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Image-based plant phenotyping has been steadily growing and this has steeply increased
the need for more efficient image analysis techniques capable of evaluating multiple plant
traits. Deep learning has shown its potential in a multitude of visual tasks in plant
phenotyping, such as segmentation and counting. Here, we show how different
phenotyping traits can be extracted simultaneously from plant images, using multitask
learning (MTL). MTL leverages information contained in the training images of related tasks
to improve overall generalization and learns models with fewer labels. We present a
multitask deep learning framework for plant phenotyping, able to infer three traits
simultaneously: (i) leaf count, (ii) projected leaf area (PLA), and (iii) genotype
classification. We adopted a modified pretrained ResNet50 as a feature extractor,
trained end-to-end to predict multiple traits. We also leverage MTL to show that
through learning from more easily obtainable annotations (such as PLA and genotype)
we can predict a better leaf count (harder to obtain annotation). We evaluate our findings
on several publicly available datasets of top-view images of Arabidopsis thaliana.
Experimental results show that the proposed MTL method improves the leaf count
mean squared error (MSE) by more than 40%, compared to a single task network on
the same dataset. We also show that our MTL framework can be trained with up to 75%
fewer leaf count annotations without significantly impacting performance, whereas a
single task model shows a steady decline when fewer annotations are available. Code
available at https://github.com/andobrescu/Multi_task_plant_phenotyping.

Keywords: plant phenotyping, deep learning, multitask, leaf count, PLA, genotype
INTRODUCTION

Nondestructive, image-based plant phenotyping is a growing trend in how scientists and breeders
engage in plant characterization. Due to the advances in image acquisition systems (Qiu et al., 2018)
and development of affordable hardware and software framework (Dobrescu et al., 2017b; Minervini
et al., 2017), high throughput plant image capture is becoming widespread. In particular, machine
learning has shown that it can be applied effectively in processing vasts amounts of data, including
in plant phenotyping problems (Scharr et al., 2016). For example, segmenting whole plants
(Minervini et al., 2014; Aich and Stavness, 2017), or each individual leaf (Romera-Paredes and
.org February 2020 | Volume 11 | Article 1411
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Torr, 2016; Ren and Zemel, 2017; Ward et al., 2018), synthetic
image synthesis (Giuffrida et al., 2017; Zhu et al., 2018), and leaf
counting (Aich and Stavness, 2017; Dobrescu et al., 2017a;
Giuffrida et al., 2015; Pape and Klukas, 2015; Giuffrida et al.,
2018b; Itzhaky et al., 2018) are all phenotyping tasks that have
been recently addressed using machine learning and deep
learning, technologies that are becoming more common in the
plant-research community. In fact, the fourth edition of the
Computer Vision Problems in Plant Phenotyping1 workshop
(CVPPP 2019) shows an increasing interest from people inside
and outside the plant phenotyping community to invest efforts to
develop newer machine learning based approaches.

Leaf count has been an area of interest for plant phenotyping, as
it is related to developmental stages (Boyes et al., 2001) and can be
an indicator for yield potential (Ngouajio et al., 1999) and plant
health (Rahnemoonfar and Sheppard, 2017). Two have been
proposed to infer leaf count: (i) determining the leaf count as a
subproduct of per-leaf segmentation; or (ii) tackling the problem as
a holistic regression task. Several different algorithms have been
proposed for a per-leaf segmentation approach. Scharr et al. (2016)
discusses four methods to achieve per-leaf segmentation, where
machine learning was used for the first time for this task. Romera-
Paredes and Torr (2016); Ren and Zemel (2017); Ward et al. (2018),
and Zhu et al. (2018) have proposed several deep learning
approaches for per-leaf segmentation, obtaining remarkable
results in terms of segmentation accuracy. However, the main
issue with such methods is that they require per-leaf
segmentations to train the algorithms that are often time-
consuming, laborious, and expensive to acquire. Although
Minervini et al. (2015; 2017) have proposed semiautomatic
graphical tools, they still require experienced users to obtain an
adequate per-leaf segmentation. Another type of annotation used
for leaf counting is to mark each leaf with a dot on the center, rather
than the whole leaf segmentation. Although it is an easier way to
provide topological and localisation information, it still requires a
human to click on the center of each leaf. Itzhaky et al. (2018) use
such annotation to train a leaf detector which is used in conjunction
with a leaf regressor (named D+R) to achieve state-of-the-art
leaf count.

