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Abstract—Modern Intrusion Detection Systems are able to
identify and check all traffic crossing the network segments that
they are only set to monitor. Traditional network infrastructures
use static detection mechanisms that check and monitor specific
types of malicious traffic. To mitigate this potential waste of
resources and improve scalability across an entire network, we
propose a methodology which deploys distributed IDS in a
Software Defined Network allowing them to be used for specific
types of traffic as and when it appears on a network. The core
of our work is the creation of an SDN application that takes
input from a Snort IDS instances, thus working as a classifier
for incoming network traffic with a static ruleset for those
classifications. Our application has been tested on a virtualised
platform where it performed as planned holding its position for
limited use on static and controlled test environments.

Index Terms—SDN, IDS, Network Security

I. INTRODUCTION
Traditional networks have a static architecture which is

decentralized and complex. The needs of modern society
lead towards networks that have more flexibility and easy
troubleshooting. Software Defined Networks (SDN) are the
answer to the aforementioned problem, used to centralise
the expensive, computationally inefficient elements of traffic
routing and forwarding from the conventional practice of
having these elements present on every forwarding device
in a network [1]. SDN abstracts these processes away from
the forwarding devices and handles them by using a network
controller to keep track of the network infrastructure and
calculate forwarding paths which are then communicated back
to the forwarding devices.

In a conventional network, Network Intrusion Detection and
Prevention Systems (IDPS) are placed at strategic points in the
network over which the majority of the traffic will traverse
to offer them the best chance at identifying malicious traffic.
IDPS usually add latency to the network traffic and the more
complex the inspection of any given packet is, the more time
the packet is delayed on its journey. For a large, aggregated
network link, which would otherwise seem to be the best place
to place such a security mechanism, the latter configuration
causes the potential for inefficiency and slowdowns of the
traffic along with the risk of missing packets, thus indicating
a security issue.

To mitigate this, IDPS devices can often be deployed in
a more distributed design, with sensors being placed around
the network and reporting security events back to a central
sensor or controller. Traffic classified as worthy of inspection

based on the usecases of the IDPS can be rerouted away from
the normal traffic path and pushed through another IDPS that
is tuned specifically to inspect the specific segment of the
traffic. In this way, an IDPS can have a very small ruleset
and pass traffic in the least possible time as multiple rules
are not checked against every packet passing the sensor, thus
minizing the overhead. As a modern network has virtualised
infrastructure, it may also be possible to make IDPS decisions
on individual sensor load and to even dynamically provision
new virtual IDPS sensors as required. This is feasible as
indications of load being fed to the forwarding tables via traps
from IDPS fed back into the controller API. This results in an
improvement by placing the sensor at a network bottleneck as
means smaller loads of network traffic are being inspected by
more IDPS [2].

The aim of our work was to design and develop a system
that leverages the configurability of an SDN to divert traffic
of some interesting nature out to an Intrusion Detection
System (IDS) system for inspection. The motivation behind
our work is two fold: a) a network segment might be too
busy for a single IDS sensor to cope with the load; and b)
the majority of traffic over a link is known to be safe and
can be discounted, or cannot be inspected and therefore can
be manually selected not to be inspected by an IDS. For the
shake of our experimentations SNORT [3] has been used,
one of the most common and well-supported IDS platforms
available. We can also take advantage of the previous work
surrounding its performance, capabilities and variations on
deployment including in a distributed environment and with
use in an SDN.

The contributions of our work can be summarised as fol-
lows:

• The creation of a testbed network using an SDN vSwitch,
a controller for the same, one or more IDS and a device
to run SNORT.

• The forwarding of suspicious data into an SDN controller
that itself then pushes data to specific points on an SDN
for inspection.

• The evaluation of the performance levels of the SDN, and
the IDS being used to inspect traffic.

The rest of the paper is organised as follows: Section II briefly
describes the related literature, while Section III analyses our
experimental setup. Section IV describes the implementation
of our methodology and provides the evaluation of our exper-
imental setup, and the applied mechanisms and technologies.978-1-6654-4399-9/21/31.00© 2021 IEEE



Finally, Section V draws the conclusions giving some pointers
for future work.

