’ public key and the senders
private key.

Ethereum uses Ether or ETH to power the network, this is
sometimes confused as a cryptocurrency. Ether does have a
store of value but was designed as the fuel for the system.
Ethereum has a different approach to how a transaction takes

place across the network. It is important to separate in the first
instance the two types of accounts that exist on the Ethereum
network. These are externally owned accounts, accounts that
are controlled by a private key and would include a common
human user account. The other type of account is a “con-
tract account”. This is an account that is controlled by the
code it holds within the contract itself on the Ethereum net-
work [7]. This contract account is one of the most unique fea-
tures of Ethereum and as it is a Turin complete language so it
can carry out complex operations. Ethereum has created a dis-
tributed E.V.M Ethereum Virtual Machine that completes the
programmable steps sent to the network.

The contract address holds the smart contract a set of in-
structions that operate when interacted with either via transac-
tions or by an environment variable. The term “smart contract”
will be used to describe this type of transaction throughout this
paper and is considered a small program that can be executed
by the EVM. The Ethereum platform operates as a base layer
to utilise as a transaction of value, a platform or to host a smart
contract or to build a Dapp, a decentralised application, running
on the Ethereum Virtual Machine.

It is important to understand in basic terms what the
Ethereum Virtual Machine (EVM) is in order to detail
Ethereum’s basic functions. The EVM is a virtual machine,
an emulated system across the hardware and software of many
nodes. The computer is a 256-bit machine that is made of nodes
holding all the transactions on the local machine before calcu-
lating the state in sync with the full system. These nodes make
up the Ethereum network and the EVM is the combination of
these nodes communicating as a Global singleton machine [8].

The machine is thought of as one large object containing the
values and having a shared state across the nodes. The “state”
of the system is key to how Ethereum can run more complex
computer operations by calculating the current status of the ac-
counts and receiving object values before calculating the next
state. This new state is captured by the new cryptographic hash.
The hashes of the system state are then added to the blockchain
and these structures build and form Merkle trees from a Gene-
sis block to the root down the branch to the leaf. The use of a
root hash as a Patricia Trie Merkle structure enables a more effi-
cient search and storage mechanism. This is particularly useful
for light-client nodes that do not have to download the entire
blockchain [9].

The Ethereum Virtual Machine (EVM) has functions that
are associated with computing such as read/write functions to
memory and storage. The EVM uses operation codes that in-
struct what function to perform and utilises operands in order
to perform instructions passed to the EVM. As previously dis-
cussed the system is Turin complete and can, therefore, build
complex computational structures that enable advancements in
Bitcoin’s transactional ledger system. The ability to compute
a smart contract provides new use cases for transactional be-
haviour to encompass trust and efficiency. Smart contracts were
proposed in 1997 by Nick Szabo who compared them to vend-
ing machine transactions, entering into a contractual agreement
by placing money into the vending system and then allowing
the programmable conditions to dispense the output such as a

chocolate bar or a canned drink.

Ethereum builds on this idea and gives users the ability to cre-
ate complex conditional outputs. The system can settle financial
derivatives, exchange currency from one cryptocurrency to an-
other, or even to gambling platforms. Ambrosus is a company
that is looking to create trust in the food and pharmaceutical in-
dustries by creating sensor technologies to improve efficiency
in monitoring for company purposes but which also provide
consumer trust. The blockchain has to interact with off chain
assets that feed into the “smart contracts” to execute a result
[10]. The consumer can monitor the food source and if the food
was maintained in the correct ambient temperature throughout
the supply chain.

Smart contracts are executed by code, they are effectively
bots. Smart contracts can perform additional transactions on
the Ethereum network when their internal code triggers addi-
tional instructions. All these actions are executed by the com-
puter, the EVM, and are executed across all nodes on the net-
work and agreed upon as consensus and written permanently to
the Ethereum blockchain. They cannot be changed by human
interaction. An example is to pay A a percentage of ¥ when the
status of block time confirms the current date as Z, when the
code is committed it is not possible to stop if the condition is
then confirmed.

In Ethereum for every transaction and smart contract opera-
tion, the use of “Gas” is required. Although this causes some
confusion for new users, it is a logical important network secu-
rity. The term “GAS” is used when Ethereum performs instruc-
tions on the EVM and is required to be specified when a trans-
action or message is sent for execution. Each transaction that is
sent to the EVM is calculated and is mined by a POW (Proof
of work) algorithm, this is similar to Bitcoin. In basic terms,
miners are rewarded for the work of calculating the transaction
states. This process gives “consensus” across the network and
allows all the nodes to trust the result. The trust of the system
is supported by signed hashes that are used during the calcula-
tion, helping to ensure a bad actor doesn’t replicate the identity
of another signee using a Sybil attack. The Ethereum network is
moving away from the POW system to POS (Proof of Stake) al-
gorithm. This system requires nodes to financially be punished
for malicious activity.

The two types of Ethereum accounts are externally-owned
and contract. They both use key-value mapping to create an
object with specific attributes that are used to set the system
state. Each “account” is represented by a 20-byte long string
and contains four data fields, “nonce”, “current balance”, “con-
tract code” and “storage” [11]:

1. The nonce is a unique counter on the sending account and
is utilised to ensure the account cannot double spend.

2. Current Ether balance the amount of Ether owned by the
account.

3. If present any Contract code Code hash (Used by Contract
accounts)

4. A storage field empty by default, storage trie root. (Used
by Contract accounts)

On the Ethereum network a Transaction is a term used when
sending a signed data package storing a message from an Ex-
ternally owned account. Each message sent by an externally
owned account as a “Transaction” includes the following items
of information:

e The “TO” address the destination of the transaction.

e A signature of the sender in order to identify the sender.
(EDSA signature values)

e A numeric value to designate the amount of “Ether” re-
quired to be sent to the “TO” address.

e An optional data field.

e The “STARTGAS” value, this represents the total number
of allowed steps to be computed by the E.V.M.

e The value “GASPRICE” is the fee that the sender will pay
per computational step sent to the E.V.M.

It is also possible for “contract accounts” to send a “mes-
sage”. The contract will use the opcode (operation code refer-
ence) “CALL” to create and execute a message. This operation
is called entirely from within the contract code and is not op-
erated by a user account. The set of values in the message are
also structured like an “object” [12]. Each message has the fol-
lowing data:

e The “SENDER” of the message.

e The “TO” address the destination of the message.

o Amount of “Ether” to transfer alongside the message.
e An optional data field.

e The “STARTGAS” value, this represents the total number
of allowed steps to be computed by the E.V.M.

The Ethereum transaction is defined in the white paper as the
state transition function and is described as taking the following
steps during execution:

1. Receive transaction ensure that all fields are present and
the signature sent is valid, ensure the accounts nonce num-
ber is correctly in sequence. If any of the above is not met
then return an error.

2. The transaction is required to be paid from the sender’s
address determined by the signature. The STARTGAS
number of steps required to execute is multiplied by the
GASPRICE giving the overall total required, the value is
deducted if the funds are available. If the funds are not
available then the system returns an error.

3. At this stage, the EVM is given the STARTGAS value and
as each step is executed a portion of the GAS is removed
per byte.

si% nslookup gle.com
192.1658.0,
192.168.0.

Figure 1: DNS “nslookup” against Google

4. Deduct the value of Ether as specified from the sender ac-
count to the receiving “TO” account. In the event that the
account doesn’t exist create a new account. If the address
is a “contract account” then run the code until the contract
is complete or the gas runs out.

5. In the event that the transfer has failed as the payment for
the transaction is not met or the gas expired prior to finali-
sation then revert to all state changes to previous. The fee,
however, will be deducted and paid to miners account.

6. If all steps are executed then any leftover gas can be re-
turned to the sender and the fees paid for gas used can be
paid to the miner.

The difference between account types and the ability to inter-
act with smart contracts shows that it will be required not only
to follow the money but also the code. The interaction with
code creates new lines of inquiry. It may be possible to look at
Gas pricing to establish patterns or assumptions of automatic or
human traits.

2.2. Ethereum Name Service (ENS)

The Ethereum Naming Service “ENS” is a system that repli-
cates the basic functionality of the Domain Name System
(DNS) that currently operates on the Internet. The Ethereum
Name Service is still in an early adoption phase, and there is an
auction system in order to secure a domain or subdomain.

The objective is to replace the numeric IP (Internet Protocol)
address in the DNS system or the hash value in the ENS, to a
more human readable formatted address. In Figure 1 a lookup
against the name server is performed against google.com and
the IP address returned is 216.58.201.46. The term google.com
is a much easier address for humans to remember in place of an
IP address [13].

The Ethereum Naming Service (ENS) system provides a sim-
ilar service in order to name wallets, contracts, resources on
swarm and IPFS (Inter Planetary File System) [14].

Figure 2 and Figure 3 show Etherscan’s “EWHOIS”, and
which allows a query for the details behind the “Ethereum.eth”
[15]. Using this data, it is now possible to see the owners
Ethereum account address. The name is shown as ethereum.eth
below are the values for the LabelHash and the NameHash.

At Devcon 3, the Ethereum developers conference that took
place in 2017, and further announcements were presented
around the building of the permanent Ethereum Naming Ser-
vice and future features. The system is currently running a ver-
sion on the ropsten testnet that integrates with DNS. The system

? ethereum.eth

LabelHash [ethereum): 0x541111248

NameHash [ethereum.eth): 0x78c5b%9ci4668cf6c

Figure 2: Ethereum “EWHOIS” against the address “ethereum.eth”

Name Info [ethereum.eth]

> Resolver

> Owner

> TTL :0

Reverse Name Lookup [0xfb6916095¢ca1df60bb79ce92ce3ea74c37c5d359]
> addr.reverse : fb6916095ca1df60bb79ce92ce3ea74c37c5d359.addr.reverse
Resolver Contract Address :

> Reverse Name Lookup

Figure 3: Ethereum “EWHOIS” address information

will utilise the DNSSEC protocol that integrates signed DNS
records that will allow the ownership of other top-level domains
[16]. The ENS currently only allows .eth and .fest TLD top-
level domains to interact with Ethereum. The test DNS TLD
allows .xyz on the system and up to three-quarters of other TLD
will be included when the ENS integrates to the main network.
The DNSSEC needs to allow for RSA encryption and SHA256
hashing [17]. The ENS will use an Oracle to mediate between
the ENS and DNSSEC sources [18]. The integration of ENS
to the new DNSEC services is still in development and it is
expected that further changes will be implemented during and
after the submission of this thesis [19].

Investigating the Ethereum Naming Service is another source
of potential evidential product or intelligence. The combination
of DNSSEC will add a further layer of potential investigative
leads. Taking a view of security DNS or forensic papers could
reveal techniques that may transpose to Ethereum investiga-
tions. Use of commands and sections relating to registrants and
DNS owners enables a systematic approach to locating owners
or controllers [20]. These stages will need to be tested against
an ENS and DNSSEC hosted address to see if it possible to
retrieve similar information.

3. Methodology

This section outlines the setting up of scenarios will be ex-
plained alongside the thematic areas to be investigated.

3.1. Scenario Implementation

The method sets out the main stages of requirements in or-
der to reach the objectives. In the subsequent sections, detailed
descriptions of how this will be achieved will cover the main
areas highlighted previously. The study sits in the positivism
method of truth discovery and the objective is determining a
method and detailing a sequence of events and the identity of
the entities involved.