Alternatively, leaf counting can be addressed as a holistic
regression task, where an algorithm predicts the total leaf count
in an image. In this context, the machine learning algorithm
requires just the total number of leaves, which is an easier
annotation to obtain, compared to the per-leaf segmentations
(Minervini et al., 2015; Giuffrida et al., 2018a). The first studies to
use machine learning techniques reported encouraging results
(Giuffrida et al., 2015; Pape and Klukas, 2015), although more
recently approaches based on deep neural networks have become
the state of the art. Dobrescu et al. (2017a) proposed a deep
neural network based on a ResNet50 (He et al., 2016), where leaf
counting was learned by agglomerating data from multiple
sources. Further to this, Giuffrida et al. (2018b) proposed a
versatile network that demonstrated that leaf counting could
be better learned using data from multiple imaging modalities
1More information available at https://www.plant-phenotyping.org/CVPPP2019
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using a single architecture. Itzhaky et al. (2018) also describe
another approach (named MSR) which uses a feature pyramid
network architecture (Lin et al., 2017) to learn a direct regressor
at multiple scale levels of a plant and then fuse them to output a
single leaf count prediction. Ubbens and Stavness (2017)
proposed several specialised deep network architectures to
count leaves in different datasets, as well as to infer other tasks
such as projected leaf area (PLA) and genotype prediction.

The success of machine learning, and especially deep learning,
is attributed to the ability to relate images to a given task. Deep
neural networks extract meaningful information from images
(typically referred to as image features), even when they contain
complex structures like plants. In the current paradigm, many
machine learning models are specialised to perform a single task
(i.e., learn one plant trait at a time).

However, plant phenotyping traits, such as the total leaf
count, can often be related to other traits, such as the total leaf
area, age, and genotype. Incorporating such related traits in the
deep learning framework would help the deep neural network
better learn all the traits (Caruana, 1997).

Multitask learning (MTL) has been shown to improve the
accuracy and the generalization performance of each task
(Caruana, 1997). The benefits of MTL are multifold, especially
when tasks are related to each other. Firstly, one one network is
trained to perform multiple tasks at the same time, in contrast
with Ubbens and Stavness (2017), where several networks with
different architectures were trained separately to extract
phenotyping traits. The learning of multiple tasks enforces the
network to learn good representations, thus increasing the
generalization capability of the model. Since information
sharing is the core of MTL, learning multiple tasks
simultaneously reduces overfitting, even in presence of reduced
datasets (Baxter, 1997). Additionally, from an implementation
perspective, MTL allows having just one shared model instead of
independent models per task. This helps reduce storage space,
decreases training times and is easier to deploy and maintain.
MTL is a special case of transfer learning (Pan and Yang, 2010),
where (i) there is no distinction between tasks; and (ii) the
objective is to increase performance for all the involved tasks.

Surprisingly, despite the benefits of MTL and its application
in several other areas of computer vision (Ramsundar et al., 2015;
Kokkinos, 2017; Ranjan et al., 2019), it has been under-explored
in addressing problems in plant phenotyping. Pound et al. (2017)
proposed the earliest application in MTL for plant phenotyping,
where a deep neural network that can both detect and count
wheat spikes, as well as classify the presence of awns.

In this paper, we propose an MTL architecture aimed to infer
leaf counting, together with the PLA and genotype classification
(Figure 1). We use the dataset Ara2013 (Minervini et al., 2017) and
show that multiple tasks help to achieve more precise predictions of
these three plant traits. The tasks were chosen, as they are relevant
and well known plant phenotyping objectives as well as being
correlated to each other, which helps the training process. The
PLA and genotype annotations are less tedious and time-consuming
to gather. The PLA can be obtained with a plant segmentation
algorithm (Aich and Stavness, 2017; Dobrescu et al., 2017a;
February 2020 | Volume 11 | Article 141
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Minervini et al., 2015), whereas the genotype is generally known a
priori to the scientists. The leaf counting task and PLA estimation
are treated as direct regression problems having only the total leaf
count and total PLA as respective annotations. The genotyping task
is addressed as a binary classification between wild-type
and mutant.

The contributions of this paper are multifold:

• Our end-to-end MTL architecture predicts several traits at the
same time, in particular leaf counting, PLA, and genotype.
Having one unified model for multiple tasks improves
performance in leaf count compared to a single task model.
Amongt the other tasks, leaf counting is the hardest to predict
from a computer vision perspective, due to huge variability
between leaves as well as occlusions in the images.