II. LITERATURE REVIEW

A. SDN and Attacks

Hakiri et al. [4] provide an excellent overview of SDN and
its present challenges when it comes to networking. In [2],
Ibrahim et al. review several other works in SDN and IDS.
Giotis et al [5] note that related literature seems to concentrate
heavily on DDoS attacks and their detection and mitigatio
while pointing out the control plane overloading as part of
these detection mechanisms. Papadogiannakis et al. [6] suggest
that there is sufficient time for a detection mechanism to be
successful while alerting other system. However, this seems
too slow to prevent certain attacks which have short lifespan,
resulting in late detection of a threat which will have already
been propagated.

Jantila et al. [7] take the findings of the previous works one
step further by discussing an SDN classification application
which prevents DDoS against a webserver. They score the
interactions of the webserver and feed this information back
through an SDN controller to the flow tables of the switching
fabric. However, the specific methodology as it is web based
it produces delays not meeting real world needs. Shin et
al. [8] detail an application development framework, namely
FRESCO for security services within an SDN. They note that
there is limited functionality within an SDN for embedded
security functions and attempt to mitigate that by adding state
databases, providing the framework with support for security
modules and interaction externally via an API, and enhancing
what they believe is a very simplistic approach for feeding
back responses to the SDN.

AlEroud et al. [9] focus on attacks against the SDN itself in-
stead of attacks flowing over the SDN. Their work investigates
the limits of an SDN when only inspecting the packet headers
while achieving good detection rates over attack traffic. Xing
et al [10] focus on measuring the performance of an IDS
sited away from a controller, with the end goal of providing
mitigation from the IDS to the SDN. Their work investigates
mitigations such as blocking, quarantine and redirection to a
deep packet inspection device, but solely on a cost to the SDN
basis. Chung et al. [11] have a setup in their IDS devices which
is being transparently placed in front of tenants in a cloud
environment. Their traffic classification is performed on traffic
to and from tenants and from untrusted networks. If necessary
the traffic can be inspected fully by a transparent IDS in its
path or subject to other countermeasures as appropriate to the
classification.
B. IDS

Ajaeiya et al. [12] propose a solution with an IDS inte-
grated within an SDN controller where they classify flows
and apply coarse entries into the flow-tables based on these
classifications. From another point of view Sagala et al. [13]
attempt to integrate an honeypot setup alongside an IDS where
the honeypot is feeding a ruleset to the IDS based on the
behaviour observed upon itself. In specific they create a system

that watches logs coming from the honeypot, thus generating
Snort rules from them and performing checks.

The authors of [14] present a system which is a self-
contained Snort IDS, IPS and database for historic traffic
and alerts. Their work use dynamic rule creation and redirec-
tion to honeypot servers. Kirill Shipulin [15] discusses some
techniques for IDS bypassing and specifically for overloading
an IDS CPU with crafted requests against poorly designed
signature rules. The work by Yuan et al. [16] describes a
system to load-balance traffic across a distributed Network
Intrusion System (NIDS) infrastructure in response to network
load and the load of individual IDS components. The authors
argue that a single IDS on a large and busy network segment
can be vulnerable to packet loss and as a result of that some
form of distributed IDS setup is imperative.

Vallentin et al. [17] propose a system comprised of a
commodity grade array of Bro (now Zeek) sensors [18] which
are used to share the load of monitoring of a busy network.
This system uses some SDN-like features to achieve its task.
As an example the authors created a hashing algorithm to
determine to which of the Bro sensors a traffic flow should
be send, as a result of the hash, thus the destination MAC
of the packets is rewritten and sent to the chosen sensor.
Another interesting element of this work is the presence of
the orchestration element that is responsible for starting and
stopping sensor nodes as well as monitoring for failures and
bringing backup sensors into function. From another point of
view Pitropakis et al. [19] gather intelligence from multiple
sensors and and correlate it with open source intelligence to
face more advanced threats.
C. Snort Performance

Alhomoud et al. [20] compare Snort and Suricata over
several levels of traffic load on two different host operating
systems and one virtualised environment. The work shows a
clear advantage of Snort over Suricata on almost all of the
criteria selected for comparison. In [21], the authors discuss
the issue of categorising Snort rules into a useful set for
specific administrators in large environments. The authors
argue that the current classification schemes as provided by
the default Snort installation are poor, lacking detail and
formalisation, thus making it difficult to find an appropriate
set of rules tuned for a test or environment.

