
SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTERNET OF THINGS AND
EMERGING TECHNOLOGIES IN SMART SENSING

Received February 7, 2020, accepted February 15, 2020, date of publication February 28, 2020, date of current version March 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2977114

KNN-Based Approximate Outlier Detection
Algorithm Over IoT Streaming Data
RUI ZHU 1, XIAOLING JI 1, DANYANG YU 2, ZHIYUAN TAN 3,
LIANG ZHAO 1, JIAJIA LI 1, AND XIUFENG XIA 1
1College of Computer Science, Shenyang Aerospace University, Shenyang 110036, China
2Artificial Intelligence and Big Data College, He University, Shenyang 110000, China
3School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, U.K.

Corresponding author: Liang Zhao (lzhao@sau.edu.cn)

This work was supported in part by the National Natural Science Foundation for Young Scientists of China under Grant 61702344 and
Grant 61701322, in part by the Young and Middle-Aged Science and Technology Innovation Talent Support Plan of Shenyang under Grant
RC190026, in part by the Natural Science Foundation of Liaoning Province under Grant 2019-MS-253, and in part by the Liaoning
Provincial Department of Education Science Foundation under Grant JYT19052.

ABSTRACT KNN-Based outlier detection over IoT streaming data is a fundamental problem, which
has many applications. However, due to its computational complexity, existing efforts cannot efficiently
work in the IoT streaming data. In this paper, we propose a novel framework named GAAOD(Grid-based
Approximate Average Outlier Detection) to support KNN-Based outlier detection over IoT streaming data.
Firstly, GAAOD introduces a grid-based index to manage summary information of streaming data. It can
self-adaptively adjust the resolution of cells, and achieve the goal of efficiently filtering objects that almost
cannot become outliers. Secondly, GAAOD uses a min-heap-based algorithm to compute the distance
upper-/lower-bound between objects and their k-th nearest neighbors respectively. Thirdly,GAAOD utilizes a
k-skyband based algorithm tomaintain outliers and candidate outliers. Theoretical analysis and experimental
results verify the efficiency and accuracy of GAAOD.

INDEX TERMS IoT streaming data, KNN-based outliers, indexes, error guarantee.

I. INTRODUCTION
With the development of information science and technol-
ogy [1]–[8], outlier detection [9] becomes more and more
important. In this paper, we study the problem of KNN-Based
outlier detection over IoT streaming data. It is a fundamen-
tal problem in the domain of data mining, which has been
paid more and more attention as many IoT applications need
to detect anomalies as soon as they occur. The applica-
tions range from forest fire protection system, mobile traffic
monitoring to health-care monitoring and geological disaster
prediction [10]. All these applications would benefit from
identifying those critical events in real-time [11]–[17].

For example, as an important application in the domain
of IoT [32]–[37], a forest fire protection system uses mul-
titudes of sensors to monitor the temperature, humidity and
air pressure in a given region. These sensors timely send
collected data to the system. When a sensor returns an object
which is different from others, it means the region that the

The associate editor coordinating the review of this manuscript and

approving it for publication was Yuyu Yin .

sensor located may have the risk of fire. Therefore, outlier
detection is a key component of forest fire protection sys-
tem. In addition, collected data are continuously send to the
system, we regard this type of data as IoT streaming data.
Therefore, in this paper, we study the problem of outlier
detection over IoT streaming data(short for streaming data).

Multitudes of methods could be used for evaluating
whether an object in a data set D is an outlier. Among all
of them, distance-based outlier detection is the most popular
one [18]. The key behind it is if an object is far from most
objects in the data set, this object is regarded as an outlier.
Distance-based outlier detection could be further divided into
two types: threshold-based and neighbour-based. For the
first one, given two parameters k and r , an object o is an
outlier if the number of points within a distance r from o
is smaller than k . For the second one, given another two
parameters k and n, outliers are the top-n objects that have
the largest distances to their k-th nearest neighbors in the
dataset.

Due to the importance of outlier detection over stream-
ing data, many scholars have studied this problem, but

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 42749

https://orcid.org/0000-0002-7033-8643
https://orcid.org/0000-0002-7043-0140
https://orcid.org/0000-0003-4265-5438
https://orcid.org/0000-0001-5420-2554
https://orcid.org/0000-0001-5829-6850
https://orcid.org/0000-0003-1565-1036
https://orcid.org/0000-0002-4260-6479
https://orcid.org/0000-0001-7565-4111

R. Zhu et al.: KNN-Based Approximate Outlier Detection Algorithm Over IoT Streaming Data

most of them focus on the threshold-based outlier detection.
Yamanishi and Takeuchi [19] propose the framework Smart
Sifter. It uses the online discount learning algorithm to
incrementally learn a probability model. In addition, it uses
this model for outlier detection. Zhang et al. [20] propose
a framework named SPOT(short for Stream Projected Out-
lier DeTector) for outlier detection in high-dimensional data
streams. Cao et al. [21] propose the Thresh-LEAP algorithm.
Kontaki et al. [22] propose a micro-clustering based algo-
rithm named MCOD.

Their key idea is maintaining the last k arrived neighbours
for each object, using maintenance results to evaluate which
objects have chance to become outliers or cannot become
outliers before they expire from the window. For objects that
cannot become outliers, these algorithms need not tomaintain
any neighbour information for them. In other words, these
algorithms only need tomaintain the last k arrived neighbours
for a small number of objects in the window.

However, these efforts only can support threshold-based
outlier detection. A serious issue of threshold-based outlier
detection is that it is difficult to select a proper distance
threshold, which requires users to have sufficient background
knowledge. By contrast, neighbour-based outlier detec-
tion uses distance relationships among objects for evaluating
which objects should be regarded as outliers. This kind of def-
inition does not require users to have sufficient background
knowledge [23]. However, its computational complexity is
high, and can not efficiently work under IoT streaming data
environments.