3.1.1. Scenario design
In order to enable a real-world analysis of transactions, they
must replicate what is likely to be found by an investigator. The

first stage of the transaction is where a person in control of an
account will send a store of value to another account, in this
case, it will be “ETH” Ethereum on the testnet. A number of
accounts will be created in order to facilitate the patterns and
then a series of transactions will be sent in the patterns laid out
to replicate what might be expected. In order to ensure con-
sistency with they will all be sent via the same machine, ser-
vice and in the same way. This will reduce any environmental
contamination from another wallet, service or system specific
residue.
Ethereum “ETH”:

AtoB

AtoBto A

AtoBtoC

AtoBtoC+D
AtoC+DandC+Dto A
AtoBtoCtoDtoE
ItoFtoEtoDtoHtoGtoCtoBto A

AtoB+C+DandBtoE and Cto Fand D to G and E
toHand Fto Hand G to H

® NN R L=

The above scenario will test how a method can interpret the
flow and movement of transactions. ERC20 “Token’:

1. i. Token from A to B

3.1.2. Testing for variation

Using a straight forward transaction pattern A to B a number
of different account providers, wallets and service are used to
create a transaction. This test will look for environmental vari-
ables where an analysis will focus on any difference that can be
detected. This can be conducted during the live scenario as this
uses the live network and will provide a more realistic picture.
As this is about environmental difference Ropsten operates on
different GAS conditions.

3.1.3. Live scenario

A live scenario will be conducted that will incorporate dif-
ferent wallets, ethereum, and ERC20 tokens. The scenario will
replicate real activity involving movement to and from a cryp-
tocurrency exchange and a shapeshift swap from one token to
another. This will all be conducted on the live network using
real cryptocurrency. This is to validate the methods tested on
the Ropsten testnet.

3.1.4. Smart-Contract

As Ethereum has the ability to use smart-contacts to interact
on the network it is important to see how contract interaction
differs to that of a regular transaction. If contract A is inter-
acted with what information is available about the controlling
addressing of the contract. As ERC20 tokens, ENS and DEX
decentralised exchanges are contract-based, these will be dis-
cussed as to what information is available. An ERC20 token
will be deployed as a contract on the Ropsten network.

3.1.5. Ethereum Naming Service

The ENS system assigns a human-readable name to be ap-
plied to the hash addressing that is more often associated with
cryptocurrency/blockchain addressing. In order to test how the
addressing works. A transaction will be performed after an
ENS name has been assigned to the wallets. The process will
be looked at for the assigning and lookup of the registry:

1. ENS address A to ENS address B

3.1.6. Wallet files, Processes

This section is to complement the study as it will assist inves-
tigators and researchers to locate files of interest in Forensic or
security related tasks. The location of key files or mechanisms
used for key back-ups or recovery. A review of password crack-
ing tools for specific Ethereum key files will be visited. This
section will not be a full forensic study as this is out of scope
in order to focus on the key area of transactional recovery. In
addition to files on disk the recording of processes utilised by
the wallets or software / services will be noted.

3.2. Data extraction

The use of extracted data is paramount to the thesis objec-
tives. In order to review the post-event data to interpret a se-
quence of temporal events and the entities involved the source
of data must be accurate. The data source requires gathering
in a way that preserves the integrity of the data. A number of
data streams are to be used in this study in order to make an as-
sessment of data quality the study will also validate the sources.
Following the study, a number of key fields will be highlighted
so key mapping can occur if not already formed into a standard.
Where differences exist in the data standards comment will be
made to review for the objective. Where data contradicts or
variables occur it will be important to draw conclusions on the
cause. The data extraction will occur via a number of meth-
ods interacting with blockchain software libraries, blockchain
wallets/explorer, special websites and designed software.

Data sources:

e MIST — Wallet / Browser the official Ethereum browser
and wallet.

e Parity — An Ethereum network client with a number fea-
tures.

e Geth — A Command Line Interface (CLI) toolset for the
Ethereum blockchain in “Go”.

e Etherscan Web — An Ethereum block explorer, web-based
includes additional tools.

e Etherscan API — Application programming interface for
Etherscan.

e Blockseer — A web-based tool for Bitcoin and beta
Ethereum investigation includes visualisation.

e ENS Domains — Web-based look-up for ENS.

The abstraction of data will be done by querying the services
and requesting the data. The data will be extracted in its native
form or preferred is the JSON format. The conversion will take
place to JSON where possible.

3.2.1. Data analysis

Manual mapping of fields to create a keymap of correspond-
ing data sections will enable comparison and validation of data
extracted. The analysis will be done across a number of sce-
narios to compare the data quality. Following an assessment, a
data source or sources will be chosen in order to perform the
analysis of the scenarios. The use of visual graphing or flow
analysis will be attempted to present the data in the most logi-
cal way. The thesis is not to prototype a new system. Sections
of code may be used in stages produce the end product. The
findings may become the basis for a prototype structure.

3.3. Test Scenarios

The following section describes the testing phase methods,
set-up, and scenario results. These include a detailing the ser-
vices used, hardware testing and protocol descriptions.

3.3.1. Hardware and Software

The testing was conducted on a MacBook Pro (13-inch Mid
2012), 2.9 GHz Intel core 17, 16GB Ram, and a 1'TB SSD drive.
Operating system Mac OS Sierra 10.12.6. Software includes
Atom code editor 1.24.0, Google Chrome 64.0.32.82.167, Fire-
fox Quantum 58.0.2. Virtual box was used to create virtual ma-
chines for testing, Version 5.0.11. Python was used for the pro-
gramming language and is Version 2.7.14, this was chosen due
to a number of useful libraries available.

The virtual machines used for testing and hosting the
Ethereum blockchain nodes had installed Linux Ubuntu 16.04
LTS (Long Term Support), this operating system was selected
due to general support across a number of blockchain and
Ethereum projects.

In order to establish the data quality, the testing scenario
will allow an opportunity to review what is known to compare
against the represented post-event data. As the study is focused
on the Ethereum network it is imperative that the transaction
from a user account transferring Ethereum or ETH is broken
down and fully understood. As covered previously in the Liter-
ature review, a number of values are essential to conducting the
transaction. A transaction in Ethereum scenario i sees Ethereum
moving from Account A to Account B on the Ropsten Testnet
see Table 1. This simple transaction allows a view from the
tools and services.

3.3.2. Ropsten Testnet

The transaction was deployed on the Ropsten testnet. The
Ropsten testnet is one of a number of testnets for Ethereum
Technologies. These can be summarised as Kovan, Rinkeby
and Ropsten. Ropsten was chosen due to the fact that it is the
closest to the production environment. Ropsten has other ad-
vanced implementations for testing network conditions such as
the Swarm protocol compatibility [21]. As Ropsten provides

FROM TO

TXHASH

GMT DATE

0x00C5Df3caC1794a407b36%001£872567B57647093860x0f7edb867487dfbd83e3b4 1{327b5ad@90f
b23198ab883d91e91e0010b6c8802

b129ABF456382c2e8a 9BeadF6C66cF88Cc7

24/02/18

Table 1: Ethereum Transaction

794a407b350b129

Figure 4: QR code, blocky identicon and 20-byte account hash

the closest environment to the production Ethereum network
this was chosen for all the testing unless otherwise specified.

3.3.3. Web interface and Ethereum Client

The client, in addition to the network chosen to operate the
Client, provides another choice for use. There are a number
of choices for implementation, Parity provides an interface for
advanced wallet management, Dapp support, and contract de-
ployment. Parity also has the ability to be used in Geth the
go-ethereum mode allowing the MIST browser and other func-
tions to be tested. This was used in order to reduce the number
of times systems would be required to sync to the respective
blockchain [22]. A number of clients and different services will
be documented in this paper to confirm what system was used
to conduct transactions. The default if not specifically noted
will be Parity Version 1.9.3. The default “GAS” and associated
gas prices are used unless specified as changed in a transaction.

4. Scenario and Investigation

This section outlines the setup of the scenario.

4.1. Ethereum “ETH” Transaction

A transfer between an externally owned account to another
externally owned account is conducted to send an amount of
Ethereum on the Ropsten testnet. The user can use a number
of methods to send Ethereum from a wallet to another wallet
there are web-based applications or software solutions. A wal-
let is represented by a 20-byte address in our example this is
0x00C5Df3caCl794a407b350b129ABF456382c2e8a the wal-
let can also be displayed as a QR code. Accounts can be repre-
sented in a colourful blocky identicon that is built from the hash
of the address in some account services such as Parity, Mist, and
Meta-Mask Figure 4 shows the QR code and a blocky identicon
with an address.

The user selects the account to send funds from and then keys
the address, cut & pastes or scans the QR code for the receiv-
ing account. The amount is required to be entered alongside the
Gas values as previously discussed. The signature process dif-
fers depending on the wallet and enabled security steps, often a
user enters a password to sign or confirm the transaction. Once

D 127.0.01

v Confirm Request.

reject request

©f Edit conditions/gas/gasPrice

I_A_ACCOUNT
[00. .8a]
0.100 ETH

N

Figure 5: Parity web client interface used to perform transaction

««««««
db79b3050¢a8419720a17adcabeBbaal46958 1dbo2 1d57080caB18ed2939c2b16669cT2b1622

Figure 6: Raw transaction as displayed on Etherscan

the transaction is signed and the transaction is processed as de-
scribed in Section 3.1 it is processed by the Ethereum Virtual
Machine and transmitted to the network. Figure 5 shows the
wallet capability and shows the signing process.

At this point, the transaction is sent to the network for trans-
mission to the miners using the proof of work (POW) algorithm
at the time of writing. Proof of stake (POS) is due in the fu-
ture on as the new consensus implementation. The mechanics
of a transaction include the signature and the RLP (recursive
length prefix) raw hash creating the 256-byte transaction hash
TXHASH [23]. The transaction is sent from the wallet and
its hosted connection to the blockchain and propagated to the
other nodes to be transmitted to the miners [24]. The mined
block then creates the new system state and the transaction is
recorded in the blockchain and adds a new block to the Merkle
tree [25].

The RAW transaction hex is formatted using the data for
Nonce, gasprice, startgas, to, value, data, the (v, r and s values
that make the ECDSA signature). The fields are then serialised
into the RLP format (Recursive Length Prefix). It is possible to
reverse the RAW format using a decoder or de-serialising the
transaction [26][27].

The raw transaction hex is displayed in Figure 6, the compo-
nent parts are displayed in the other returns for data, decoding
so was unnecessary for this thesis but could feature as relevant
if changes occur to the API returns.

=1

Transaction Information

TxHash:

TxReceipt Status: Success

Block Height

TimesStamp: 3days 22 hrs ago (Feb-24-2018 12:11:40 PM +UTC)

From:

Value: 0.02 Ether (80.00)

21000

21000

0.000000001 Ether (1 Gwel)

0.000021 Ether ($0.000000)

3014100

Nonce: o

Figure 7: Etherscan web return for the transaction

Etherscan web services are one of the most popular Ethereum
block explorers and it enables users to search and view trans-
actions and network information. Etherscan provides a web in-
terface to search for transactions by hash, account, block, token
or ENS. Etherscan provides a number of services including an
ENS lookup and token tracking service. Etherscan provides
an API (Application Programming Interface) that requires an
API key and provides limited to access to its services. Figure 7
shows a typical web return for a transaction.

The API is called by formatting the URL to the specification
as shown on the developer section of the Etherscan developer
web page. The command request in requests is the transaction
by the transaction hash and requires a valid API key:

“https://api.etherscan.io/api?
module=transaction&action=getstatus
&txhash=0x15f8e5eal079d9a0bb04adc58a
e5fe7654b5b2b4463375ft7{tb490aa003213a
&apikey=YourApiKeyToken”

Figure 8 shows the example given [28]. The API call then
returns a JSON (Javascript object notation) encoded a set of
values, Firefox can view the JSON return in a human-readable
form as shown in Figure 8.

The Ethereum blockchain runs on hosts distributed globally
on web.js a Javascript set of libraries that enables users to in-
teract with the Ethereum system. The connection is available
via HTTP or IPC and allows queries to be made to the system.
Console commands are available using Geth console or in the
example shown below the command was executed on the Parity
Web3 console see Figure 9.

The commands are listed in the web3.js readme documents
and allow a call to be made using the command line or pro-
gramming languages to build Dapps and other web or software
interfaces for Ethereum [29]. The command returns the same
JSON response the only noticeable difference been the format-
ting of the value response.