• We show that our proposed method can be trained with fewer
leaf count annotations without significantly impacting leaf
count performance. Our results show that when annotations
for one task are available, performance can be improved by
using correlated tasks for the same images.

• We show which count annotations have the most impact on
the model performance. Understanding this key aspect would
help guide the annotation of a new dataset, highlighting
which images should be first annotated in a new dataset.
METHODS

For this study we developed an MTL deep learning model that
takes in as input a top-down color (RGB) image of a rosette plant
(e.g. Arabidopsis thaliana) to infer the total number of leaves,
PLA, and binary genotype classification.

The Feature Extractor
The first part of the model (Figure 2 Top) is a ResNet50 (He et al.,
2016) neural network and works as a feature extractor. We used a
Frontiers in Plant Science | www.frontiersin.org 3
ResNet50 pretrained on ImageNet (Krizhevsky et al., 2012), as it
has been demonstrated to perform well on plant phenotyping
tasks (Dobrescu et al., 2017a; Giuffrida et al., 2018b). The
architecture of the model is composed of 16 convolutional
blocks, each consisting of three convolutional layers of
increasing filter sizes to maintain complexity per layer (He et al.,
2016). This model is a residual neural network, which means that
the convolutional layers are not just stacked on top of each other,
but also additional connections between the convolutional blocks
(residual connections) are present between neighboring blocks.
These skip connections help propagate the error signal faster
across these very deep networks layers, yielding improved results
over other network designs. We modified the reference ResNet50,
by removing the last layer intended for classification and replaced
it with a fully connected layer containing 1536 nodes, which acts as
a shared representation for the three training tasks. Up to and
including the shared representation, we leverage hard parameter
sharing, meaning the network layers are shared between all the
tasks. This approach reduces the risk of overfitting which is
important when training deep learning models.
The Task Branches
The second part of the model (Figure 2 Bottom) consists of the
three task-specific branches that are each responsible for
computing one of the tasks. The branches receive information
from the shared representation above and specialise on one task.
The first one computes the leaf count and it consists of a fully
connected layer of 512 nodes and a 1 node layer which outputs
the count prediction. The second for estimating the PLA, has the
same design as the leaf count branch. The PLA output is
normalised as the percentage that the plant occupies in
relation to the whole image. Genotype classification is
determined by the third branch and contains 3 fully connected
layers of 512, 256 and 2 nodes respectively. The activation
functions of the fully connected layers in the branches are
FIGURE 1 | Schematic of the multitask learning (MTL) model: The model takes in an image as input and it uses a CNN to learn three tasks concurrently: Leaf count
outputted as a scalar (Task 1); projected leaf area (PLA) estimation as a percentage of area the plant occupies in the image (Task 2); and genotype classification
between mutant and wild type (Task 3).
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rectified linear units (ReLU), except for the final genotype and
PLA prediction layers, which are sigmoid and LeakyReLU
respectively. On layers before the final prediction layers for all
three tasks we apply an L2 regularization of 0.04 to penalize layer
activity during training and prevent overfitting.
Frontiers in Plant Science | www.frontiersin.org 4
Losses
All tasks are learned at the same time in the MTL model. Each
task has a specific loss tailored to the specifications. For the leaf
counting and PLA estimation tasks the loss is mean squared
error (MSE). However, when comparing to the other tasks the
FIGURE 2 | Detailed architecture of the model. The network takes in as input an RGB image of a rosette plant. The main feature extractor is a ResNet50 deep
residual network, which is composed of 16 residual blocks which consist of three stacked layers with residual connections between the input and the output of each
block. FC layers represent fully connected layers of a given size. The FC1536 is a shared dense representation layer from which each task branch off into their
respective output. Each branch is then is specialised for a specific task.
February 2020 | Volume 11 | Article 141
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values were very low. To balance it out, we multiplied the error
values by 10 to maintain comparable values. For the task of
genotype prediction the loss is binary cross entropy using a
sigmoid final layer activation to get the output between 0 and 1.