To solve this problem, this paper studies the problem of
approximate neighbour-based outlier detection over sliding
window. Without loss of generality, the query window can be
either time- or count-based. In both cases, the query window
has a fixed window size or a fixed slide (either a time inter-
val or an object count). Formally, in a count-based window,
it returns the n outliers in the query window containing N
objects whenever the window slides; in a time-based window,
it returns the n outliers in the last N time units whenever the
window slides [11]. Given an approximate outlier detection
over sliding window 〈N , s, n, k, ρ〉, it monitors the window,
and returns approximate outliers to the system whenever the
window slides. Let {o1, o2, . . . , on} be the exact outliers,
{a1, a2, . . . , an} be the approximate outliers. We should guar-
antee that D(oi)

D(ai)
≤ ρ. Here, D(oi) refers to the distance

between oi and its k-th nearest neighbour. We will discuss
the problem definition in details in Section II.

In order to efficiently support approximate neighbour-
based outlier detection, this paper proposes a novel frame-
work named GAAOD(short for Grid-based Approximate
Average Outlier Detection). GAAOD first learns the distance
distribution among objects and their k-th nearest neighbours.
Based on the learning result, GAAOD constructs a grid-
based index I to maintain streaming data in the window.
We want to highlight that a benefit of GAAOD is that it could
self-adaptively adjust the resolution of grid file according
to the distance relationship among objects, leading that it

TABLE 1. The summary of notations.

can efficiently support approximate neighbour-based outlier
detection. Secondly, we propose a novel outlier candidate
algorithm. It uses the key of k-skybands algorithm to evaluate
which objects may become outliers in a relatively high prob-
ability, and dynamic adjust candidate set accordingly. The
main contributions of this paper are summarized as follows:

• A Self-Adaptive Index: We propose a grid-based index
to maintain streaming data. We find that the cost of
maintaining each object in the index is O(1) per object.
In addition, we propose a novel algorithm to self-
adaptively adjust the cell size of the grid file according
to the distribution of outliers. In this way, we could filter
non-outliers as fast as possible when they arrive in the
window.

• The Approximate K Nearest Neighbour Algorithm
MAKN: Based on our proposed index, we propose a
min-heap based algorithm to compute the approximate
distance upper-bound/lower-bound between objects and
their k-th nearest neighbours. Compared with the exact
algorithms, the cost overall could be reduced a lot.

• The Candidate Maintenance Algorithm: We propose
a k-skyband based method to maintain objects which
may become outliers. The benefit is, when some objects
expire from the window, we could efficiently know
which objects may become outliers. In addition, it could
efficiently remove candidates which almost cannot
become outliers.

Section II reviews the related work. Section III introduces
the definition of KNN-based approximate outlier detection
over sliding window. Section IV describes the framework
GAAOD. Section V gives the experimental results and analy-
sis. Section VI concludes this paper.

II. RELATED WORK
This section reviews the algorithms about the problem of
continuous outlier detection over streaming data. With the
development of data management [24]–[28], this problem has
been extensively studied.

Yamanishi et al.propose the algorithm named Smart-
Sifter. It uses an on-line discount learning algorithm to incre-
mentally learn the probability hybridmodel [19]. Considering
the factor of drift, outliers are calculated according to the
probability fitting value of learning hybridmodel. In addition,

42750 VOLUME 8, 2020

R. Zhu et al.: KNN-Based Approximate Outlier Detection Algorithm Over IoT Streaming Data

online discounts can also be used tomix attribute data streams
to maintain the frequency of a set of attribute values [29].

Angiulli and Fassetti [30] propose an algorithm named
STORM. It is used to detect outliers accurately. The algo-
rithm maintains objects in the window via an index structure.
In addition, when an object o arrives in the window, STORM
firstly inserts o into the index. Secondly, it searches the k last
arrived neighbours of o. Thirdly, it deletes expired objects.
Last of all, STORM checks which objects are outliers via
monitoring objects’ neighbours.

Yang et al. [31] suggest that maintaining neighborhood
relationships among objects may spend relatively high cost.
Therefore, they use an important feature of sliding windows,
namely the ‘‘predictability’’ of the expiration objects to eval-
uate which objects have chance(or have no chance) to become
outliers. In particularly, given objects in the current window,
they predict the pattern structure in subsequent windows by
only considering objects in these windows (the objects in the
current window). These predicted pattern structures can be
abstracted as ‘‘predictive view’’ of each future window, and
the outliers can be calculated by using predictive view.

Zhang et al. [20] propose the framework SPOT(short
for Stream Outlier DeTector) for outlier detection in high-
dimensional data streams. The key behind it is capturing the
statistical information such as relative density and reversely
relative standard deviation of objects to support outlier detec-
tion in the high-dimensional streaming data environment.

Kontaki et al. [22] propose a micro-clustering based algo-
rithm named MCOD. The key behind it is that if there exist k
objects contained in a circle with radius r

2 , the corresponding
circle could be regarded as a micro-clustering. One important
property is if the number of objects in a micro-clustering
is more than k , these objects all cannot become outliers.
Compared with other algorithms, MCOD could effectively
reduce the cost of range query.

Cao et al. [21] propose the algorithm LEAP in 2014.
It contains two optimization principles, that are, minimum
detection and life-first. For the first one, it only searches
for objects’ neighbors when necessary. In this way, it could
effectively minimizes the number of neighbors that should be
accessed. In addition, for each object o, once the number of
neighbors that should be monitored reduces to 0, the algo-
rithm need not to monitor o any longer. For the second one,
L. Cao et al. find that objects arrive later are more important
than the ones arrive earlier. Through the above two principles,
the LEAP algorithm can effectively reduce both CPU cost and
space cost.
Discussion: We find that most of these algorithms can

only be used for supporting threshold-based outlier detection.
However, they cannot be used for supporting neighbour-
based outlier detection. The reason behind it is that, under
neighbour-based outlier detection, objects’ score are timely
changed when objects arrive in the window/expire from the
window. All objects have chance to become outliers before
they expire from the window.

III. PROBLEM DEFINITION
Definition 1 (Distance): Let o1 and o2 be two objects

in d-dimensional space. They are expressed as the
tuple 〈o1[1], o1[2], . . . , o1[d]〉 and 〈o2[1], o2[2], . . . , o2[d]〉
respectively. The distance between o1 and o2, denoted by
D(o1, o2), equals to

√∑
(o1[i]− o2[i])2.