At this stage Blockseer is not covered due to it not supporting
the Ropsten testing environment, the service will be revisited
when a test is carried out during the live scenario.

O

£t Most Visited 0 GetingStarted 3\ LatestHeadines @ Apple ©f Yahoo! 14 Googie Maps @ Save to Mendeley 3 YouTuoe \V Wikipedia [News [Popular

@ & https:/Jropsten.etherscan.io/api?module=proxy&action:

JSON RawData Headers

ac179424075350b120ab 456382 2eBa"

748707bdB3e3b4 1732705208901 b2319BabBBIC9 1¢9160010D6<BB02

Figure 8: JSON return value pairs using the Etherscan API

Figure 9: Parity web3 shows the command

4.1.1. Internal Transaction

The Ethereum blockchain also has a class of transaction
called the internal transaction. This transaction is where a con-
tract creates a call from within a contract to create a “message”
similar to a transaction where an action is instigated. A com-
mon use is sending of “ETH” to an account holding a contract
that following a set of conditions sends a CALL that instigates
the return of a number of tokens. It is possible to then list these
internal transactions alongside the transaction list. This clearly
is important when dealing with fraud and criminality as these
may conceal large amounts of value. On the first inspection,
it may be difficult to interpret. Contracts are complex in their
nature as they a fully Turin complete. A contract could be de-
signed specifically to obfuscate or frustrate and conceal activ-
ity. There are a number of OPCODES (operation codes) that
are used to operate on the EVM and they are documented in the
appendix of the “Yellow Paper” alongside the GAS costs [9].

Internal transactions triggered in a contract are ultimately
triggered by the behest of an externally owned account. These
occur either directly as a start instruction that triggers the CALL
or when set conditions are reached following the initial trans-
action posted by an external account. Messages don’t require
the GasLimit setting in the transaction, this is already assumed
as calculated to perform all computational steps and subsequent
calls. Failure on GAS price or conditions results in the reverting
of the internal transaction state.

4.1.2. Contracts and Encoding

The ABI Application binary interface is used to standardise
the lengths and encodings of the input and how information is
sent during a message of a transaction. The specification is held
with the Solidity documentation and sets out with examples the
format required. As this ABI input information is highly valu-
able to an investigation and the flow of understanding of the
accounts activities the following test script was created.

Ethereum uses the SHA3-256 Keccak hashing as the stan-
dard hashing for encoding [30]. In the ABI documents, it in-

4 BYTES

0xcc822237a37f9290b70dab4d640156d816bf8abdb959b5971d803a639dadefo8

Figure 10: Full Keccak hash of the ascii “foo(uint32,bool)”

foofuint22, bool)

Figure 11: Input to the conversion scripy

dicates that the first four bytes of the input are the Keccak
hash of the function operation. If a function is created as
foo(uint32,bool) then the Keccak hash of the ASCII text of the
function is calculated shown in Figure 10.

The Method ID is then calculated as the first four bytes as
0xcc822237. Confirmation of the manual calculation of the text
is shown in Figure 11 as the input and Figure 12 as the output
of the SHA-3 Python script. Figure 13 shows the Python script
used.

The ability to interact with contracts via the ABI and
Ethereum network is still in rapid development along with the
Solidity language. There have been numerous coding bugs or
contract logic anomalies that have resulted in significant losses,
most notably the DAO and Parity [31]. The scope of this pa-
per is not a deep dive into contract specifics and function. It
should always be in a investigators mind that a complex layer
lies beneath the veneer of transactional movements. Coding
exploits can sit within innocuous transactions such as using
CALLDATALOAD and CALLDATASIZE arguments holding
additional instruction [32]. These transactions are contracts op-
erating on the EVM a world computer, computational attacks
can be present in the software. Logic in contracts and memory
flaws may also exist.

The input data field, however, contains information that is
useful to review and in general terms, it can be split into the fol-
lowing format. The hex identifier Ox is followed by the method
ID four bytes then following are increments of 32 bytes lengths
depending on the function requirement. The 32 bytes can con-
tain a number of differently constructed values as per the ABI
specification, these are often padded to fit the 32-byte structure:

0xa5643b£2000000000000000000000000000000
0000000000000000000000000000000060000000
00
0000000000000000010000000000000000000000
00
a000000000000000000000000000000000000000
0000000000000000000000000464617665000000
00
00

237a3719290b70dab4d640156d816bT8abdb959b5971d803a63%dadef98" |

Figure 12: Output from the SHA3 python script conversion

import sha3
input_str = raw_input('Enter string : ')

encodings = {}

var = sha3.keccak_256()
var.update((input_str))
encodings ["Ascii to sha3 Keccak 256> "] = var.hexdigest{()

print encodings

Figure 13: Python script to encode to Keccak 256
AEOAADAAPRRARAAOAAOAAPAAREARAOAAOAAPAARRARAORE S
I
hexidecimal to Decimal 4

da

45403

Figure 14: Partial return of the 32-byte section as a ASCII and decimal value

0000000000000000000000000000000003000000
00
0000000000000000010000000000000000000000
00
0200000000000000000000000000000000000000
00000000000000000000000003

An additional script inputsplit.py was created in order to ob-
tain the Method ID then drop the 32-byte values into separate
strings, before reading them as hex or ASCII to output. This is
a crude method but can be refined as required.

From the ABI specification examples, the longer ABI is
listed above, this is run through inputsplit.py [33]. The four-
byte Keccak SHA3 is 0xa5643bf2 from the hash of the func-
tion ASCII value. This is crude to demonstrate the proof of
concept and can be used where the method is known to build
specific templates in response to the returned Method ID. Fig-
ure 14 shows a partial return of the console to demonstrate the
readability of the response. This enables the decoding in this
example to read the decimal value of 4 and the ASCII value
dave from the encoding in the input fields.

4.2. ERC20 Token

The ERC20 was developed and came from an Ethereum Im-
provement Proposal a mechanism used by the Ethereum team
to allow community and developers to put forward new fea-
tures on the Github system [34]. The catalyst for the standard-
isation of contracts on the Ethereum network came from the
founder Vitalik Buterin in his post on the Ethereum wiki that
sets out standardised API contracts [35]. The ERC or Ethereum
Request for Comment is a standard adopted from IETF Inter-
net Engineering Task Force and the ISOC Internet Society. It
is simply a standard way to introduce change to the Ethereum
protocol in a regulated method of obtaining consensus with en-
gineers, developers and the community. The ERC20 represents
a standard format used by developers for a contract built on the

Token Price %Change MarketCap

9% $3,651,499422

2 @ TronRx S00292 v-164% $1919498755

~41% $1068561502

Figure 15: ERC20 token market cap from Etherscan

The ERC20 Token Standard Interface

Following is an interface contract declaring the required functions and events to meet the ERC20 standard:

s indexed to, uint tokens);
Owner, address indexed spender, uint tokens);

Figure 16: Displays the six functions and two events for the ERC20 token
standard

Ethereum network to represent a token, the 20 is a numerical
reference to serial the EIP reference number, therefore, has no
other meaning. The token standard enables developers to reuse
code and enables other services and exchanges to support the
token without having to redesign new standards and adoption
for every new coin. The ability to create tokens and be listed
in an exchange or held in a supported ERC20 compliant wallet,
therefore, strengthens the uptake and usefulness of the token
and overall eco-system. The standard also enables confidence
with developers that the smart contract logic is sound by using
battle-tested code. The ERC20 was introduced in 2015 and is
common in the ICO (Initial Coin Offering) boom that followed
the adoption of Ethereum.

There are 49,216 different ERC20 tokens listed and the top
three coins market caps are worth billions of U.S dollars as
shown in Figure 15[36]. The ERC20 token can be used in any
manner of tokenised system and these include tokens of value,
financial derivatives, cloud computing, power grid, gambling,
storage and many others. The coin, therefore, has a number of
specifically allowed contract items. The full final specification
is documented as EIP20/ERC20 /cite Vogelsteller2015EIPs/eip-
20.mdGitHub.

Naming conventions from the standard API format. Table
2 shows the convention and an example. These formats are
important to define the use of the discovered code.

In Table 3 the functions are written in the format required
and detail the input variables and show the response formats.
It is possible also to see how the Keccak method ID is created
by the hashing of the function. It is possible to create a list of
signature Method IDs similar to the previous internal section.
The token standard is documented by Codetract and it is useful
to compare the results as shown in Table 3, the calculations are
made from the short form of the function and hashed with the

https://api.etherscan.io/api?module=logs&action=getLogs

&fromBlock=379224

&toBlock=latest

&address=0x33990122638b9132ca29c723bdf@37f1aB91a70c
&topic®=8xT63780e752c6a54a94fc52715dbc5518a3b4c3c2833d301a204226548a2a8545
&apikey=YourApiKeyToken

Figure 17: Etherscan API developers example and formatting for Event logs

SHA3 Keccak as previously shown with the python script [37].
The short form is derived from the longer form shown in the
Ethereum wiki.

Longform as:

indexed _owner,
uint256 _value)

Approval (address
address indexed _spender,

Shorter form:
Approval (address ,address ,uint256)

Recognising an ERC20 event in a post-event investigation
can be broken down into a couple of features. Once retrieving
a transaction list for an account using the Etherscan API a look
at the transaction value is required. The transaction value is
calculated in Gwei an ETH subdivision so a valid transaction
of ETH must contain a value above zero. If a transaction has
a zero it indicates a potential to be a transaction of a token as
it has been returned to the transaction list and not an internal
contract transaction. Further examination is required and the
input field should be the next area to analyse.

There is no direct ability to obtain token events within a sim-
ple query it requires a deeper programmed search and chain
of search. The Etherscan API, however, provides an event log
search. This search is formatted as Figure 17 shows from the
Etherscan Developers API [28].

In order to query the transfers, it is required to format the
API request with the correct filter data this is done using the
documentation and additional posts in the stack exchange fo-
rum [38].

The block “to” and “from” value is to be entered and is lim-
ited to 1000 return so pagination will be required above those
limits. The address field requires the contract address for the
token, each token is essentially a contact using the 20byte ad-
dress, however, the address contains contract data, unlike a
standard externally owned address. As in this example, the
return required is a token transfer event it is required to enter
Topic 0 with the Keccak SHA3 of the event:

0xddf252ad1be2c89b69c2b068£fc378da
a952ba7£163c4a11628f55a4df523b3ef

Topic 1 is the “from” or source address of the token transfer
and requires to be padded to 32 bytes. Topic 2 is the “to” or des-
tination address and again this requires to be 32 bytes padded.
Topic 1 and 2 are both an optional variable and depending on
the requirement of the search they can be omitted:

e Obtain the transaction list and find zero value transactions

e Check the address for contract data and set as contract ad-
dress

TYPE CONVENTION EXAMPLE
Function Camel case camelCase
Event Upper camel case CamelCase
Input variables ~ Underscore prefixed lower Camel case _camelCase
Output variable Underscore lowercase “r” r
Success Boolean True “1” or False “0”
Address Underscore lowercase “addr” _addr
Specific addr Underscore lowercase _from or _to

Table 2: Naming convention for function and variables
TYPE CODE STANDARD METHOD ID
FUNCTION name() ERC20 — optional ~ 0x06fdde03
FUNCTION symbol() ERC20 - optional ~ 0x95d89b4 1
FUNCTION decimals() ERC20 - optional ~ 0x313ce567
FUNCTION totalSupply() ERC20 - Standard 0x18160ddd
FUNCTION balanceOf(address) ERC20 - Standard 0x70a08231
FUNCTION transfer(address,uint256) ERC20 - Standard 0xa9059cbb
FUNCTION transferFrom(address,address,uint256) ERC20 — Standard 0x23b872dd
FUNCTION approve(address,uint256) ERC20 — Standard 0x095ea7b3
FUNCTION allowance(address,address) ERC20 - Standard Oxdd62ed3e
EVENT Transfer(address,address,uint256) ERC20 — Standard Oxddf252ad
EVENT Approval(address,address,uint256) ERC20 — Standard 0x8c5bele5

Table 3: ERC20 optional and standard function / event codes

Pad out the “to” and “from” address to 32 bytes

Search Topic 0 with the token transfer events

Search with Topic 1 & 2 for events

Search only “from” address and “to”” address

4.2.1. ECR20 Coin creations

An ERC20 compliant code is the set of standards set out pre-
viously. A coin is created by the creation of a contract using
a compliant, most commonly solidity code. There are numer-
ous examples and tutorials to create a token and the Ethereum
foundation have instructions and code on their website to follow
[39]. A solidity script used coin.sol to create an ERC20 token
called “HiddenDragonCoin (HDC)” Figure 19 shows a screen-
shot of the solidity code. The coin is a contract that is deployed
to the network by an externally owned account, this is important
if the coin itself is the focus of an investigation. The transaction
that creates the contract has the contract address field entered
as the new contract address and this also contains a large data
field that contains the code of the new coin. Figure 18 shows
the data on Etherscan, note the contract creator and the trans-
action ID when it was created, this enables attribution to other
accounts.