More recently, Bul’ajoul et al. [22] studied the performance
of the Snort IDS and this performances variation to the
addition of Quality of Service (QoS) on the legacy network
equipment that is feeding a Snort sensor. They found that
the switch fed the sensor traffic as fast as the forwarding
would allow and this led to Snort dropping huge amounts of
packets in the rush to queue and process them. To partially
address this issue the authors experimented with multiple Snort
sensors connected to a switch and forwarded traffic to each
based on ACLs (Access Control Lists) within the switch.
Their experimentations proved that by using one sensor each
for UDP, TCP and ICMP traffic, they were able to bring
down the processing time to a third of that with a single
sensor. From a similar point of view, Bechtolsheim et al. [23]



leverage similar ideas but move the network infrastructure
away from legacy network equipment and ideally away from
using slower features of switches such as QoS and ACLs.
Papadogiannakis et al. [6] propose an interesting take on
improving the performance of an IDS by selectively either
ignoring or discarding packets from possible inspection. They
state that most security incidents are going to be detected in
the initial few thousand bytes of a network flow and that it is
unwise and possibly damaging to the efficiency of an IDS to
spend inspection time on flows that last for much longer than
this, giving VoIP, streaming, P2P traffic and file transfers as
examples. Vasiliadis et al. [24] use the CUDA architecture for
executing Snort, naming their system Gnort. They managed
to transfer large volume of the computational overhead to the
GPU, thus speeding up the efficiency of the NIDS, reducing
at the same time the overhead on the CPU.

Our work differs from all the previous approaches because
we are aware of the attacks a network under inspection may
be subject to as signatures may already be in place on one or
more Snort sensors to provide the detection for the attacks.
The QoS element is out of the scope of our work and instead
we focus on the distribution of the detection overhead over
more sensors rather than letting one sensor take as long as it
needs to complete the task. We do not send data to a Snort
sensor but the data are mirrored off to one or more sensors
as appropriate aiming for the native acceleration of the traffic
throughput. Additionally, the goal of our work is to distribute
the detection over more sensors rather than letting one sensor
do it as it needs more time to complete the task. We are also
making a diversion from the ACL approach by adding flows
into the forwarding table per flow on a controller, rather than
per frame with an ACL. For larger flows this should represent
a time and processing saving.

III. EXPERIMENTAL SETUP

Before explaining our experimental setup in detail, it is
considered necessary to discuss the use of two tools that had
an important role. The first one is PySnorter a tool for routing
traffic to dedicated Snort instances which is written in Python
3. Its functionality can be summarized as: a) Monitoring
an alert file from a Snort instance behaving as a classifier;
b) Pulling in information from the alert; and c) Using the
information in the alert to generate a REST API command that
is then sent to the controller. The aim of PySnorter is to have
a very generic Snort instance always listening for suspicious
traffic, which then generates alarms capable of sending off the
traffic to other Snort instances where the ruleset is specific to it.
The latter functionality is hoped to reduce the amount of rules
that are checked against traffic for which there is no chance
of a match, thus reducing the likelihood of missed packets in
the IDS process and accelerating the traffic inspection.

The expectation for any production environment will vary
based on the exact requirements so it is rather uncertain
whether a fully automated system of applying rules to Snort
instances is useful or desirable. For the shake of our exper-
iments, it is useful if the volume of rules could be broken

down to be checked based on the nature of the flows that are
observed coming into the switch or to the destination servers.
To resolve this issue another Python 3 program has been
developed to take a parsed list of destination ports against the
rule files theyre specified in. Soon afterwards these files would
be selected and added them into a Snorts configuration file for
inclusion in the rules the traffic was checked against. After
careful consideration we decided that a reasonable criteria for
choosing a specific Snort instance to work on a set of traffic
with a set of rules should be the similiarity of the destination.
This is broadly in line with choosing rules that would only
be applicable to the services being targeted of interest to an
administrator or analyst.

Test Network and Server Infrastructure: Our platform
of choice was a GNS3-hosted infrastructure. Because of the
selected platform, VMs prepared for the controller, Snort sen-
sors, generator and receiver machines could be built and tested
independently and then imported into the GNS3 project con-
taining an OVS vSwitch (with management features) docker
container running on the GNS3 VM. This should then persist
over many iterations of testing. The network has been set out
in a very basic layout as shown in Fig. 1. This configuration
allows traffic to be sent from the source host to the destination
host via the vSwitch. All the devices on the network also
have a back- channel connection to a NAT cloud to allow for
device updates and traffic that has no requirement to be routed
through the SDN. This is an effective managed network for
the virtual hosts. The only traffic that will be traversing the
vSwitch will be the test traffic. API calls to the controller
and controller management and GUI will be sent on the
management network.