According to different evaluation methods, the following
two definitions can be used to evaluate whether a given object
is an outlier, which are threshold-based and neighbour-based.
For simplicity, let o be an object in the data set D, ok be the
k-th nearest neighbour of o. We use D(o, ok) as the score of
o, i.e., denoted by F(o).
Definition 2 (Threshold-Based Outliers): Let r and k be

two parameters,D be a set of d−dimensional objects.We call
an object o ∈ D as an outlier if the number of points within a
distance r from o is smaller than k .
Definition 3 (Neighbour-Based Outliers): Let n and k

be two parameters, D be a set of d−dimensional objects.
Outliers are the top-n objects that have the highest scores.
Definition 4 (Continuous Neighbour-BasedOutlier Detec-

tion): Let W be the query window, q〈n, k〉 be the neighbour-
based outlier detection, q monitors the window, when the
window slides, q returns n objects with the highest scores.

FIGURE 1. Neighbour-based outliers detection over sliding
window(k = 2, n = 1). (a) Under Window Wi . (b) Under Window Wi+1.

Take an example in Figure 1. Under the window
Wi, the distance between o1 and its 1-nearest neighbour
(and 2-nearest neighbour) is r1(and r2). The distance between
o2 and its 1-nearest neighbour (and 2-nearest neighbour) is
r3(and r4). Since k = 2, n = 1 and r4 ≥ r2, o2 is regarded
as a neighbour-based outlier underWi. By contrast, when the
window slides fromWi toWi+1, o3 expires from the window.
At that moment, the distance between o1 and its 2-nearest
neighbour turns to r5. At that moment, o1 is regarded as the
neighbour-based outlier underWi+1.

Compared with neighbour-based outlier detection,
distance-based outliers detection uses the distance thresh-
old to evaluate whether an object is an outlier, but it is
difficult to find a suitable threshold r . Neighbour-based
outliers detection uses distance relationships among objects
to evaluate whether an object is an outlier. However, its com-
putational complexity is high, and can not efficiently work
under streaming data environments. Therefore, we attempt
to propose an approximate algorithm to solve the neighbour-
based outlier detection. It is rather surprising that such a small
sacrifice of accuracy brings tremendous gain in running time.

VOLUME 8, 2020 42751

R. Zhu et al.: KNN-Based Approximate Outlier Detection Algorithm Over IoT Streaming Data

For simplicity, {r1, r2, . . . , rn} refers to the n exact neighbour-
based outliers, and {a1, a2, . . . , an} refers to the n approxi-
mate neighbour-based outliers. D(o, ok) refers to the distance
between o and its k−th nearest neighbour.
Definition 5 (Continuous Approximate Neighbour-Based

Outlier Detection): Let W be the query window, q〈n, k, ρ〉
be the approximate outlier detection, qmonitors the window,
when the window slides, q returns n approximate outliers. For

each ri and ai, they should satisfy that
D(ri,rki)
D(ai,aki)

≤ ρ.

For example, let O{o1, o2, . . . , on} be a set of objects in
the window, n = 2, and k = 2. Among all of them, the exact
results are {oi, oj}, their corresponding scores are {20, 18}.
If we set ρ to 2, we could use {o′i, o

′
j} as the approximate query

results. Here, their corresponding scores are {15, 12}.

IV. THE FRAMEWORK GAAOD
In this section, the framework GAAOD is proposed to sup-
port approximate neighbour-based outlier detection over
sliding window. Section IV-A is the framework overview.
In Section IV-B, we propose a grid-based index to maintain
streaming data. Section IV-C discusses the approximate k
nearest neighbour searching algorithm. Last of this section,
we discuss the candidate outliers maintenance.

A. THE FRAMEWORK OVERVIEW
When the window slides, a newly arrived object oin flows
into the window, another object oout expires from the window.
At that moment, we first insert oin into the streaming data set
S, and remove the expired object oout from S. Next, we insert
oin into the grid-based index named GBOI(short for grid-
based outliers index).

Here, GBOI maintains the position information of objects.
Specifically, we compute the number of objects in each cell.
In addition, we use an inverted-list to maintain objects in each
cell based on their arrived order. In order to find a suitable
partition resolution for GBOI, the scores of historical outliers
are considered. The benefit is once we know the distribution
of outliers’ scores, we can associate cells’ size with a proper
size. In this way, we can efficiently evaluate which objects
may become outliers via GBOI. More important, GBOI can
self-adaptively adjust grid file resolution according to the out-
liers’ scores distribution. The index maintenance algorithm
will be discussed in Section IV-B.
When processing a newly arrived object oin, we first find

the cell c that contains oin. Next, we find all the neighbour
cells of c. Here, we call a cell c′ as the neighbour cell of c
if the minimal distance between these two cells is 0. Thirdly,
we access these neighbour cells for finding approximate k-
th nearest neighbours of oin. In particularly, if the searching
results satisfy the following two conditions, we do not regard
it as a candidate outlier. Otherwise, we regard it as a candidate
outlier, and insert it into the candidate set C . Here, l refers
to the cell size. The approximate algorithm details will be
discussed in Section IV-C.

Algorithm 1 The Framework Overview
Input: Index GBOI G, newly arrived object oin,expired

object oout
Output: Candidate Set C

1 Streaming data set S ← S ∪ oin,S ← S − oout ;
2 insert(G, oin), delete(G, oout);
3 K(oin)← searchRange(oin);
4 if |K(oin)|≥ k then
5 Candidate C ← C ∪ oin;
6 SKYK(oin)← searchSKY(oin);

7 if Kt (oin) ≥ Tn − N
2 then

8 Candidate C ← C ∪ oin;
9 SKYK(oin)← searchSKY(oin);

10 O← findImpact(oin);
11 for i from 1 to |O| do
12 oi.SKY ← update();
13 if oi.SKY = ∅ then
14 C ← C − oi;

15 if |C| = θmax then
16 C ←remove(θmax − θmin);
17 τ ← reset();
18 return;

• there are at least k objects whose distance to oin are
smaller than l

√
d ;

• let o.t be the arrival order of o. For each object o in the
query result set, oin.t − o.t ≤ N

2 is satisfied;

Candidates in C are maintained by an index named
M-Tree. In addition, we associate each object in C with an
inverted-list, denoted by SKYK(o). It maintains the k-skyband
neighbours of o. Given two object o1 and o2, if D(o, o1)≤
D(o, o2), and o1 arrives later than o2, we say o1 dominates o2
under o. If o1 cannot be dominated by k objects, we regard o1
as a k−skyband neighbour of o. The candidate maintenance
algorithm will be discussed in Section IV-D.