To test the method the developed scripts were used to collect
the data from the contract creator account and parse for token
events. The script documented the events and gives a view of
the token movements and contract interaction. Using the ke-
valscsv.py script it takes the data from the extracted JSON files

B Contract Address 0x

Gontract Overview B e Mor Optons
ETH Balarce: OEther ContractCrostor 0x004608550274a7...a b <7 27afb7c0600cs

No Of Transactions: abae

Token Gontract (ERC20):

Figure 18: Contract details for ERC20 token HiddenDragonCoin

New Sb!i!ty Contract

Figure 19: Part of the Solidity code for the ERC20 token HiddenDragonCoin

from the Etherscan API and creates a CSV file, one field is
the input Method ID. This enables a quick view to discover
the movements and additional ERC20 transactions using the
codes in Table 3. This was validated using Parity client’s app
GAV coin (Gav Wood coin) this was done to ensure the method
worked on different clients and virtual machines. The tracking
of ERC20 events can be tracked accurately using this method,
verified by a number of different token movements using differ-
ent clients.

4.3. Key Values

In previous sections, there are a number of returns by the ser-
vices either directly querying the Ethereum network on the con-
sole or by the web portals. A number of Key values are identi-
fied for their beneficial nature in the investigative process. The
transaction list function is one of the primary sources of data
for the purpose of transactional flow. The following returns are
from the Etherscan API they are a JSON key and value return.

o ’isError’ Relates directly to the response of the API re-
quest to the system this is a Boolean, True “1” or False
“0” the value for a successful transaction is “0” no error
occurred. Etherscan API only.

o ’timeStamp’ The time stamp is a UNIX timestamp at the
point the transaction is conducted. Displayed as a 10-digit
decimal representation.

e 'nonce’ The nonce value is an important incremental se-
rial number assigned to every sending “from” transaction.
This is used by the Ethereum network to detect bad nodes
and double spend attacks. Alongside the timestamp, this
number will assist in the temporal information and cre-
ate accurate event reconstruction. Returns a hexadecimal
value.

e ’from’ This is the sending or source address of the trans-
action, this is the 20-byte address format.

e ’to’ This is the receiving or destination address of the
transaction, this is the 20-byte address format. The field
can be blank if it relates to contract creation. (The input
field would contain additional information that will con-
firm this).

e ’hash’ The Transaction TXHASH is a 32byte hash and is
essential in identifying a specific transaction. This is cre-
ated as a hash of the transaction detail and signature pro-
cess (Codetract, 2017).

e ’value’ The value field is a decimal number that represents
the value in “Wei”.

e ’input’ This field contains the ability to attach data for
use with the transaction. This will have data or “0x” as-
an empty field. This field requires analysis when data is
present. This will indicate the method event/function con-
ducted and give values that allow for location of new trans-
actions or logs.

e ’gas’ The amount of gas provided by the sender to conduct
the transaction. This is the amount to cover the gasPrice x
number of steps computed on the EVM.

e ’gasPrice’ The gas as calculated in “Wei” price of gas.
This is dependent on network congestion the price for a
slow or quick transaction is varied.

e ’gasUsed’ The amount of gas used for the transaction, this
is the gas steps multiplied by the gas price.

TRANSACTION DATA
FIELD

BlockHash
blockNumber

chainld
condition
creates
from

to

gas
gasPrice
hash
input

nonce

RETURN TYPE

DATA RETURNED
FORMAT

32 Byte hash
Hexadecimal value
/ Decimal
Hexadecimal value
null

null

20-byte address
20-byte address /
Null contract
creation
Hexadecimal value
Hexadecimal value
32 Byte hash
Input data
provided to
transaction
Hexadecimal value

Etherscan JSON

AP via PY
X
x

x x x x x

x x x x

x

Etherscan Web
Transaction info

Parity
web3.eth.getTrans
x
x

x % % % %

Blockseer

/ Decimal
publicKey
r

s
v
value = Hexadecimal value
in wei

x X x X x
*x % % x

raw x x
TxRecieptStatus
TimeStamp
ActualTx Cost
Cumlative Gas Used

BlockHeight X x

Figure 20: Comparison of data from services

’blockHash’ Each Ethereum mined block contains a
32byte hash address this relates to the block that the trans-
action is contained within. This enables confirmation of
transactional data.

"blockNumber’ The block is also given a block reference
number. This number is a decimal number.

e ’confirmations’ This field relates to a number of confir-
mations the block has received from miners. It is worth
ensuring the number is above a minimum of 30.

"contractAddress’ The contract address follows the same
format as an externally held account as they are considered
equal. This is a 20byte address.

“transactionIndex’ Index hexadecimal of position of the
transaction in the block.

e ’txreceipt_status’ A Boolean of “1” for True a receipt ex-
ists in the receipt trie root or “0” for False a receipt is not
recorded in the trie.

Figure 20 Shows a table of the Key values returned from the
services.

To provide a system to capture the information and create
the following basis for the proof of concept a number of python
scripts were developed. These included Ethereum capture, in-
corporating Balance, transaction list, internal transactions, and
receipts. These searched for data on the Main Ethereum and
Ropsten network, this was by account, transaction hash or block
number and index number Figure 21 shows the menu screen.
This was conducted by constructing arguments for the API and
then serving and retrieving the data in a JSON returned file.
The system was a proof of concept and was used to test to vali-
date the concepts and methods. The software is not designed to
run optimal code or even load data to a database that would be
required for any production-ready tool.

Coount

choice

Enter

yoaur

Figure 21: Main menu for the created script

A script was designed for Token events, using the returned
data the script parses the retrieved transactions and obtains the
key values including the Method ID. The script takes an event
ID in Topic O that details a token transaction before correctly
requesting the relevant Event log that includes all the required
token to and from data when using the correct data. Smaller
scripts were used for some basic formatting:

o Key value extraction, the script obtains identified key val-
ues required for accurate tracking and outputs to JSON and
CSV for use in other processes.

e Conversion a number of smaller scripts to enable testing
include conversion from text to hexadecimal. A number
of SHA3 Keccak conversions for formatting and simple
graphing scripts. Graphing became a deep subject in itself
s0 a basic construction was used for proof of concept.

o Inputsplit to take inputs to format to the correct length.

4.4. Blockchain investigation

4.4.1. Ropsten network tracking

An investigator presented with large amounts of textual and
numeric information is required to construct a method to con-
ceptualise the event or movement of the token value. The cap-
ture of the raw transaction data is formed into a graphical repre-
sentation of a node and edge graph. This enables a visual flow
that will assist the investigator to find the network nodes and
edges.

In the scenarios laid out the movements described below can
be viewed in a graphic view and it is possible to understand the
flow and find the start and end points. Ethereum “ETH”:

AtoB

AtoBto A

AtoBtoC

AtoBtoC+D
AtoB+CandB +Cto A
AtoBtoCtoDto E
ItoFtoEtoDtoHtoGtoCtoBto A

AtoB+C+DandBtoEand CtoFand D to Gand E
toHand Fto H and G to H

® NNk W=

|g.35Pr|(e |Na of ETH |
1000000000] 0.02]

|limn£-tamp ||'mm |lo |hash |gas
[1519474300 [0x00e5.2e8a [0x001f...8cc7 [ox0i7e...8802 | 21000

Figure 22: Transaction completed on the Parity client / wallet

o
L

% > @
|_A ACCOUNT

[00..8a]

0.100 FTH

Figure 23: Transaction completed on the Parity client / wallet

Figure 22 displays the scenario (i) where the transactions A
to B was conducted using the Parity client to send a transaction
to the Ropsten network. The table is stripped down and the
hashes edited for presentation. Figure 23 shows a transaction
been conducted on the network using the Parity client.

Figure 24 shows the movement patterns and the start and end
points moving between accounts. The graph is a directional
node and edge graph. Each letter represents an account entity.
The graph pattern assists the viewer to see the direction and
movement of the funds in the scenarios set out earlier. It is pos-
sible to view the resting points or edges (endpoints). Endpoints
can be an exchange, ATM, merchant or a mixing service. Node
numbering can assist in the identification of large exchanges or
mixers. Nodes in frequent use will have a node number in the
thousands, open source research will more than likely identify
the service or owner.

4.4.2. Scenario tracking live network

The developed script was used to acquire data from the Ether-
scan API. The target account was entered and the script down-
loaded all the transactions on the targeted account this includes
balance, transactions and internal transactions. To follow the
money the subsequent “to” address would require downloading
to see the next node in the chain. This should be done until it is
at rest in an account (holding account) or reaches an edge, such
as an exchange (out/edge). Inputs (in/edge) or “from” values to
the target account will need to be applied manually to ensure
they are relevant, this is an intelligence-led subjective decision.
An additional script is developed to extract the token transac-
tions and then create an event API call to request the log for
the token transfer, this is important as these transfers can hide
value transformation. An additional script was created to take
the returned JSON files and create a CSV file for mapping and
graphing purposes. In order to visualise the transactions, the
use of the scripts enables the ability to view the directional flow
of the value tokens. The “keyvalues” are identified as above
and extracted in the scripts to build the .csv. The following di-
rectional graphs were generated from the data and additional
annotation given to enable discussion.

Figure 25 shows the ETH only transactions and this gives an
idea of some of the interactions of value transfers. Figure 26
shows the token only transfer, this enables the investigator to
view value transfers of different tokens. If the additional tokens
are not tracked the value can be transferred and cashed out of

Al B -
. &
LA
B* A
Scenario i Scenario i Scenario iii

c E

Scenario iv Scenario v Scenario vi
A’- D
/ .,
By — A
\ 8.
E »C a ’
e | » C/
e\ ; Y B
” e %
) 1-"’ E
H H.q .
Scenario vii Scenario viii

Figure 24: Graph structure and flow between the accounts

the system.

The transactions took place sending Eth initially from
the Kraken exchange across the two subject accounts
“0x63a0. ..bb51” and “Oxc9bl...33bc”. Shapeshift is a service
that allows the exchange of cryptocurrency from one token to
another. Jaxx has an in-built Shapeshift function that allows the
swap of funds from one form to another. Shapeshift was addi-
tionally used in the Jaxx wallet to transfer ETH to Golem GNT
and Augur REP tokens. In another process, the web version of
shapeshift was used to transfer Golem into REP. The remain-
ing ETH and REP tokens were then sent back to the Kraken
exchange. It is possible to link the services of Kraken to these
interactions due to how they receive funds into a specific wallet
before using a contract to retrieve the funds back into Krakens
main account.