Datasets
Three different datasets were used in this study that contain
top-down RGB images of Arabidopsis thaliana plants. The
Ara2013 (Minervini et al., 2017) dataset consists of 24
separate plants of 5 different genotypes: Col-0 (wild-type),
ein2 (Guzman, 1990), ctr (Kieber et al., 1993), adh1 (Perata
and Alpi, 1993), pgm (Caspar et al., 1985). Images were
captured of each plant twice a day for 26 days. Example
images from the dataset can be seen in Figure 3. The different
genotypes represent a wide range of visual phenotypes when
compared to the wild type (Col-0). Ein2 and adh1 are visually
similar to the wild-type while the ctr and pgm are more distinct.
Two additional datasets part of the CVPPP leaf counting
challenge (LCC), hereafter denoted as A1 (Minervini et al.,
2016) and A4 (Bell and Dee, 2016) were also used in evaluating
the model. The total number of images in the datasets are 1248,
128, 624 of resolutions 317×309, 500×530, and 441×441 in
Ara2013, A1, and A4, respectively. The datasets were captured
with different experimental setups, so the quality of the images
as well as the background appearance varies.

Data Augmentation
Data augmentation is a method widely used in deep learning to
increase the size of available datasets and to give more diverse
examples to the neural network during training. The aim is to
Frontiers in Plant Science | www.frontiersin.org 5
instill in the model a level of invariance to nuisance factors
meaning that the network should give the same results if the
same image of a plant is just rotated or shifted. It also helps the
network to ignore background variability such as different
planting trays, camera setups and soil appearance. For this
study, data augmentation was performed when training all
mode l s , in the fo rm of a s s i gn ing random affine
transformations from a pool of random rotations between 0
and 180 degrees, shifting the image between 0% and 10% of its
size as well as flipping the image on the horizontal or
vertical axis.

Data Preprocessing and Model Training
Before training the neural network, all images were resized to
320 × 320 as a preprocessing step to optimise training times
while retaining important features, such as distinct small leaves.
Out of the 24 plants in the Ara2013 dataset, 19 were used for
training and the remaining five plants were used for testing. As
the five genotypes present in the dataset can be visually distinct, it
is important to present the network with an adequate sample of
each so that it can learn each genotype particularities. As a result,
the five testing plants were chosen as to contain one plant of each
genotype. We perform fourfold cross validation where the
dataset was randomly divided into four nonoverlapping subsets
so that all images are present in the test set once. There is an
imbalance between mutants and wild type in the training
datasets so a training class weight was added to the genotype
classification branch to increase training importance of the wild-
type images. The class weight was chosen to be proportional to
the class imbalance in each training scenario.
FIGURE 3 | Example images from the Ara2013 dataset. The dataset is composed of time series images of 24 plants of 5 Arabidopsis thaliana accessions.
The different genotypes vary in size, shape and color hue, making it a challenging dataset.
February 2020 | Volume 11 | Article 141
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The annotations used during training for each image were the
total leaf count as an integer, the PLA, and whether the plant was
a mutant or wild type. We normalised the PLA values between 0
and 1 by computing the total area covered by the plant as a
percentage of the whole image. In the experiment testing how the
model performs with less training annotations, leaf count labels
were removed in incremental steps leaving 75%, 50%, and 25%
from the total number in the training set. The labels were
removed to maintain an even distribution of plant ages and
genotypes in the training set (i.e., every 4th label removed for the
75% step). Next, in the experiment analyzing the different
strategies of annotating a dataset, three methods of removing
labels were employed: we either removed count annotations
corresponding to the most juvenile plants, or we removed
labels corresponding to the most mature plants, or lastly we
removed labels randomly. The same 25% increments were used.
During all experiments where we trained the model with fewer
leaf count annotations, the PLA and genotype annotations were
still provided for all images.

The model was trained on an Nvidia TitanX GPU using the
Adam optimizer with a learning rate of 0.0001. All the tasks were
concurrently learned end-to-end, with an early stopping
criterion based on the validation loss, in order to avoid
overfitting. Model selection was according to the overall
validation loss for all tasks in the cross-validation.
RESULTS

In this section, we offer experimental evidence of the effectiveness of
our model. To evaluate our model in the leaf counting task, we use
CVPPP evaluationmetrics (Scharr et al., 2016; Giuffrida et al., 2018b).

They are the difference in count (DiC), absolute DiC (|DiC|),
MSE, percentage agreement and coefficient of determination
(R2). The agreement metric represents the percentage of
instances where the network prediction corresponds exactly
with the ground truth.