In particularly, after insertion, if the number of objects
contained in the candidate set is larger than a parameter
mmax , we re-construct the index GBOI and the candidate set
respectively. When an object oexp expires from the window,
we should check which objects may become outliers via
accessing the candidate set C .

B. THE GRID-BASED INDEX GBOI
This section discusses how to manage streaming data in the
window. Compared with the traditional grid file, the key of
GBOI is to find a suitable cell size, which helps us efficiently
evaluate whether an object may become an outlier. Intuitively,
if the cell size is small, we have to access many cells so as
to find enough neighbours. By contrast, if the cell size is
large, the error may turn to large, leading that the accuracy
of our proposed algorithm will be reduced. Therefore, it is
very important to select a proper cell size.

42752 VOLUME 8, 2020

R. Zhu et al.: KNN-Based Approximate Outlier Detection Algorithm Over IoT Streaming Data

FIGURE 2. The framework overview. (a) The Grid-based index. (b) The M-Tree structure. (c) The
2-skybands.

Specifically, the algorithm uses the scores of historical
outliers to find a suitable cell size. Let H be the historical
outlier set, U(H) refers to the |H|20 -th highest score among all
outliers in H. According to Theorem 6, for each cell c ∈ I ,
if we set the size of c to U(H), we can efficiently evaluate
whether an object could become an outlier in most cases. For
simplicity, let o be an object, F(o) refers to its score, Fn(S)
refers to the n-th highest score among all objects in S.
Theorem 6: Let H be the historical outlier set, o be an

object contained in the cell c, and N(c) be the neighbour cells
of c. If we set the cell size to U(H), and there exists k objects
in N(c)∪cwhose distance to o is smaller than U(H), it cannot
become an outlier with probability at least 0.95.

Proof: According to 3-sigma-rule, if data scale is large
enough, data distribution obeys normal distribution. In other
words, we could use normal distribution N (mp,

√
mp(1− p))

to approximate Pr(F(o) ≥ Fn(D)) according to demovire-
laplace theorem. Here, m equals to |H|, p equals to 0.05.
Since Pr(F(o) ≥ Fn(D)) ≈ 8(n−mp

√
mp(1−p)

). If 8(n−mp
√
mp(1−p)

) ≥
0.95, we could obtain a suitable threshold. Thus, if there
exists k objects in N(c)∪c whose distance to o is smaller than
l, it cannot become an outlier with probability at least 0.95.

Note, the distribution of streaming data may be timely
changed, we should adjust the cell size, and re-construct
GBOI in some cases. Specially, after n objects flow into
the window and another n objects expire from the window,
we compute how many outliers having scores higher than
U(H). If the corresponding count is larger than 0.1 × |H|,
it means the distribution of streaming data is changed. At that
moment, we should update GBOI accordingly.

C. THE APPROXIMATE K-NEAREST NEIGHBOR
SEARCHING ALGORITHM
This section proposes the algorithm MAKS(short for Max-
heap based Approximate k-nearest Neighbor Searching) to
compute the score of an object, i.e., find the approximately
k-th nearest neighbour for each object.

Let oin be a newly arrived objects. We first find the cell
c that contains oin. Next, we find the neighbour cells of c,
i.e., N(c). Thirdly, we use objects in c and N(c) for evalu-
ating whether oin may become an outlier. For simplicity, let

{c1, c2, . . . , cm} be a set of cells contained in themax-heapH .
Qi be a queue that maintains objects in the cell ci.Qi[0] refers
to the element located at the head of Qi. In this paper, we use
{Q1[0],Q2[0], . . . ,Qm[0]} as keys for constructing the max-
heap H .
In order to achieve this goal, we construct a max-heap H .

Elements in H are objects contained in c and the neighbour
cells of c. After constructing, we are going to find the approx-
imate k-nearest neighbor for oin, i.e., compute the score of
oin. Specially, let ci be the cell located at the top of H .
We first access Qi[0], and then insert it into a set S. Next,
we update the key of ci to Qi[1], and update H accordingly.
In particularly, if the size of S achieves to k , the searching is
terminated. In addition, if all elements in Qi are all inserted
into S, we remove Qi from H . Finally, we compute the score
of oin according to objects in S. Here, the score of oin equals to
the distance between oin and its k− nearest neighbour among
objects in the window. Lastly, we evaluate whether oin should
be regarded as an outlier or a candidate outlier via the rule
discussed in Section IV-A.

FIGURE 3. Approximate K− nearest neighbour search. (a) The searching
region. (b) The heap-based searching.

Take an example in Figure 3. Let D be a set of
2-dimensional data, o be a newly arrived object. After finding
the cell that contains o, we construct a max-heap with size 9.
Among all objects contained in these cells, since o5 arrives
latest of all, it is located at the top of H . In addition, since
there is no object contained in the cell e2 and e6, we only
maintain 7 queues in the max-heap H . After constructing H ,
we first insert o5 into the set S. Next, we update H . Since n
equals to 5, when |S| achieves to 5, the searching algorithm
is terminated.

VOLUME 8, 2020 42753

R. Zhu et al.: KNN-Based Approximate Outlier Detection Algorithm Over IoT Streaming Data

Algorithm 2 The Searching Algorithm
Input: Index GBOI G, newly arrived object oin
Output: Candidate Set C

1 Cell c← search(oin,G);
2 Cell Set CS ← neighbourCell(c,G) ;
3 Max-heap H ← construction(CS);
4 while H 6= ∅ ∨ |S| ≤ k do
5 S ← S∪Top(H);
6 if Top(H)= ∅ then
7 H ← H−Top(H);

8 update(H);

9 if |S| ≤ k∨minT(S)≤ TN − N
2 then

10 C ← C ∪ oin;

11 return;

FIGURE 4. The error analysis.