SHAPESHIFT

Oxd32@..102f

SUSPECT ACC2

0xc9b

0x bb51

Ox267l..fdc0

KRAKEN EXCHANGE

0x4a0@..elaf

.9445

0x70fa@.a413

Figure 25: ETH transactions on the live network

SHAPESHIFT

0x7fe2@.ca51

T

0x85e@®..093a

TEMP SHAPESHIFT

SUSPECT ACC

..bb51

V\ SHAPESHIFT REP

0xb2D9...4F55

Ox63alf

/

Tte? cast
0xc9b ;EM;:SS;I;PESHIFT
Ox4fd®. deb2 ox7fe2 @cas
[maven excrnce]

Figure 26: Token GNT and REP on the live network

SHAPESHIFT

0x63a0...bb51 0xc9b1...33bc

SUSPECT ACC '\ > @ [suspecT ACC2
[]

Figure 27: Simplified ETH, GNT and REP cluster addressing

Figure 27 shows a simplified version where the clustering of
addresses is possible via metadata collection. Etherscan shows
account names where associations are made. This view enables
an approach to the exchange Kraken or to Shapeshift for infor-
mation on customer data where available. Kraken will as a full
exchange retain KYC information that is likely to be available
for law enforcement or civil litigation where the correct court
instrumentation is presented.

The use of the created scripts worked in the collection of the
data to build a comprehensive record of ethereum transactions.
The obtaining of the event logs is required to log the token
movements. One fault observed was a transaction of one of
the initial token events was missed, the system is programmed
to scan the transaction list and detect a token event. In this ex-
ample, the original transaction list did not contain a transaction
for the transfer, so the subsequent script search would not detect
the token event. In this example, the Topicl is not known.

A wider range of event scanning would find all events if the
Topic 2 the receiving address was displayed with no source ad-

Figure 28: Beta visualisation in Etherscan

dress, as this was unknown in this case. This would need to
be tested alongside other permutations for blanket trawls for
source and destination token events without specifying the con-
tract address or opposite topic. In essence search all token trans-
fers “from” this account, then re-run all token transfers “to” this
account. The formula could be applied to detect all of a certain
function such bid in ENS address for example. Another fault
discovered was the decoding of the value from Wei to a deci-
mal of Eth in Keyvals.py, the value was calculated as an integer.
An integer in Python is unable to calculate decimal points so a
floating point is used to correctly display the values see Ap-
pendix A.

In the live net test, the ethereum in the account was sent
to another account while tokens remained in the wallet. This,
however, meant the account was devoid of an eth and gas bal-
ance, without gas the ability to ask the EVM to perform any
action is missing. This was a mistake during testing but high-
lighted a common mistake. The tokens are stranded until some
gas is added to the account to move the tokens elsewhere. An
important measure could be where tokens exist on an account
and where the balance drops to 0. A subsequent small deposit
is issued prior to movement of the tokens. This may indicate
ownership and attribution that can highlight linked or associ-
ated accounts.

Etherscan web contains very good textual data and the visual
transaction is promising. It does not show token transfers as
such and there are some anomalies in the above graphing Figure
28.

4.4.3. BlockSeer

Figure 29 shows the Blockseer application graphing showing
auto detection of the Kraken exchange. There is still a require-
ment for the investigator to expand the sections choosing what
to expand. If the investigator expands all transactions in the ex-
changes the graph will expand to thousands of transactions. The
graphing is mapped well in Blockseer but there is still a require-
ment for the investigator to make associations and research on
accounts despite the automation available.

4.5. Contract Methods

4.5.1. ERC20 and Decentralised Exchange (DEX)
As identified in the above sections the use of Method ID
and contract formatting enables the EVM to understand what

KRAKDN

TRBTDNE™
- —
~——
. -
106 ETH b

BETH

. N

0.0508 ETH

et aTa4764 OufiSe0075. 1 H Onc801a7T :
0.1 ETH 0.014ETH 0.051 ETH
Y : >

0x70fa424, Oxaf20858, Oxd 208735,

.0508 ETH
l\ -7
—

Figure 29: Graph from Blockseer

8

Function: trade(address src, uint256 srcAmount, address dest, address dress, uint256
uint256 minConversionRate, address walletld) ===

MethodID: 0xcb3c2Bc7

Figure 30: Decentralised trade Method ID and variables

is been asked of it. This however also enables investigators an
opportunity to scan for the Topic and create a Method ID sig-
nature to allow an understanding of what functions are been
performed. In the section ERC20, the method ID detected the
function for a transfer and then on viewing the proceeding event
the full hash was viewable with the detail of “to”, “from” and
values. This use of a signature can be applied to detect items
of interest in a number of contracts or protocols on Ethereum.
An example would be to detect a trade on a decentralised ex-
change using the MethodID 0xcb3c28c7 as Figure 30 shows an
example from Etherscan. The trade is found and the topics can
be parsed to obtain the events and see the additional functions
or events. The below example will show the source and desti-
nation address with the associated values. This enables a graph
and flow and if the funds in the live job had gone to a DEX
decentralised exchange it is very unlikely the trade would be
discovered and shown using this method.

4.5.2. Beyond ERC20, Cryptokitties

To extend the importance of this MethodID and subsequent
investigation logic it can be applied to the movement of other
value assets on the network. Cryptokitties was an Ethereum
based digital collectible game and trading platform. This very
popular game highlights how a non-traditional value asset can
be traded for profit [40]. Appendix C shows part of the ERC721
contract with available function and events allowing for method
ID signature creation. The bidding on Cryptokitties shows
as a bid in the internal transaction show in Figure 31 from
Etherscan. Following the auction, the events show an “Auc-
tionSucessful” and subsequent token transfer using the same
method ID transfer for movement as the ERC20 token. This

Function: bid(uint256 _tokenId)

MethodID: 0x454alab3

Figure 31: an internal transaction on Cryptokitties

detail shows the “to” and “from” accounts and the account id in
this instance. The token transfer hash:

0xddf252ad1be2c89b69c2b068fc378da
a952ba7£163c4a11628f55a4df523b3ef

This demonstrates the ability to add new transfer types as
new token standards are brought into circulation. The rise of
new digital shareable as a gamified collectible product will de-
velop and the ecosystem will need to be followed [41]. The
link between “skin” trading as a crime eco system for cyber-
crime can be found in gaming circles [42]. The ability to trade
and share skins via smart contracts direct from games or mar-
ketplaces will be facilitated with ease on numerous up and com-
ing networks [43][44]. In the future, the ability to virtualise or
emulate a contract to logic test it for security is likely.

The ability to detect contract use for law enforcement could
replicate a contract discovered and test its logic to verify the
intent. An example would be what appears to be a gambling
smart-contract between two players, however, player 1 always
loses due to the contract obfuscated code logic. Player 1 is,
however, a criminal who has arranged to pay his debts by the
use of the gambling site in order to maintain a cover for criminal
money laundering. The discovery would only be shown by deep
analysis of code or if the replication and testing and could be
attempted and run. A percentage is given on the number of win
or loss results.

4.5.3. GAS

Gas price and the amount of gas assigned to ensure the trans-
action steps are all completed are required for all transactions.
In the above live scenario testing, the following observations
can be noted. Wallets do not have the same default settings
for gas and gas price. This enables the potential for wallet or
service identification. The Jaxx wallet has the default Gas as
25000 with a 2 Gwei Gas Price while Meta-Mask had Gas at
21000 and 1 Gwei Gas Price. The price paid from the other ser-
vices and contracts are much more specific to real gas require-
ments, likely to the contract pre-calculating or live calculating
of a current gas condition value. Defaults assist users to not
have to check the current gas requirements for network conges-
tion to ensure the transaction goes through, this was an issue
during large ICOs and when Cryptokitties was at its peak [45].

Gas prices can be set too high in a wallet and although this
only accounts for a small amount per transaction it is a legit-
imate concern [46]. Further research would need to establish
if the default Gas settings are updated by the wallet when net-
work usage is high or if the defaults are set per version of the

{"address":"323238d07¢24459551732aa51add69d4c8ce569d","crypto": {"cipher":"aes-128-
ctr","ciphertext":"0222b304602c208679108e09799d3 1d4e0ee45c0359 1efff09f3ece13834d9d
c","cipherparams": {"iv":"8b6efc14d2a8674bd1cd118967576fb6"},"kdf":"scrypt","kdfparams
":{"dklen":32,"n":262144,"p":1,"r":8,"salt":"7720867¢351348beba343b46afb708d98002cd35
28366182527823181¢78ea91"},"mac":"cfddd0d41a3b919a9b8aca46625040517ea33114387¢c
d71e1447de8ad45a704ee"},"id": "efc6e100-6€99-4475-ab11-9636b3f10828","version":3}

Figure 32: JSON format

wallet. Attribution could be possible if baselines for major wal-
lets are kept against a timeline and if user’s transactions mirror
the baseline measurements this would indicate service use. It
should be noted that a user can change the defaults and this it-
self may assist with attribution if a user reuses a non-standard
value. Gas use may change with future versions of Ethereum to
assist in wide-scale adoption.

5. Forensic Analysis

In this section, the use of forensic analysis is examined to
perform a number of specific password attacks and key recov-
ery. It looks at opportunities for investigators to discover ac-
counts from seized machines. This section will cover common
password formats and crack encryption. In addition, the discov-
ery of word seeds and how to recover potential accounts linked
to the seed words.

5.1. Password formats

The following format types were detected when investigat-
ing the password formats associated with the Ethereum clients
used. The latest version of the Ethereum wallet used “Scrypt”
while Parity used the previously implemented PBKDF-HMAC-
SHA256. There are a number of blogs and resources that cover
the cracking of the Ethereum passwords. The recovery would
assist a forensic function to discover, or to seize funds from
criminal’s dependent on legislative support. The cracking of
the password however may assist with asset recovery and dis-
covering passwords for other services such as drive encryption.
The keys are stored in the “keystore” and these differ slightly
through the various operating systems see Table 4.

Hashcat was used in this experiment as it is a comprehen-
sive password cracking tool with GPU support, contains a large
implementation of methods and is widely written about [47].
The keystore is a .json file that contains numerous key value
sets containing the cipher values and encryption detail. The
Ethereum Github sets out the values and the minimum imple-
mentation and required settings [48]. In the example of the
JSON file is given in Figure 32, and it shows a typical layout of
key values.

In order to identify the encryption, scheme the “kdf” value
displays “scrypt” or "pbkdf2" this indicates the scheme see Fig-
ure 32 for an example file. Alongside the AES 128-bit encryp-
tion, the use of counter code block cipher uses a stream cipher
as also shown in the returned values. The ability to extract the
hash is made easy using two Github python scripts developed
for the job. The “ethereum2john.py” creates a suitable Hash-
cat output for the Scrypt variant [49]. The PBKDF version
of the Ethereum key as used by Parity is documented in the

Operating System Path

Mac “/Users/username/Library/Ethereum/Keystore”
Windows C:/Users/username/AppData/Roaming/Ethereum/Keystore
Linux /.ethereum/keystore

Table 4: Operating system and paths

Desktop# cat newhash2.txt
$ethereum$p*10240+90726c9ef861246aceb64d67985bT17651dd4bfaddl0cl3az6e74eb26153a4

f2*@bc5991f38a5bad42f0695021cc114675d94bebbb70eb0f389c1b22d053c8c9d*9d940b9f4330)
9eal86b0615f34c271d5de70b2eadf6b78dbbe653e86at2fad86

Figure 33: Ethereum wallets formatted keystore to “Scrypt” hash ready for
cracking

~/Desktop# cat newhash3.txt
$ethereum$p*10240+¥90726c9ef861246aceb64d67985bF17651dd4bfadd1l0cl3a26e74eb26153a4

f2+9d940b9143309ea186b0615F34c271d5de70b2eadf6b78dbbo653e06af2fad86+0bc5991F38a5
bad42f0695021cc114675d94bebbb70eb0f389c1b22d053c8c9d

Figure 34: Parity wallet keystore “PBKDF” hash made ready for cracking

“ether2hashcat.py” project that can extract the correct hash for-
mat for Hashcat [50].