Evaluation of the MTL Model
We first trained our MTL model on the Ara2013 dataset, as it is
the only dataset that contains plants of different genotypes. We
then added the A1 and the A4 datasets in order to gauge impact
of visually diverse datasets to our model. The results are
displayed in Table 1 for all three tasks. The results show that
the network predictions display a strong correlation with the
ground truth in the leaf count task with a R2 of 0.95 and an
Frontiers in Plant Science | www.frontiersin.org 6
overall test MSE of 0.93. The PLA estimation task shows a small
MSE equating to an average difference of 2.1% between the
ground truth and the predicted PLA. The genotype classification
task shows a promising 91.1% test accuracy. As illustrated in the
confusion matrix in Figure 4, wrong predictions occur rarely.
Moreover, the model shows resistance to nuisance variability
(i.e., different backgrounds and soil), as we evaluated different
datasets grown in different growth scenarios.

Next, we assessed if the addition of MTL increases
performance for the leaf counting task compared to a single
task model. To make the single task leaf count variant of our
model we removed the other branches. We maintained the same
training procedure for both models and the dataset used was the
Ara2013 dataset. The results are shown in Table 2. Overall, the
results of the MTL model are improved for all metrics analyzed,
demonstrating that MTL reduces prediction errors when
multiple related tasks are learned jointly. To test whether there
is a statistically significant difference between the multitask and
single-task models, we performed a bootstrapped paired t-test
(Rodriguez, 2011) between the results of the |DiC| for the two
approaches at 100% leaf count labels with a null hypothesis that
they are equal. We perform the bootstrapped t-test because the
TABLE 1 | Results for the multitask learning (MTL) network for leaf count and projected leaf area (PLA) and genotype classification.

Dataset DiC Count PLA Genotype

│DiC│ Agreement MSE R2 MSE Accuracy

Ara2013 −0.22 (0.93) 0.67 (0.69) 45 0.93 0.95 0.021 91.1
Ara2013 + A1A4 −0.21 (1.09) 0.77 (0.79) 44 1.23 0.96 0.025 95.6
February 20
20 | Volume 11 |
The values are computed at test time for the model trained on first just the Ara2013 dataset and then the extended dataset of Ara2013+A1+A4. The small drop in performance in the
extended dataset can be attributed to the increase in dataset difficulty by adding more challenging examples.
FIGURE 4 | Confusion matrix for genotype prediction at test time. The
multitask learning (MTL) model learns to classify whether a plant is a mutant or
wild type with an accuracy of 98% correct wild type and 91% correct mutant
classification. The values are given at test time in the Ara2013 dataset.
Article 141
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output of our model for the |DiC| does not follow a Gaussian
distribution required for a valid t-test. The result is a two tailed p-
value of 0.0093 after 105 bootstrapped samples. The p-value of
<0.05 demonstrates that there is a significant difference between
the MTL and single task models, confirming the superiority of
MTL for the leaf counting task.

We then compare ourMTL framework to current state of the art
specialised leaf counting models. The results can be seen in Table 3.
We trained our MTL model on the A1 dataset but with just the leaf
count and PLA tasks as there are only wild-type plants present. Our
model outperforms the results of Dobrescu et al. (2017a) in all
categories. We achieve similar results to the best reported values in
Itzhaky et al. (2018), D+R method that utilise the leaf center as
additional training annotation, while we are using only a direct
regression method.

Substituting Hard to Get Annotations
With MTL
In this experiment, we assess whether we could compensate for
the lack of expensive training annotations in the leaf counting
task by using an MTL approach and providing other, easier to
acquire, annotations. When training the network, we removed
parts of the leaf count labels, but we retained all the PLA and
genotype labels. Leaf count labels were removed in incremental
steps leaving 75%, 50%, and 25% from the total number in the
training set to check how the models perform when increasingly
fewer count annotations are available.

Experimental results are shown in Table 4. It can be noted
that the MTL model remain consistent even when only 25% of
the original count labels are used in training. Furthermore, the
standard deviation of the DiC in the MTL model remains nearly
constant for all the label steps, indicating that the predictions are
Frontiers in Plant Science | www.frontiersin.org 7
consistently close to the reported mean. On the other hand, the
single-task model sees a significant decline in performance when
less training annotations are present. The MSE increases from
1.45 when 100% of the labels are present to 5.49 and then to 17.2
at the 50% and 25% count label steps respectively.