The Error Analysis:We now discuss the error analysis. Let
o be an object, c be the cell that contains c. As is shown in Fig-
ure 4, we only consider the objects in c and the neighbour
cells of c. Therefore, the maximal distance between o and
objects in c∪N(c) is bounded by 2

√
dr . For each object out

of c∪N(c), the minimal distance between o and o′ is bounded
by r . Therefore, the error ratio is smaller than 2

√
dr
r , that

is 2
√
d .

D. THE CANDIDATE MAINTENANCE ALGORITHM
In this section, we discuss how to maintain candidate outliers
in the window. Before discussing the algorithm, we first
propose the concept of dominance.
Definition 7 (Dominance): Let W be the sliding window

W , o, o1 and o2 be three objects contained inW . If o1 arrives
later than that of o2, and D(o, o1) ≤ D(o, o2), we say o1
dominates o2 under o.

In particularly, if o2 is dominated by another k objects
under o, o2 have no chance to become a k nearest neighbour
of o. We call it as a non-k-skyband neighbour of o. In this
paper, we call SKYK(o) as the k-skyband neighbour set of
o. As shown in Figure 5, assuming that they satisfy that
o1.t < o2.t < o3.t < 04.t < o5.t , since o2 arrives later than
that of o1 and D(o, o2) ≤ D(o, o1), we say that o2 dominates
o1 under o. Similarly, o1 is also dominated by o4, it can not
become a k nearest neighbour of o. By contrast, o5 arrives
the latest of all. It also has chance to become an outlier of o.
Therefore, SKYK(o) is {o2, o3, o4, o5}.

FIGURE 5. Continuous K− nearest neighbour query over sliding window.

Algorithm 3 The SKYK Maintenance Algorithm
Input: Index SKYM M, newly arrived object oin
Output: Candidate Set C

1 Q← search(M,oin,θ);
2 for i from 1 to |Q| do
3 while D(Qi, Qi.oj)< D(Q[i].oj, oin) do
4 Qi.oj.s← Qi.oj.s+ 1;
5 if Qi.oj.s = k then
6 Qi← Qi − Qi.oj;

7 if F(Qi) ≥ θ then
8 C ← C − Qi;

9 if F(oin, k) ≥ θ then
10 construct(oin)
11 return;

After discussing the concept of dominance and SKYK(o),
in the following, we will formally discuss the candidate main-
tenance algorithm. Let o be a candidate outlier. We first insert
o into the candidate set C . Here, objects in C are maintained
by an index namedM-Tree. Next, we construct SKYK(o) for o.
As is depicted in Algorithm 3, we first submit a range

query to the system for finding objects contained in the
query region. Let Q be the searching result set. We sort them
according to their arrived order. Then, we scan Q to find
k−skyband neighbours of o. To be more specifically, let Qs
be the scanned objects set. We use amax-heap to maintain the
k nearest neighbours of o in Qs. For each object o′ ∈ Q−Qs,
if F(o′) ≥max(H), we delete it directly. Otherwise, we insert
it into SKYK(o) and H respectively. Next, we adjust the max-
heap H . In addition, we compute the dominate number of o′.

Thirdly, we update the k−skyband based structure named
SKYK for other candidate outliers. As is shown in algorithm 4,
for each object o′ ∈ C , if it is contained in the query region,
we first compute the distance between o and o′, i.e., D(o, o′).
Next, we access SKYK(o′). For each object osi ∈ SKYK(o′),
if D(o, osi)≤ D(o′, osi), we set osi .s to osi .s + 1. Here, osi .s
refers to the dominate number of osi under o

′. After accessing
SKYK(o′), if it satisfies the following two conditions dis-
cussed as above, we remove it from the candidate set.
Discussion: If we cannot find n objects with scores lower

than 2
√
dl, it means other objects may become query results.

In these cases, we should re-construct the GBOI and the
candidate set C . For the limitation of space, we skip the

42754 VOLUME 8, 2020

R. Zhu et al.: KNN-Based Approximate Outlier Detection Algorithm Over IoT Streaming Data

FIGURE 6. Running time comparison under different window size.

Algorithm 4 The SKY Construction Algorithm
Input: Object o, newly arrived object oin
Output: SKYK SKYK(oin)

1 Q← search(I,oin,θ);
2 sort(Q);
3 for i from 1 to |Q| do
4 if |H | < k ∨ F(H) < D(Q[i], oin) then
5 H ← H ∪ Q[i];
6 if |H | = k + 1 then
7 H ← H ∪ max(H);

8 while H [i] < Q[i], oin do
9 Q[i]← Q[i]+ 1;

10 return;

details. In addition, when we re-construct the index GBOI,
sincewe have to re-map all objects in thewindow into the new
index, the computational cost is high. We want to highlight
that, in most applications, the distribution of streaming data
is not timely changed, we need not to re-construct GBOI and
candidate set in most cases.

V. EXPERIMENTAL EVALUATION
In this section, we conduct extensive experiments to demon-
strate the efficiency of GAAOD. In the following, we first
explain the settings of our experiments, and then report our
findings.

A. EXPERIMENTAL SETTING
1) DATA SET
In this paper, three real data sets are used for evaluat-
ing our proposed framework. We call them as TAO, Stock
and HPC. Here, Stock contains 104,8575 records. It is a
1-dimensional data set. TAO and HPC contain 57,5648 and
248,692 records respectively. They are a 3-dimensional data
set and a 7-dimensional data set. ForHPC, we select 3 dimen-
sions for evaluating.

TABLE 2. Parameter settings.

2) PARAMETERS SETTING
In our experiments, we evaluate algorithms differences via
the following metrics, which are response time and space
cost. Here, response time is the total running time we spend
after processing all objects in a data set. Space cost refers to
the average memory we consume. Besides, we evaluate algo-
rithms differences via the following four parameters. They
are the window size N , the number s of new objects that slide
into the window whenever the window slides. In addition,
we also compare algorithms differences under different k
and n. Table 2 with the default values are bolded. Specially,
the parameter N ranges from 1KB to 20KBwith default value
10KB. The parameter s ranges from 10−2N to N

5 with default
value N

10 . The parameter k ranges from 5 to 100 with default
value 20. Similarly, the parameter n ranges from 5 to 100 with
default value 20.