The following keys were used in order to test the above-
mentioned scripts to extract the hash and place into a Hash-
cat formatted command and crack the wallet password. An
Ethereum wallet Version 0.9.3 was created by backing up the
key. The format as shown in the blog article and replicated by
the script orders the values into a format as shown below, these
are inserted into a test file for use by Hashcat.

ethereums*n*r*p*salt*ciphertext*mac

As shown in Figure 33 we can see the Scrypt version from
the Ethereum Wallet and the PBKDF parity wallet values in
Figure 34. The values were extracted using the Python scripts
and saved to a text file.

Hashcat supports three different hash types for Ethereum
wallet types. These are the Ethereum pre-sale wallet, Hash-
cat reference -16300, Ethereum Wallet — PBKDF-HMAC-
SHA256, Hashcat reference — 15600 and Ethereum Wallet —
Scrypt Hashcat reference — 15700. In Figure 35, a command is
used to crack the hash of the Parity password. The command
evokes Hashcat and uses —force as it used on a virtual machine
and not utilising GPU processing the code for the hash type is
used and the hash text file selected and a pass.txt containing six
possible words. The cracking of the pre-sale wallet is not cov-
ered in this thesis as its use is limited but should be noted that
Hashcat supports the cracking function.

The password cracking was done using a small number of
passwords: six in this case. Figure 36 shows the returned result
alongside the cracked password.

The Hashcat shows the password as plantpot123. This is the
correct password and Hashcat is able to crack both the files us-

~/Desktop# cat newhash3.txt
$ethereum$p*10240*90726c9ef861246aceb64d67985bF17651dd4bTa4dl0cl3a26e74eb26153a4

2+9d940b9143309ea186b0615734c271d5de70b2eadf6b78dbb0653e06af2fad86+0bc5991138a5
bad42f0695021cc114675d94bebbb70eb0f389c1b22d®53c8c9d

Figure 35: Hashcat command used to crack the Parity key hash

eum$s*262144*8+1%7720867e351348beba343b46afb708d98002cd3528366182527823181e78ea91+*0222b3¢
4602c208679108€09799d31d4e0eeq5c03591efffO9f3ece13834d9dc*cfddded41a3b919a9b8aca46625040517ea3:|
114387cd71e1447de8a45a704ee: plantpotl23

: hashcat
Cracked
» SCRYPT
4+8+1*7720867e351348beba343b46afb7. . .a704ee
36 2018 (21 secs)
:57 2018 (@ secs)

(3384.47ms)
) Digests, 1/1 (100.00%) Salts
)

Speed.Dev.#1.
Recovered. . ..

plantpot123

4602 9108e09799d31d4edeed45c03591efffe9f3ecel3834d9dc*cfddded41a3b919a9l
114387cd71e1447de8a45a704ee: plantpotl23

: hashcat

(3384.47ms)
) Digests, 1/1 (100.00%) Salts

0/6 (0.0
5/6 (8
plantpot123
HwMon .Dev .#1.

Figure 37: Jaxx local storage database viewed in the SQLite viewer

ing the methods described above.

5.2. Recovery seeds

In order to look at other applications and storage of keys
and to assist in the study of the transactions across the net-
work the Jaxx wallet was installed. This was to enable another
view so the testing was used against the Desktop application
on Windows 10. The version was Jaxx desktop Version 1.3.15.
The wallet is a multi-platform supported wallet including web-
based extensions for Chrome and Firefox and operation system
support for Mac and Linux. There are also additional mobile
versions of the wallet for Android and Apple OS. The wallet
utilises the 12-word phrase systems that have developed from
the cryptocurrency establishment under the BIP standards the
word phase can restore the private key. A vulnerability is docu-
mented in a blog post that exposes the mnemonic word system
to a decryption attack [51].

The Jaxx wallet was installed and running on the Windows
10 virtual machine. The location of the Local Storage of the ap-
plication was found at the following location under “userl” the
local profile containing the application. Appendix B documents
other operating system locations. The database is a stored as an
SQLite database and the database was loaded into DB Browser
as shown in Figure 37.

qyp1D54khppYhg+Ae+bpB2b7jDnRmKrx7AxvZuxUDZX9RSBab61GfXFwBg8V8wur
Zf6tF+DArHB1/vG3wfscTWCilsfkpDK+8qYfVuMYPDQg=

Figure 38: The exported stored string

wrap athlete turn dial royal sunset flush web joy powder lunar razor

Figure 39: Recovered word seed from the Jaxx Windows 10 desktop wallet

Cell 204 in Figure 37 is entitled mnemonic and this field con-
tains the data required. At this point, an export to a text file then
drops out the following text string Figure 38.

In order to decrypt this string into the 12 words seed a simple
script is required and can be used to take the string and return
the passphrase, required is the Cryptojs module. The script is
shown in Appendix A and is used to validate the method. When
run against the recovered mnemonic phrase from the Windows
Jaxx wallet the recovered is shown as Figure 39, the private key
for the Jaxx wallet.

This demonstrates the ability to be able to recover passwords
from physically held machines or if an attacker has access to
files on the system machine remotely.

5.3. Scanning for word seeds

In addition to the recovery from wallets using a password at-
tack, the use of words seeds gives investigators an additional
opportunity to recover criminal assets or identify targeted at-
tacks. Scanning seized items or triaging at a scene specifically
for word seeds will enable a new opportunity for account re-
covery and discovery. Ethereum although significantly differ-
ent in its core infrastructure to Bitcoin still contains some rem-
nants from its evolved history. The use of a similar standard for
the wallet structure and protocol is still based on Bitcoin BIPs
Bitcoin Improvement Proposal. The construction for Ethereum
wallets are yet to be standardised but can be implemented us-
ing a number of proposals. Common implementations include
a number of ongoing EIPs, these are EIP 600 and EIP 601 the
discussion enables a view of differing priorities. Ethereum has
however had developers using the BIP44 standard that itself
was a development of BIP43. In addition to those, there are
uses of BIP32 and BIP39 with different wallet developers.

The design of the Hierarchical Deterministic Wallets uses the
seed to generate the key space for the wallet to create new pub-
lic addressing as shown in Figure 40. This system is to enable
privacy when returning money to a change address using a new
account for each transaction was encouraged in Bitcoin for pri-
vacy. The use of change addressing and the reuse for privacy is
down to the UTXO Unspent Transaction Output. The protocol
is a key feature of Bitcoin and many cryptocurrencies that rely
on a fork of the Bitcoin source code. The use of BIP39 Word
Seeds allows the word seed to be the master key and to act as
the master private key to unlock the numerous public addresses
and subsequent wallets in the key space. The BIP39 specifies
2048 words that can be called to create the private key, there are
rules specified that detail the initial entropy length and check-
sum (“bips/derivation.png at master - bitcoin/bips - GitHub,”
2013).

BIP 32 - Hierarchical Deterministic Wallets

Master Master Wallets / wallet
Seed Node Accounts Chains

Addresses

T8 ... [E

~m/o/0/0 _ mi0/0/1 - mI0/0K

28 ~
m/or
16

m/o/1 ™

1)

mi0 comon

t D . §
~m/071/0 _ mioj1/L - miO/k

cxpim, 0)

Entropy 16
m/1/0

128 bits oomn . [8§
HMAC-SHAS12 1 “ ; g *
i |t 8 m/1
% té / m/1/1 L
S m CKD{m, i L]
.
.
o (L8
|t ; mfijo
e emal (T [g +o. [E
mfi D, 3) L ~mi1/0__ mAf/L - ik

Depth =0 Depth = 1 Depth = 3

Child Key Derivation Function ~ CKD(x,n) = HMAC-SHAS512(X cnain » X pokey || M)

Depth = 2

Figure 40: Shows the creation of a Hierarchical Deterministic Wallet

The key lists are available in a number of languages and de-
tailed on the Github site listing all the accepted seed words
[52]. The word seeds are 12 words in a UTF-8 encoding in
the English language version using words between three and
eight characters in length, this differs for implementations in
different languages. There are additional numbers of words also
used that will be covered later. The following points highlight
a method to scan for word seeds and some unique features and
checks that could determine if present:

e There are a set number of spaces between the words, ex-
cluding the before and after position, as these may contain
quotations or another delimiter.

e The set of words is between 3 and 8§ letters in length these
can be scanned for any punctuation or special characters
if none are contained this raises the possibility of a key
phrase. The phrase should be used as a lower case but a
user or wallet design may change the case to auto-correct
sentence case or full upper case.

e Once discovered compare the words to the word list from
the BIP 39 Github repository. This will give an additional
check to reduce false positives.

o If the above is detected for a 9-seed word then expand by
word increments 11, 12, 13, 24 to determine the number of
words. (Ensure any additional other sized keys are found,
historic and future.) Note an additional password can also
be applied to the word seed.

e UTF-8 encoded words could be held in another encoding
such as ASCII depending where and how recorded, they
may be stored as a note or in a word document. Scan dif-
ferent encodings for the same method.

e Following a seed discovery populate the possible wallet
pubic keys, it is possible to differentiate between Ethereum
and Bitcoin addressing due to the encoding outputs. Scan
for other currency [53][54]

e Scan the generated public addresses and owned wallets
search the blockchain for activity, balance, and transac-
tions. If a response is given the wallet is located for the

Mnemonic Language English HAH Espanol (i) $X(%M) Frangais Italano

BIP39 Mnemonic | wrap athiete turn dial royal sunset flush web joy powder lunar razor

BIP39 Passphrase
(optional)

BIPIOSeed 1498c271accbSecd]36015190018933bdboD9315747acd 12954094730 (389179a8274b1
et6ifata

Coin ETH - Etheroum

BIP32RootKey | xprv9s21ZrQH143K2cuea OJLNAIAHSRQMyyWpQN7P79q1XgVIYBXN2XSTg

Figure 41: The 12-seed word from the Jaxx wallet

m/44'/60"
/0'/0/0

0x63a0998b69aDAc0090d91dB89CBfb1598Bc2bB51

0x8ad245387c82db5a521ae995£16766d46901bddeeb3bd90869£183337ebf5a26 |

Figure 42: Public and private address returned by the mnemonic recovery

investigator, others can remain linked or marked for future
events to attribute to the user.

e Scan for Bitcoin, Ethereum, Alt-coins for private and pub-
lic keys across the recovered media / hard drive or ram
capture.

As the Jaxx wallet used earlier has a 12-word seed following
the decryption this enables the method to be tested and vali-
dated to search for the address of the wallet only using the seed
phrase. This can be achieved using the BIP standards as the
wallet is BIP44 compliant and uses BIP39 word seeds and hi-
erarchal dynamic structure. Using a web-based BIP mnemonic
converter it is possible to enter the 12-word seed and look set
the BIP standards and deviation paths accordingly. There is an
off-line version of the site and the code is also available to in-
spect, entering a word seed into an on-line untrusted source is
dangerous. Figure 41 shows the mnemonic code for the Jaxx
wallet entered and the Coin is selected as ETH.

The BIP32 root key and BIP39 seed are displayed along-
side other Bitcoin-specific keys. The derived address is shown
as above Figure 42 as the root-derived account using the
M/44°/60’/’/0/0 deviation path Figure 43 is the keys from inside
the wallet application. This shows that the restoration of seed
words against even all the potential coins available and a num-
ber of addresses could prove potentially very useful to investi-
gators. If an incorrectly formatted hash is checked against the
wrong blockchain it will return a null. Clashes or brute-forcing
passwords is theoretically possible but unlikely, this type of in-
formation would be further corroborated with additional inves-
tigative actions reducing the risk of a false positive. In addition
to the Ethereum address recovery above the same was done by
changing the coin option on the site recovery to Bitcoin and also
Litecoin, Jaxx rendered the first address for each coin within the
application to the mnemonic tool value verifying this method.
Revealing of accounts could be cross-matched with forensic ar-
tifacts recovered from a device, cross-matching of addressing
can be attributed to use. This method can also enable access
to the recovered funds and wallets for asset recovery where the
necessary jurisdiction and legislation allows for such activity.