The same trend is visible in the R2 values as well declining
from 0.92 at 100% to near 0 when only 25% of the count labels
are available. To test whether there is a significant difference
between the results of the different count label thresholds in
Table 4, we computed the same type of bootstrapped paired
sample t-tests mentioned in Section 3.1 between the results of the
|DiC| for the multitask and single-task models trained with 100%
and 25% of the labels respectively, using the standard threshold
of 0.05 as a significance level to indicate whether there is a true
mean difference between the two samples. The performance drop
is more noticeable in single task-model at all levels of omitted
labels and the bootstrapped two tailed p-value well below <0.001
reflects the results. On the other hand, in the MTL model, the
results remain stable and do not differ significantly as the
number of training labels decrease (bootstrapped two tailed p-
value of 0.097, above significance threshold). This means that the
model successfully compensates from the lack of leaf counting
data by learning from the other tasks.

The distribution of count predictions at the 25% count label
step can be seen in Figure 5. The MTL model maintains a more
leptokurtic distribution, with 91% of the predictions fall within
±1 of the ground truth, compared to the single task model where
only 50% of predictions are within ±1 of the ground truth.

Which Labels Are Most Important
Given that it is possible to obtain reliable leaf count predictions
with only the 25% of the training count labels in the MTL model,
an important question is:Which 25% of labels are most important
for the model to successfully train? Understanding this key aspect
would help guide the first annotation of a new dataset,
highlighting which 25% of images should be first (and
potentially only) annotated in a new dataset.
TABLE 2 | Results for the multitask learning (MTL) network vs. the single task
network for leaf counting task trained on the Ara2013 dataset.

Model DiC │DiC│ Agreement MSE R2

Single task 0.40 (1.09) 0.80 (0.84) 41 1.35 0.92
Multitask 0.22 (0.93) 0.67 (0.69) 45 0.93 0.95
All parameters are improved in the MTL model, with the mean squared error (MSE)
showing an improvement of 40%.
TABLE 3 | Comparison of our proposed multitask learning (MTL) model with
state-of-the-art results in leaf counting on the Computer Vision Problems in Plant
Phenotyping workshop (CVPPP) A1 test set.

Method DiC │DiC│ Agreement MSE

Romera-Paredes and Torr
(2016)**

0.20(1.40) 1.1(0.9) – –

Aich and Stavness (2017)† −0.33(1.38) 1.00(1.00) 30.3 1.97
Dobrescu et al. (2017a)† −0.39(1.17) 0.88(0.86) 33.3 1.48
Itzhaky et al. (2018) MSR† −0.27(1.21) 0.70(1.02) 57.0 1.48
Itzhaky et al. (2018) D+R** −0.12(1.11) 0.73(0.84) 45.5 1.21
Proposed Multi-Task Model† −0.09(1.10) 0.78(0.77) 39.0 1.22
The results show an improvement in mean squared error (MSE) on previous works that
use just the total leaf count as annotation. The results are similar to the current state-of-
the-art specialized leaf counting networks. The table only shows results of the leaf counting
task as there is no benchmark for the other tasks. †Method uses just the total leaf count as
annotation. **Method uses stronger annotations.
TABLE 4 | Effect of incrementally decreasing leaf count annotations in the
multitask learning (MTL) (multi) and single-task (single) models during training.

Count
Labels

100% 75% 50% 25%

DiC Single
Multi

0.40 (1.09)
−0.22 (0.93)

0.82 (1.68)
−0.14 (0.94)

1.16 (2.04)
−0.23 (0.95)

1.18 (3.98)
−0.46 (0.94)

│DiC│ Single
Multi

0.80 (0.84)
0.67 (*0.69)

1.28 (1.36)
0.62 (0.71)

1.62 (1.69)
0.75 (0.72)

2.68 (3.16)
0.75 (0.75)

Agreement Single
Multi

41
45

33
48

23
40

21
42

MSE Single
Multi

1.35
0.93

3.48
0.91

5.50
1.08

17.2
1.13

R2 Single
Multi

0.92
0.95

0.80
0.95

0.68
0.94

0.02
0.94
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All the projected leaf area (PLA) and genotype labels are still present during training of the
MTL model. The MTL model maintains steady performance in all label steps while the
single task model shows significant decline. We show the results on the leaf count task
because it is the most challenging task.
| Article 141

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Dobrescu et al. Multitask Learning in Plant Phenotyping
We evaluated three different annotating strategies and results
are shown in Table 5. Firstly, we removed the count labels
starting with the youngest plants up to the designated thresholds
of 75%, 50%, and 25%. For example, at 50% labels there were no
count labels present for the first half of the plant’s life. Using this
method, the results show similar results between 100% and 75%
count labels so we conclude that the youngest plants have little
impact on the training of the model. The results then start
Frontiers in Plant Science | www.frontiersin.org 8
declining until there is only a R2 value of 0.07 when only the
oldest 25% of the plants were present.