3) EXPERIMENT METHOD
When implementation, objects in the each data set are all
inserted into the memory. Next, we use two pointers for
simulating the sliding window. Since the method is simple,
we skip the details for saving space. After processing all
objects in the dataset, we compute the average CPU time and
memory we consume. All the algorithms are implemented
with C++, and all the experiments are conducted on a CPU
i7 with 16GB memory, running Microsoft Windows 7.

B. ALGORITHM PERFORMANCE
In this section, we compare our proposed frameworkGAAOD
with that of KNN-LEAP. First of all, we evaluate their perfor-
mance under different window sizes. The other parameters
are default values.

VOLUME 8, 2020 42755

R. Zhu et al.: KNN-Based Approximate Outlier Detection Algorithm Over IoT Streaming Data

FIGURE 7. Space cost comparison under different window size.

FIGURE 8. Running time comparison under different s.

FIGURE 9. Space cost comparison under different s.

As is depicted in Figure 6, GAAOD performs the best
of all. The reason behind it is, for one thing, we use a
grid-based index to manage streaming data in the window.
Therefore, we can use O(1) cost to insert an object into the
window, or delete an object from the window. In addition,
in most cases, we can use O(k log k) cost for finding an
object’s k-th nearest neighbour. In other words, we can use
low cost for evaluating whether an object has relatively high
chance to become an outlier. By contrast, KNN-LEAP should
spend relatively high cost to compute the distance between
objects and their corresponding k-th nearest neighbour.
For the space cost, as is depicted in Figure 7, GAAOD also

performs best of all. The reason behind it is we only need
to maintain the SKYK structure for a small number of objects.
For the others, we onlymaintain them in the index. Therefore,
the space cost of GAAOD is the smallest of all.

Next, we compare GAAOD with other algorithms under
different parameter s. The experiment results are shown
in Figure 8. We find that GAAOD performs best of all.
In addition, our proposed framework is insensitive to the
parameter s. To be more specifically, with the increasing of s,
the performance of both GAAOD and KNN-LEAP all turn to
better. The reason behind is the larger the s, the more objects
having the same arrived order. It means we need to construct
the SKYK structure for fewer objects. Therefore, the CPU cost
they spend all turn to small.

For the space cost, as is depicted in Figure 9, GAAOD
also performs better than that of KNN-LEAP. Similarly, with
the increasing of the parameter s, the space cost of both
KNN-LEAP and GAAOD all turn to small. The main reason
behind it is when s turns to large, we only need to maintain
SKY structure for a small number of objects.

42756 VOLUME 8, 2020

R. Zhu et al.: KNN-Based Approximate Outlier Detection Algorithm Over IoT Streaming Data

FIGURE 10. Running time comparison under different k .

FIGURE 11. Space cost comparison under different k .

FIGURE 12. Running time comparison under different n.

FIGURE 13. Space cost comparison under different n.

Thirdly, we compare GAAOD with KNN-LEAP under dif-
ferent k . The experiment results are shown in Figure 10
and Figure 11. We find that the running time of these
algorithms all increases with the parameter k . However,
the running time of KNN-LEAP goes up more rapidly than

that of GAAOD. The reason is GAAOD uses an approx-
imate algorithm to search k nearest neighbours for each
object. In this way, we can use lower computational cost for
evaluating whether an object has no chance to become an
outlier.

VOLUME 8, 2020 42757

R. Zhu et al.: KNN-Based Approximate Outlier Detection Algorithm Over IoT Streaming Data

For the space cost, GAAOD also consumes smaller cost
than that of KNN-LEAP. Besides the reasons discussed as
above, another important reason is we use an important prop-
erty of sliding window to enhance algorithm performance.
That is, we can use the arrival order relationship among
objects to predict which objects may(or not) become an out-
lier. In this way, we only need to maintain a small number of
candidates.

Next, we compare GAAOD with KNN-LEAP under differ-
ent n. The experiment results are shown in Figure 12 and
Figure 13.We find thatGAAOD also performs better than that
of KNN-LEAP. The reason is GAAOD only needs to maintain
a smaller number of candidates. Another important reason is
we use a more efficient method to maintain SKYK structure.
In this way, the CPU cost of GAAOD could be reduced a lot.
For the space cost, as is depicted in Figure 13, GAAOD

also performs best of all. Similar with the reason discussed
as above, we only need to maintain the SKYK structure for a
small number of candidates.

VI. CONCLUSION
In this paper, we study the problem of KNN-based approxi-
mate outlier detection over IoT Streaming Data. In order to
solve this problem, we first propose a grid file based index
to manage streaming data in the window. Next, we propose a
novel algorithm to answer approximate KNN search. Thirdly,
we propose a k−skyband basedmethod tomaintain candidate
outliers in the window. Theoretical analysis and experiment
verify the efficiency and accuracy of our proposed algorithms

REFERENCES
[1] L. Qi, R. Wang, C. Hu, S. Li, Q. He, and X. Xu, ‘‘Time-aware distributed

service recommendation with privacy-preservation,’’ Inf. Sci., vol. 480,
pp. 354–364, Apr. 2019.

[2] L. Qi, Y. Chen, Y. Yuan, S. Fu, X. Zhang, andX. Xu, ‘‘AQoS-aware virtual
machine scheduling method for energy conservation in cloud-based cyber-
physical systems,’’World Wide Web J., May 2019.

[3] J. Yu, Z. Kuang, B. Zhang, W. Zhang, D. Lin, and J. Fan, ‘‘Leveraging
content sensitiveness and user trustworthiness to recommend fine-grained
privacy settings for social image sharing,’’ IEEE Trans. Inf. Forensics
Secur., vol. 13, no. 5, pp. 1317–1332, May 2018.

[4] J. Yu, C. Zhu, J. Zhang, Q. Huang, and D. Tao, ‘‘Spatial pyramid-enhanced
NetVLAD with weighted triplet loss for place recognition,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 2, pp. 661–674, Feb. 2020.