Public Address

0x6380998b692dac0090d91d889cbfb1598bc2bb51

Private Key

8ad245387c82db5a521ae995f16766d46901bddeeb3bd?0869f183337ebf5a26

Figure 43: Public and private address displayed from the Jaxx Wallet

6. Network Attribution

There are a number of additional areas that can be examined
in order to associate a user to a network or identify use. The
ENS system is investigated in this section to look at how the
system operates and if any opportunities are available for asso-
ciation.

6.1. Ethereum Naming Service

As discussed in the proceeding literature review the use of
a human-readable name can assist the user and wider adoption
where a complex large hash is difficult to use for day to day
services. In order to demonstrate how the ENS works and to
replicate a transaction across the network using ENS a scenario
is set-up with two names for two accounts on the Ropsten Test-
net. Firstly the ENS name has to bid for and won, the cur-
rent system of auction is unlikely to remain over the coming
years so will not be documented here (“What is and how to use
the Ethereum Name Service (ENS) [55]. The bid process was
eventually completed with a number of failed transactions due
to high GAS load on the network and a final completion step
that was originally missed. The set-up has two accounts that
use a human-readable name and that can receive transactions.
These are alice-wallet.eth and bob-wallet.eth. There are limited
resources on Ropsten at this time for interacting with the ENS,
myetherwallet.com was used to register the names on the Rop-
sten network. The live network has a number of management
repositories that can be used to manage purchase or look up.
These include, ENS listing, Name Bazaar, myetherwallet and
ENS manager that importantly includes reverse lookup [56].

In Figure 44 it shows the newly acquired domain name
“alice-wallet.eth” the labelhash is a SHA3 Keccak 256 Hash of
the “alice-wallet” to produce the Labelhash value. The Name-
hash is similarly a Keccak hashed value but this includes a con-
catenation of the Top-Level domain and subsequent Label hash-
ing. Figure 45 shows a python script from the ENS documen-
tation on how this created, this enables cross-referencing. An
example of use would be where an ENS name is used in a cy-
bercrime the Namehash can be replicated and searched on the
blockchain for events in order to locate associated activity.

Lookup data provides a number of potentially important in-
formation for investigators these include the Owner, Highest
Bidder and resolved address. In Figure 46 a created domain
exists for Bob, this is bob-wallet.eth.

The label hash is the SHA3 Keccak result and the Name-
hash is created. The additional fields then show the owner and
deed owner. Figure 44 shows the results of the search on alice-
wallet.eth the owner, highest bidder and resolved address are

alice-wallet.eth is already owned:

Name:
Labelhash (alice-wallet): 0x5ea36e194934993bc25b1f fOc5d275ffe9a2bf73f1390268134fd946054b94cO
Namehash (alice-wallet.eth): ~ ©x578C84379af57915b26ca206112f8946Tca3d3330954287c112141de5354¢141
Owner: 0xc7a2505346b65e702c637d089¢2a91277¢c743abe
Highest Bidder (Deed Owner); 6XxCc7a2505346b65e762c637d089c 229127 7c743abe

Resolved Address: 0XCc7a2505346b65e702C637d089¢2a91277¢c743abe

Figure 44: Lookup using myetherwallet ENS service

def namehash(name):
if name == '':
return '\@' * 32
else:
label, _, remainder = name.partition('.")
return sha3(namehash(remainder) + sha3(label))

Figure 45: Namehash algorithm

all the same. This is because the owner who bid on the auc-
tion won has then chosen to set the resolver address to direct to
the same wallet address. However, when examining Figure 46
the owner and bidder are shown as the address used for alice-
wallet.eth and the resolved address is different. In this example,
Alice owns the name after the winning bid, however, chooses
to assign to the wallet controlled by Bob. ENS works in a sim-
ilar fashion as DNS and the transferring and redirection of the
address are possible. ENS works for a number of services on
the Ethereum network. In the example presented it relates to
humanly readable wallet addressing. The address requires reg-
istering by the owner to a resolver in this example and in many
cases, this will be the public ENS resolver, but note other reg-
isters can be managed by registrars for other purposes. An ad-
dress must, therefore, be set on the Registry contract to set the
resolver used, in the example the public resolver. Then in the
chosen resolver contract it requires setting to the account ad-
dress to be resolved with the relevant Namehash. These are all
actions and interactions with a contract on the blockchain from
the account owner, a number of blogs “readme docs” detail this
[57]. Table 5 shows the Name and subsequent definitions.

To replicate a transaction the private key was taken from the
Meta-mask client and restored in Meta-mask on the Windows
10 node to ensure there is no underlying address caching pro-
cesses. The client is then receiving addressing information only

bob-wallet.eth is already owned:

Name: bob-wallet. eth
Labelhash (bob-wallet) 6x09471a12ace64433b857febd6 365das164b99e33f 773602dd460b3dco6b2b14b
Namehash (bob-walleteth): ~ ©x36bT55536c272ae1626abaadb317857485573448e6c369e465baadabec652a81

Owner: 0xC722505346b65e702c637d089c2a91277c743ab0

Highest Bidder (Deed Qwner) 0xc7a2505346b65e702c637d089c2a91277c743ab0o

Resolved Address: ©0x71b4bféd63dfe43ds51c3f147efo1dbff50bdesl

Figure 46: Result of a search for bob-wallet.eth

from the blockchain, Ropsten in this example. The transaction
test will be to send an amount of eth from Alice’s wallet and
send to the address bob-wallet.eth.

The transaction is created as normal and where the hexadec-
imal code is entered the human-readable form is entered. In
Figure 47 the words bob-wallet.eth are preceded by a green tick
this indicates a valid address. The next part of the transaction
section shows that Meta-mask has in fact rendered the address
to the hexadecimal address having consulted the public resolver
prior to conducting the transaction. The transaction is then con-
ducted as standard, there are no additional data requirements
other than standard GAS pricing and limits.

6.1.1. Method for locating ENS data

Utilising the look up naming services previously referenced
requires the human-readable name to entered to obtain the re-
solver and account owner detail. Reversing the name hash of
the subject human-readable name will enable a search of activ-
ity or events that may allow the linking of the ENS address to
an account. In the example bob-wallet.eth the Name hash is:

36bf55530c272ae1020abaa0b31f857485573448e6c
369e465baa8abcc652a81

Setting the ENS entry requires the registry to set the resolver,
the phone directory, or where the address will be recorded.
Then an entry is made into the directory of where and who the
entry relates this links the unique Namehash to an account. As
both of the above actions are a contract process an entry exists
on the blockchain, Figure 48 and Figure 49 show the MethodID
and topic fields from the transactions from Etherscan.

It is then possible to use the event filters in the Etherscan
API to produce event logs, where the filter looks at the registry
contract and returns where Topicl is the Namehash. This com-
mand is needed to register any hex address to human-readable
address, if there is no resolver assigned then there is no route
to another entity. This could indicate where the account owns
the Namehash but is domain squatting, waiting to sell or not yet
set-up. This method, therefore, enables an investigator to search
for an active Namehash. Block restrictions on the API are im-
portant here and the use of a staged search would be required -
Figure 50 shows an API request.

The full JSON response returns the details for the resolver
address and that can then be subsequently filtered to search for
the name hash. Figure 52 shows the transactions index this then
gives the sending address, the owner, and attribution can then
made as the other ENS listings and interactions setting the ad-
dress to the resolver gives bobs hexadecimal account address.
Full attribution for the flow of funds and the linked ownership
and management is possible using this method. ENS is sim-
ilar to DNS that after market sales and transfers are possible,
this should be taken into account when attributing ownership,
purchase and current activity.

This feature is used but not currently a highly adopted prac-
tice, however, the introduction of new TLDs (Top Level Do-
mains) and upgrades alongside DAPP integration may increase
its use. Despite some advantages of the protocol it is likely
that there will be a continued misuse of the service, phishing
using different encodings that appear correct to a human eye

Function Name Function definition

Name The human readable address
Namehash

Resolved address The location / address of the destination

This is the important hash value that is set on the blockchain

Table 5: Name and definition Table

is reported. This used alongside long-standing similar address-
ing and social engineering will increase if and when large-scale
adoption occurs [58]. Bad Dapp another vector could be the
use of a bad Dapp that has an in-built resolver if this is set with
false ENS addresses to benefit the attacker. A man in the mid-
dle attack similar to a DNS attack would I think be possible. If
the resolver uses a registrar alongside the public resolver this
would perhaps satisfy this issue.

The ability to use the ENS to point to hosted files or web
content stored on the swarm distributed node network is mov-
ing from testing and onto the main network [59]. If the file
or index.html is hashed and has been linked to a resolver then
the trace of the resolved address and the “bzz” hash can be lo-
cated on the ENS and relevant owning account. The swarm
protocol is still new and is operating alongside other distributed
storage systems implementations such as IPFS technology and
Storj and Sia. The scope of analysis of research into these ar-
eas will be necessary over the coming months as those projects
mature. The ability to host material in a censorship-resistant
distributed protocol could, however, cause great concern for the
hosting of indecent images of children or terrorist doctrine with
no ability to remove or prevent additional publication. Com-
bined with encrypted protocols and smart contract mechanisms
for payment and delivery of content this perhaps a new dawn
and frontier for law enforcement. As law enforcement and In-
ternet providers tackle the sharing and hosting of images using
hash sets a new set of distributed hashes will be required for
future enforcement [60].

6.2. Mined blocks

While establishing the activity of the subject account or po-
tential sources of incoming Ethereum mining should be con-
sidered. The current proof of work mining process is similar
to the Bitcoin mining protocol and is still present but is in the
phase-out towards the proof of stake release. The proof of work
(POW) uses the computational power of large graphics process-
ing units to create a large number of calculations to mine a
block. The process of mining is well documented and requires
numerous multi-cored expensive GPUs normally installed in
rigs combining CPU, ram and multiple GPU cards [61]. Solo
mining is unprofitable due to the probability of finding blocks
so mining pools are used to group together the chance of find-
ing blocks and sharing the proceeds. Subjects accounts can be
viewed on Etherscan or an API call to view blocks mined by the
account. Due to the power involved in the POW to be profitable
if mining is discovered the use of mining pools are highly likely.
Mining pools are often labelled up on Etherscan and other ser-
vices and have very large numbers of transactions from the ac-
count including mined blocks. Figure 53 shows the Etherscan
result from a mining pool.

If a subject is receiving numerous deposits from a mining
pool with no obvious hardware it could indicate additional off-
site premises with mining rigs. Another popular trend is crypto-
jacking the deployment of malicious scripts running in web-
sites, effectively a drive-by download where theft of CPU power
is used. Ethereum is heavily intensive and is less likely to be
used for this type of attack but historically was more profitable,
Monero and Zcash are the favoured coins of choice due to the
mining methods [62]. The use of compromised botnets are also
prevalent utilising the compromised machine resources to mine
for cryptocurrency, other more specific attacks include vulner-
able routers to target Ethereum miners [63]. If a suspect is re-
ceiving regular mining payments without hardware criminal ac-
tivity is very likely.

6.3. Network and Processing

It was not possible during this thesis to replicate a satisfac-
tory environment to reliably port scan and document an exter-
nal view of the visibility of a running node from a penetration
testing perspective. The following observations are made from
running the Linux Parity node and the Windows 10 Geth-based
Ethereum wallet. A before and after snapshot of processes and
network connections were captured. A process was recorded in
Linux as “parity” post-launch of the network. Windows 10 pro-
cess “tasklist” recorded two Ethereum Wallet.exe and a geth.exe
following the launch of the Ethereum wallet.