The next method is the reverse of the previous one, meaning
we removed the count labels starting with the oldest plants. We
observed a decline in results, even at 75% labels. At the next step
threshold, the model failed to learn any of the tasks. Lastly, we
excluded annotations from the dataset selecting at random plants
across the time span. This method, perhaps as expected, gave
FIGURE 5 | Leaf count test accuracy when training with 25% of the count labels. The bars represent the sum of predictions in the Ara2013 test set which are equal
the ground truth as well as the differences in count on either side. The green shaded region represents the region of ground truth ±1 leaves which is similar to human
accuracy. The multitask learning (MTL) variants have a ±1 accuracy of 91% while the single task models only have a 50% ± 1 accuracy and a much wider spread of
difference in count errors.
TABLE 5 | The impact on the multitask learning (MTL) model different strategies for annotating a dataset by determining the impact on the MTL model count labels and
their impact on the MTL model.

Count PLA Genotype

Selection Method Count Labels │DiC│ Agreement MSE R2 MSE Accuracy
All count labels 100% 0.67 (0.69) 45 0.93 0.95 0.021 90
Removed juvenile plants 75%

50%
25%

0.65 (0.68)
1.66 (1.73)
3.45 (2.26)

46
28
6

0.89
5.76
17.08

0.95
0.68
0.07

0.025
0.032
0.030

91
88
81

Removed mature plants 75%
50%
25%

1.36 (1.84)
4.83 (5.80)
6.91 (6.20)

34
21
17

5.27
53.03
86.16

0.71
N/A
N/A

0.015
0.013
0.019

63
73
67

Random Selection 75%
50%
25%

0.70 (0.68)
0.67 (0.71)
1.39 (1.24)

42
44
27

0.97
0.96
3.49

0.94
0.94
0.81

0.010
0.024
0.045

91
88
81
February 202
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This can also be seen as what count labels are most important when annotating a new image based plant growth dataset. The values shown were obtained training on the Ara2013
dataset. The count labels were removed in increments of 25%. First the labels of the most juvenile plants were removed. Then the labels of the oldest plants were removed. The third
category removes count labels in a random fashion at the designated percentage steps.
Article 141

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Dobrescu et al. Multitask Learning in Plant Phenotyping
results which are comparable to having an equal distribution of
labels as in Table 4. At the 25% step the results worsened, but this
could be explained due to random chance of how the count label
distribution was selected.
Determining Important Image Regions
Training a deep neural network model with less annotations
generally makes it more difficult for the model to learn. To assess
this impact in our model, we investigated what parts of the image
the network considers important. We aim to see if the most
important regions correspond to the plant or the network is
influenced by information found in the background (e.g. the soil
or plant pot). We performed the test by imposing a black sliding
window on a sample of test images and predicted the leaf count,
genotype, and PLA using our model on the images as the sliding
window was traversing it. The method developed in Zeiler and
Fergus (2014) is similarly used in Dobrescu et al. (2017a). The
aim was to understand what are the important parts of the image
from the trained network’;s perspective, as obstructing such a
part would give rise to errors in the predictions.
Frontiers in Plant Science | www.frontiersin.org 9
For the leaf counting task, we carried out this test on models
trained using 25% count annotations in MTL and single task
models to gauge if there is a difference in how the errors are
distributed in the two approaches when less annotations were
available. In the PLA estimation and genotype classification we
compare MTL models trained with 100% and 25% count labels
to determine if they were learning properly, and if they were still
focusing on relevant image parts at the two annotation
increments. The results are shown in Figure 6, showing that
the network does actually focus mostly on the image areas
corresponding to the plants. Additionally in the MTL model
the errors generated and the regions impacted are similar
between the models trained with 100% and 25% leaf count labels.
DISCUSSION