[5] J. Yu, M. Tan, H. Zhang, D. Tao, and Y. Rui, ‘‘Hierarchical deep click fea-
ture prediction for fine-grained image recognition,’’ IEEE Trans. Pattern
Anal. Mach. Intell., to be published.

[6] J. Yu, J. Li, Z. Yu, and Q. Huang, ‘‘Multimodal transformer with multi-
view visual representation for image captioning,’’ CoRR, 2019.

[7] H. Gao, W. Huang, and X. Yang, ‘‘Applying probabilistic model checking
to path planning in an intelligent transportation system using mobility
trajectories and their statistical data,’’ Intell. Autom. Soft Comput., vol. 25,
no. 3, pp. 547–559, 2019.

[8] H. Gao, W. Huang, Y. Duan, X. Yang, and Q. Zou, ‘‘Research on cost-
driven services composition in an uncertain environment,’’ J. Internet
Technol., vol. 20, no. 3, pp. 755–769, 2019.

[9] J. Pu, Y. Wang, X. Liu, and X. Zhang, ‘‘STLP-OD: Spatial and tempo-
ral label propagation for traffic outlier detection,’’ IEEE Access, vol. 7,
pp. 63036–63044, 2019.

[10] X. Qin, L. Cao, A. E. Rundensteiner, and S. Madden, ‘‘Scalable kernel
density estimation-based local outlier detection over large data streams,’’
in Proc. 22nd Int. Conf. Extending Database Technol. (EDBT), Lisbon,
Portugal, Mar. 2019, pp. 421–432.

[11] R. Zhu, B. Wang, X. Yang, B. Zheng, and G. Wang, ‘‘SAP: Improving
continuous top-K queries over streaming data,’’ IEEE Trans. Knowl. Data
Eng., vol. 29, no. 6, pp. 1310–1328, Jun. 2017.

[12] C. Zong, X. Xia, B. Wang, X. Yang, J. Li, X. Liu, and A. Zhu, ‘‘Answer-
ing why-not questions on structural graph clustering,’’ in Proc. 23rd Int.
Conf. Database Syst. Adv. Appl. (DASFAA), Gold Coast, QLD, Australia,
May 2018, pp. 255–271.

[13] R. Zhu, B. Wang, S. Luo, X. Yang, and G. Wang, ‘‘S-MRST: A novel
framework for indexing uncertain data,’’ World Wide Web, vol. 20, no. 4,
pp. 697–727, Sep. 2016.

[14] B. Wang, R. Zhu, X. Yang, and G. Wang, ‘‘Top-K representative docu-
ments query over geo-textual data stream,’’World Wide Web, vol. 21, no. 2,
pp. 537–555, Jul. 2017.

[15] R. Zhu, B. Wang, S.-Y. Luo, X.-C. Yang, and G.-R. Wang, ‘‘Approximate
continuous top-k query over sliding window,’’ J. Comput. Sci. Technol.,
vol. 32, no. 1, pp. 93–109, Jan. 2017.

[16] B. Wang, R. Zhu, S. Luo, X. Yang, and G. Wang, ‘‘H-MRST: A novel
framework for supporting probability degree range query using extreme
learning machine,’’ Cognit. Comput., vol. 9, no. 1, pp. 68–80, 2017.

[17] B. Wang, R. Zhu, S. Zhang, Z. Zhao, X. Yang, and G. Wang, ‘‘PPVF:
A novel framework for supporting path planning over carpooling,’’ IEEE
Access, vol. 7, pp. 10627–10643, 2019.

[18] S. Yoon, J.-G. Lee, and B. S. Lee, ‘‘NETS: Extremely fast outlier detection
from a data stream via set-based processing,’’ Proc. VLDB Endowment,
vol. 12, no. 11, pp. 1303–1315, Jul. 2019.

[19] K. Yamanishi and J.-I. Takeuchi, ‘‘A unifying framework for detecting
outliers and change points from non-stationary time series data,’’ in Proc.
8th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD),
Edmonton, AB, Canada, Jul. 2002, pp. 676–681.

[20] J. Zhang, Q. Gao, and H. Wang, ‘‘SPOT: A system for detecting projected
outliers from high-dimensional data streams,’’ in Proc. IEEE 24th Int.
Conf. Data Eng., Cancún, Mexico, Apr. 2008, pp. 1628–1631.

[21] L. Cao, D. Yang, Q. Wang, Y. Yu, J. Wang, and E. A. Rundensteiner,
‘‘Scalable distance-based outlier detection over high-volume data
streams,’’ in Proc. IEEE 30th Int. Conf. Data Eng., Chicago, IL, USA,
Mar. 2014, pp. 76–87.

[22] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and
Y. Manolopoulos, ‘‘Continuous monitoring of distance-based outliers
over data streams,’’ in Proc. IEEE 27th Int. Conf. Data Eng., Hannover,
Germany, Apr. 2011, pp. 135–146.

[23] X.-T. Wang, D.-R. Shen, M. Bai, T.-Z. Nie, Y. Kou, and G. Yu, ‘‘An effi-
cient algorithm for distributed outlier detection in large multi-dimensional
datasets,’’ J. Comput. Sci. Technol., vol. 30, no. 6, pp. 1233–1248,
Nov. 2015.

[24] Y. Cheng, Y. Yuan, L. Chen, C. Giraud-Carrier, and G. Wang, ‘‘Complex
event-participant planning and its incremental variant,’’ in Proc. IEEE
33rd Int. Conf. Data Eng. (ICDE), San Diego, CA, USA, Apr. 2017,
pp. 859–870.

[25] Y. Cheng, Y. Yuan, L. Chen, C. Giraud-Carrier, G. Wang, and B. Li,
‘‘Event-participant and incremental planning over event-based social net-
works,’’ IEEE Trans. Knowl. Data Eng., to be published.

[26] Y. Cheng, Y. Yuan, L. Chen, G. Wang, C. Giraud-Carrier, and Y. Sun,
‘‘DistR: A distributed method for the reachability query over large
uncertain graphs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 11,
pp. 3172–3185, Nov. 2016.