When utilising the “netstat” command before and after node
launch it is obvious in the results with the number of 100+ in-
creased connections. Numerous connections are made using
the standard TCP port for Ethereum networks on 30301 and
the majority on 30303 or other non-standard port settings. The
ability to attach nodes to the network and monitor I.P data is
similar to the Bitcoin network and the ability to harvest node
information has been performed to map some of the Bitcoin
network previously. It is not possible to make an assessment
if L.P information could be linked to transaction propagation
without a detailed research program. As a potential area of in-
terest, the nature of transactional attribution and I.P attribution
could have merit depending on network propagation difference
between Ethereum and Bitcoin [64]. It is possible to discover
nodes on the Ethereum network using Ethernodes service, re-
quired is either the “enode” address this was displayed in the
Parity client or using the I.P and port address [65]. There are
packages and scripts to enumerate exploitable Geth nodes (EI-
dad, 2016).

7. Conclusions

The techniques discussed were replicated and tested for ac-
curacy using testnet and the live network. As tools focus on

bob-wallet eth (v]

1k

0.025|

0x01234

& o - (1;

Account1
C7a250._3AB0 > NB4BF_DeS]
3506
Amount e
ol
Cas Limit 21000
Gas Price 3
Max Transaction Fee D.000042
0.02
Max Total el

Data included:- O bytes

Figure 47: Entering the bob-wallet.eth and the tick confirming recognition

Function: setResolver(bytes32 node, address resolver)

MethodID: @x1896F70a
[8]: 36bf55530c2725210205baa@b31f857485573448e6c36%9e465baaBabccb52a81
[11: 4c641fb9bad9b6Pef188c31f56051ceB26d21a9a

Figure 48: Contract interaction with the ENS service setting the resolver

Function: setAddr(bytes32 node, address addr) *=*

MethodID: Oxd5£a2b00
[0]: 36bf55530c272ael020abaalb31f857485573448e6c369e465baaBaboc652aB1
[11: 00000000000000000000000071bdbf6d63dfed3d851c3f147ef91dbff50bde51

Figure 49: Contract interaction with the resolver updating the Namehash

https://api-
ropsten.etherscan.io/api?module=logs&action=getLogs&fromBlock=2956170&toBlock=295
6190&address=0x112234455C3a32FD11230C42E7Bccd4A84¢02010&topic1=0x36bf55530
c272ae1020abaa0b31857485573448e6c369e465baa8abcc652a81&apikey=APIKEY

Figure 50: Etherscan API search for the resolving data

“topics*: [
"@x335721b01866dc23 fbeeBb6b2c7ble14d6T05c2Bcd35a2c934239194895602a0",
"0x36bf55530c272ae1020abaalb317857485573448e6c369e465baaBabcch52aB1"
"data": 641f
"blockNumber": "8x2d1b93",

f180c31156051ceB826d21a%a",

"logIndex": "@x2",
"transactionHash": "0x6321e2b834742512621df162e688064c950d75845838f144153c85f9c4282701",
"transactionIndex": "@x3"
}
1
}

Figure 51: The JSON return from the above previous API request

bob-wallet.eth is already owned:

Name: bob-wallet.eth
Labelhash (bob-wallet): 9x09471a12ace64433b857febB6365daB104b39e33f773602dd468b3dcd6b2b14b
Namehash (bob-wallet.eth): 0x36bf55530C272a€1020abaabb31f857485573448e6c369e465baaBabcc652a81

Owner: @xc722505346b65e702¢637d089¢2291277¢743ab0
Highest Bidder (Deed Owner): 8xc7a2505346b65e702c637d089c2a91277c743ab0

Resolved Address: @x71b4bf6d63dfed3d851c3f147ef91dbff50bde51

Figure 52: Return from the registry feature following addressing changes

Overview | 2pool_2 L
ETH Balance: 1,421.977023842452417582 Ether
ETH USD Value: $521,268.34 (@ $366.58/ETH)

Mined: 344083 blocks and 41827 uncles

No Of Transactions: 4194102 txns

Figure 53: F2pool, mined blocks and no of transactions indicate a mining pool

the movement of Ethereum from one account to another the
use of tokens and exchanges within the contract structure must
be understood to see the real picture. The use of decentralised
exchanges enable movement from one chain to another using
different tokens and this will be a new challenge. Transfer of
value can be conducted through digital collectibles with new
classes of token, money laundering could be conducted by the
exchange thousands of dollars’ worth of digital Cryptokitties.
The use of ENS to direct funds to human readable names from
the abstract hash address values have shown the ability to iden-
tify owner accounts to follow funds. The use of ENS can also
direct to distributed stored files or web documents that creates a
censorship resistant web hosted entity. The need to access event
logs for an ENS set address function will enable attribution to
an owner’s wallet address. MethodID registry of contract func-
tions to parse data on transactions is essential as demonstrated
with display token movements.

8. Appendix

Please refer to this link for the associated content:
http://asecuritysite.com/ethpaper

References

[1] D. Siegel, “Understanding The DAO Attack - CoinDesk,” 6 2016.

[2] Cyber-blog, “Huge Ethereum Mixer — cyber e Blog,” 12 2017.

[3] “ERC20 Token Standard - The Ethereum Wiki,” 2017.

[4] E. R. Leukfeldt, A. Lavorgna, and E. R. Kleemans, “Organised Cyber-
crime or Cybercrime that is Organised? An Assessment of the Conceptu-
alisation of Financial Cybercrime as Organised Crime,” European Jour-
nal on Criminal Policy and Research, vol. 23, no. 3, pp. 287-300, 10
2017.

[5] A.Lavorgna, “Internet-mediated drug trafficking: towards a better under-
standing of new criminal dynamics,” Trends in Organized Crime, vol. 17,
no. 4, pp. 250-270, 10 2014.

[6] E. W. Kruisbergen, E. R. Kleemans, and R. F. Kouwenberg, “Explaining
attrition: Investigating and confiscating the profits of organized crime,”
European Journal of Criminology, vol. 13, no. 6, pp. 677-695, 10 2016.

[7] V. Buterin, “Devcon2: Ethereum in 25 Minutes,” 11 2016.

[8] C. Dannen, Introducing Ethereum and Solidity. ~ Berkeley: Apress, 10
2017.

[91 G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

Ambrosus, “Ambrosus-White-Paper-V8-1.pdf,” 5 2017.

E. Foundation, “Devcon3 Day 2 Stream - Afternoon,” 2017.

V. Buterin and others, “A next-generation smart contract and decentral-

ized application platform,” white paper, 10 2014.

(10]
(1]
[12]

[13] “How DNS Works In Six Steps - Verisign,” 2017.

[14] E. Foundation, “Ethereum Foundation Devcon3 Day 1 Stream,” 2017.

[15] “Ethereum Name Service Lookup,” 2017.

[16] “DNSSEC - ICANN,” 2017.

[17] “Ethereum Name Service,” 2017.

[18] N. Johnson, “How to claim your DNS domain on ENS,” 11 2017.

[19] ——, “dnssec-oracle: A DNSSEC oracle for Ethereum,” 2017.

[20] B.J. Nikkel, “Domain name forensics: a systematic approach to investi-
gating an internet presence,” Digital Investigation, vol. 1, no. 4, pp. 247—
255, 2004.

[21] “ropsten - Comparison of the different TestNets - Ethereum Stack Ex-
change,” 2017.

[22] “Parity.”

[23] Codetract, “Inside an Ethereum transaction — CodeTract — Medium,”
2017.

[24] M. Murthy, “Life Cycle of an Ethereum Transaction — BlockChannel —

Medium,” 2017.

[25]
[26]
[27]
[28]
[29]

[30]
[31]

[32]
[33]

[34]
[35]

[36]
[37]
[38]

[39]
[40]

[41]
[42]
[43]
[44]
[45]
[46]

[47]
[48]

[49]
[50]
[51]
[52]
[53]
[54]
[55]

[56]
[57]

[58]
[59]
[60]

[61]
[62]

[63]
[64]

[65]

P. Kasireddy, “How does Ethereum work, anyway? — Preethi Kasireddy
— Medium,” 2017.

R. Costa, “RLP - ethereum/wiki Wiki - GitHub,” 2018.
“ethereum-tx-decoder,” 2018.

“Ethereum Developers APIs,” 2018.

“web3.js - Ethereum JavaScript API — web3.js 1.0.0 documentation,”
2018.

“Keccak Team,” 2018.

A. Hern, “’$300m in cryptocurrency’ accidentally lost forever due to bug
| Technology | The Guardian,” 2017.

P. Bylica, “How to Find $10M Just by Reading the Blockchain — The
Golem Project,” 2017.

“Application Binary Interface Specification — Solidity 0.4.22 documen-
tation.”

“GitHub - ethereum/EIPs: The Ethereum Improvement Proposal,” 2018.
V. Buterin, “Standardized_Contract_APIs ethereum/wiki Wiki
GitHub,” 2015.

“Etherscan Token Tracker Page,” 2018.

“CodeTract - Token standard,” 2016.

Benjaminion, “etherscan - Obtain token transfer data from an address -
Ethereum Stack Exchange,” 2017.

“Create a cryptocurrency contract in Ethereum,” 2018.

S. Liao, “This man has made more money trading cryptokitties than in-
vesting in his IRA - The Verge,” 2017.

Wax.io Web, “Gaming Skin Trading: A $50 billion industry ripe for
blockchain disruption,” 2017.

C. Hall, “Valve can’t stop Steam account theft and customers are suffering
because of it - Polygon,” 2015.

J. Nation, “Ubisoft Eyes Digital Collectibles On Blockchain - ETH-
News.com,” 2018.

S. Walters, “Review of the Loom Network: Powering Ethereum Col-
lectibles - Coin Bureau,” 2018.

“ETH Gas Station | Consumer oriented metrics for the Ethereum gas mar-
ket,” 2018.

J. Buntinx, “Popular Ethereum Wallets Suffer From Inflated Default Gas
Prices — The Merkle,” 2017.

“Ethereum Wallet Cracking | Stealthsploit,” 2017.
Babay88, “Web3 Secret Storage Definition -
GitHub,” 2018.

D. Kholia, “JohnTheRipper/ethereum2john.py at bleeding-jumbo - mag-
numripper/JohnTheRipper - GitHub,” 2017.

Chick3nman, “ether2hashcat.py/ether2hashcat.py at
Chick3nman/ether2hashcat.py - GitHub,” 2017.
“Extracting the Jaxx 12-word wallet backup phrase. — vxlabs,” 2017.
“bips/bip-0039-wordlists.md at master - bitcoin/bips - GitHub,” 2017.
“Address - Bitcoin Wiki,” 2018.

V. Kobel, “Create full Ethereum wallet, keypair and address,” 2017.
“What is and how to use the Ethereum Name Service (ENS) | Crypto-
Compare.com,” 2018.

“ENS Manager,” 2018.

W. Deck, “Tutorial for Setting up a Domain on the ENS and Hosting
Decentralized Content on Swarm [Part 1],” 2018.

M. Samy, “Dealing with ENS Names? Beware of this phishing attack. ...”
2017.

W. Deck, “Tutorial for Setting up a Domain on the ENS and Hosting
Decentralized Content on Swarm [Part 2],” 2018.

K. Fiveash, “IWF shares "hash list” with web giants to flush out child sex
abuse images online @ The Register,” 2015.

A. Heritg, “How to Mine Ethereum - CoinDesk,” 2018.

D. Goodin, “A surge of sites and apps are exhausting your CPU to mine
cryptocurrency | Ars Technica,” 2017.

C. Cimpanu, “Satori Botnet Is Now Attacking Ethereum Mining Rigs,”
2018.

P. L. Juhdsz, J. Stéger, D. Kondor, and G. Vattay, “A Bayesian Approach
to Identify Bitcoin Users,” arXiv preprint arXiv:1612.06747, 2016.
“ethernodes.org - The ethereum node explorer,” 2018.

ethereum/wiki Wiki -

master