We show that an MTL deep learning approach is superior to just
single task models for the purposes of characterizing visually
challenging plant traits, such as leaf counting. We treat the leaf
counting problem as a holistic regression task. One of the
FIGURE 6 | Test showing the focus of the network using a sliding window. (A) is the original test image, along with the count ground truth. Overlaid is a black
sliding window (60 × 60 pixels), which traverses the original images. The top row is an example of a wild type plant and the bottom row is an example of a mutant.
(B) represents the prediction accuracy as the sliding window is traversing the image of the multitask learning (MTL) model (left column) and the single task model
(right column) trained with just 25% count labels. The errors are expected to be confined to the area where the plant is located as the box obscures whole or parts
of leaves the overall count prediction should decrease. (C, D) represent the sliding box test only in the MTL model for Genotype classification accuracy and
projected leaf area (PLA) estimation. These were only performed on the MTL model comparing between models trained with 100% (right column) and 25% (left
column) labels. The color bar for the PLA task shows increments in percentage points. The rows correspond to the images in part A. GT signifies the ground truth.
February 2020 | Volume 11 | Article 141

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Dobrescu et al. Multitask Learning in Plant Phenotyping
limitations of such approaches is that the network needs to learn
good image representation from each image, based only on the
total leaf count number. Employing an MTL model offers extra
information to the model easing the training process.

In agreement with Caruana (1997), an MTL model can learn
also from the other tasks leading to better generalization
performance and more robust extraction of features. The
benefits can be seen in Tables 2 and 4 where the MTL model
outperforms the single-task model. The performance of deep
neural networks is known to be strongly influenced by the
quantity of annotated data used during training (Sun et al.,
2017). By omitting leaf count labels in our approach, the model is
essentially training the leaf counting task with fewer annotated
examples and, therefore, it would be expected to have an important
negative impact on the results. However that is not the case for our
MTL model, which can overcome the extra difficulty of training
from less annotations without having a statistically significant drop
in performance. Furthermore, during training, the MTL model was
more stable when fewer count annotations were available compared
to the single task models (see Additional Figure 1 for more details).

Getting a sense of what regions the network considers important,
provides an insight if the model was successfully trained to get
information from the appropriate image areas (i.e., the plant not the
background). There is a clear difference between theMTL and single
task models in the leaf counting task when trained with just 25%
count annotations Figure 6. As the sliding box moves over the
image, the errors that produce a lower count prediction are very
specific to regions containing the plant suggesting that the model
learned well the area of interest. On the other hand, the single task
model yields more pronounced prediction errors in all regions of
the image so it does not focus on the plant region as well as theMTL
model. For the genotype classification and PLA estimation tasks we
investigated if there are differences between MTL models trained
with 100% and 25% leaf count annotations. There is no visibly
significant difference between them meaning that both models
learned to focus mostly on the plant areas.

Two of the mutants present in the Ara2013 dataset seen in Figure
3, (ein2 and adh1) are visually similar to the Col-0 wild type, making
genotype classification a challenging task. The errors we observed
occurmainly when themodelmisclassifies thesemutants as wild-type
in the early and middle part of the growth cycle. However, the overall
classification accuracy remains >90%, demonstrating that the
network is not biased towards a specific class.

When assessing the best strategy to select labeled data for the leaf
counting task in the MTL model, we can find what are the most
important time points in the plant growth stage for the network to
learn in Table 5. The network performance is directly affected when
the count labels are missing from mature plants, while minor
changes are seen when the juvenile 25% are removed, showing
similar behavior as a random selection of up to 50%. This means
that most important information for these tasks is learned from the
mature plants, while the juvenile plants contribute less in the
learning process. The other tasks reflect this trend as well. We
can conclude that the best strategy is to provide the most balanced
Frontiers in Plant Science | www.frontiersin.org 10
dataset, that provides the widest-ranging examples to the neural
network during training. Next, in order from best to worst would be
to just randomly choose which labels to provide, then omitting the
juvenile plants and lastly is to omit the mature ones.
CONCLUSIONS

In this paper we have proposed a framework for multitask deep
learning (MTL) for plant phenotyping. We showed that MTL
architecture outperforms the single-task models trained on the
same datasets. We have achieved an improvement on the state-of-
the-art for leaf counting compared to direct regression approaches for
the datasets tested. We achieve a similar performance to state-of-the-
artmethods which use additional annotations for training. To the best
of our knowledge, this is the first work that studies and compares the
benefits of MTL versus single task in plant phenotyping. We show
that the proposedMTLmodel can be used to compensate for missing
labels in plant phenotyping, leveraging other related traits. We have
also explored different leaf count annotation strategies and showed
which segments of the plant images are most important to be labeled.
Lastly we have shown that the MTL model correctly focuses on the
parts of the image that correspond to the plant and largely disregards
the background when computing prediction for all three tasks.
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