[27] Y. Cheng, L. Chen, Y. Yuan, and G. Wang, ‘‘Rule-based graph repairing:
Semantic and efficient repairing methods,’’ in Proc. IEEE 34th Int. Conf.
Data Eng. (ICDE), Paris, France, Apr. 2018, pp. 773–784.

[28] B. Li, Y. Cheng, Y. Yuan, G. Wang, and L. Chen, ‘‘Three-dimensional
stable matching problem for spatial crowdsourcing platforms,’’ in Proc.
25th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD),
Anchorage, AK, USA, Aug. 2019, pp. 1643–1653.

[29] A. Ghoting, M. E. Otey, and S. Parthasarathy, ‘‘LOADED: Link-based
outlier and anomaly detection in evolving data sets,’’ in Proc. 4th
IEEE Int. Conf. Data Mining (ICDM), Brighton, U.K., Nov. 2004,
pp. 387–390.

[30] F. Angiulli and F. Fassetti, ‘‘Distance-based outlier queries in data streams:
The novel task and algorithms,’’ Data Mining Knowl. Discovery, vol. 20,
no. 2, pp. 290–324, Jan. 2010.

[31] D. Yang, E. A. Rundensteiner, and M. O. Ward, ‘‘Neighbor-based pat-
tern detection for windows over streaming data,’’ in Proc. 12th Int.
Conf. Extending Database Technol. Adv. Database Technol. (EDBT),
Saint Petersburg, Russia, Mar. 2009, pp. 529–540.

42758 VOLUME 8, 2020

R. Zhu et al.: KNN-Based Approximate Outlier Detection Algorithm Over IoT Streaming Data

[32] L. Zhao, X. Li, B. Gu, Z. Zhou, S. Mumtaz, V. Frascolla, H. Gacanin,
M. I. Ashraf, J. Rodriguez, M. Yang, and S. Al-Rubaye, ‘‘Vehicular com-
munications: Standardization and open issues,’’ IEEE Commun. Standards
Mag., vol. 2, no. 4, pp. 74–80, Dec. 2018.

[33] L. Zhao, A. Al-Dubai, A. Y. Zomaya, G. Min, A. Hawbani, and J. Li,
‘‘Routing schemes in software-defined vehicular networks: Design, open
issues and challenges,’’ IEEE Intell. Transp. Syst. Mag., to be published.

[34] J. Wu, L. Zou, L. Zhao, A. Y. Al-Dubai, L. Mackenzie, and G. Min,
‘‘A multi-UAV clustering strategy for reducing insecure communication
range,’’ Comput. Netw., vol. 158, pp. 132–142, Jul. 2019.

[35] R. Chaudhary and N. Kumar, ‘‘Detection scheme for software-defined
networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12329–12344,
Dec. 2019.

[36] W. Miao, G. Min, Y. Wu, H. Huang, Z. Zhao, H. Wang, and C. Luo,
‘‘Stochastic performance analysis of network function virtualization in
future Internet,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 613–626,
Mar. 2019, doi: 10.1109/JSAC.2019.2894304.

[37] A. Hawbani, E. Torbosh, X. Wang, P. Sincak, L. Zhao, and A. Al-Dubai,
‘‘Fuzzy based distributed protocol for vehicle to vehicle communi-
cation,’’ IEEE Trans. Fuzzy Syst., to be published, doi: 10.1109/
TFUZZ.2019.2957254.

RUI ZHU received the M.Sc. degree in com-
puter science from the Department of Computer
Science, Northeastern University, China, in 2008,
and the Ph.D. degree in computer science from
Northeastern University, in 2017. He is currently
an Associate Professor with Shenyang Aerospace
University. His research interests include design
and analysis of algorithms, databases, data quality,
and distributed systems.

XIAOLING JI received the master’s degree from
Shenyang Aerospace University, in January 2019.
Her research interests include design and analysis
of algorithms, query processing over streaming
data, and distribution of spatio-temporal data.

DANYANG YU received the Ph.D. degree in
biomedical engineering from Beihang Univer-
sity, in 2015. She is currently a Teacher with
the Artificial Intelligence and Big Data Col-
lege, He University. Her research interests include
human physiological parameter detection, intelli-
gent medical equipment, and the IoT applications.

ZHIYUAN TAN received the B.Eng. degree in
computer science and technology from Northeast-
ern University, China, the M.Eng. degree in soft-
ware engineering from the Beijing University of
Technology, China, and the Ph.D. degree in com-
puter systems from the University of Technology
Sydney, Ultimo, NSW, Australia. He is currently
an Associate Editor of IEEE ACCESS and an Orga-
nizer of Special Issues for the Ad Hoc and Sensor
Wireless Networks journal.

LIANG ZHAO received the Ph.D. degree in com-
puting from the School of Computing, Edinburgh
Napier University, in 2011. He is currently an
Associate Professor with Shenyang Aerospace
University, China. Before joining Shenyang
Aerospace University, he worked as an Associate
Senior Researcher with Hitachi (China) Research
and Development Corporation, from 2012 to 2014.
His research interests include VANETs, SDN, and
WMNs.

JIAJIA LI received the M.S. and Ph.D. degrees
in computer science fromNortheastern University,
in 2010 and 2014, respectively. She is currently
an Associate Professor with Shenyang Aerospace
University. She undertakes one National Natu-
ral Science Foundation of China and one Nat-
ural Science Foundation of Liaoning Province
of China. Her research interests include spatial-
temporal database, uncertain data management,
and machine learning.

XIUFENG XIA received the M.Sc. degree in com-
puter science from the Department of Computer
Science, Northeastern University, China, in 1991,
and the Ph.D. degree in computer science from
Northeastern University, in 2005. He is currently
a Professor with Shenyang Aerospace University.
His research interests include design and analysis
of algorithms, databases, data quality, and dis-
tributed systems.

VOLUME 8, 2020 42759

http://dx.doi.org/10.1109/JSAC.2019.2894304
http://dx.doi.org/10.1109/TFUZZ.2019.2957254
http://dx.doi.org/10.1109/TFUZZ.2019.2957254