Controller and flow manipulation: During the initializa-
tion of the testbed, particualar emphasis has been given to
directing traffic from the generator machine to the receiver
machine via the vSwitch. This is an easy step, because by
default the GNS3 vSwitch works as a standard Layer 2 switch
even without being connected to an external controller (Ryu)
[25]. The GNS3 vSwitch container allows connections to a
controller or a controller network via one of the virtual ports.
In our case, a VM running the OF controller has been directly
connected to this port. The vSwitch was configured with the
IP address of the controller and once the controller service
was starting, then the control of the switchs features was
handed over to the controller. Although Ryu provides a lot
of functionalities related to our work, it does not focus on
separating traffic amongst Snort instances.

Traffic is passed freely amongst the devices, only limited
by the basic network constraints of the devices such as
MTU/MSS and the virtual throughput of the vSwitch and the
hosts performing the generator and receiver roles. To begin
classifying and redirecting traffic to IDS devices relevant to
the monitored traffic, it should be mirrored off to an initial
IDS. This required a manual flow to be added to the switch.

Snort Triage Device: The Snort process has been config-
ured through a file to both point at the relevant rules file
and also output the alerting in a format that is compatible



Fig. 1. Initial network setup for POC

TABLE I
PCAP FILES FROM CONSECUTIVE NMAPS

Filename Nmap Duration (s) Filesize (kB) kB/sec
nmapRun1 342.14 53058 155.08
nmapRun2 347.76 52903 152.13
nmapRun3 347.36 52936 152.40
nmapRun4 350.50 55050 157.06

with what pySnorter parser. From this point on the pySnorter
software has been constantly watching for new elements being
added to the alerts file specified in the Snort.conf file. If an
alert has been triggered, a new REST request has been created
within pySnorter using the fields passed in the Snort alert to
direct that category of traffic to another port on the vSwitch.
There, a Snort instance with rules specific to issues and
vulnerabilities associated with TCP port 445 (or SMB/CIFS)
is ready and waiting to begin more intensive inspection on
traffic that has a closer match to its ruleset. This proves that
subsets of interesting network traffic can be arbitrarily passed
to destinations on the SDN for inspection by network security
devices. In this case, this is a Snort instance.

IV. IMPLEMENTATION AND EVALUATION

The performance measurements for different variations of
passing traffic though Snort instances were initiated by se-
lecting a fixed packet of data between two hosts that could
be repeated over and again to make sure that the traffic sent
was useful for the purposes of tracking differences in the
infrastructure surrounding the endpoints. First we selected the
nmap tool against our target which is vulnerable to metasploit.
For the initial runs of this test, traffic has been captured by
the host at the receiving end of the conversation to allow
to both check that the behaviour is consistent over the runs
and to allow analysis of the resultant traffic to produce some
per-Snort rulesets in later tests or future work. The tests has
been configured to also generate a PCAP for each run. It is
interesting to note the differences in capture sizes over these
runs as depicted in Table I.

There is not a direct correlation between the time taken to
perform the scan either way. From the tests, it can be observed
there is a variation of up to eight (8) seconds for the scan time
and 2MB for the captures. All these tests have produced with
an SDN switch in between the hosts and no attached controller.

The SDN device runs within a docker container on the GNS3
VM which also handles the links between the two.

For the next series of runs, it has been decided to also
add in the Ryu controller to manage the switch. The Ryu
controller was initiated and four more runs of the tests have
been executed. The first test had to be abandoned at 20 minutes
when the nmap process on the attacking machine reaches
100%. Other than that, the other three runs are broadly similar
to the previous runs without the controller.

According to our initial assumption the pySnorter tool is
able to have as input a Snort alert file and divert traffic
accordingly to one or more other network endpoints. In our
case, it is a Snort sensor. pySnorter in its present format
depends on quite a lot of manual editing when being moved
from environment to environment and when the features of
the infrastructure change, such as the address of the SDN
controller and the makeup of the vSwitch depending on the
port numbering and the switch and bridge IDs that the REST
requests are then aimed at.

There is also the issue of the timeout period in the wait
between checking for additional lines added to the alerts file
from the Snort process. This has been originally set to a tenth
of a second, but in a higher throughput network, this reading
might be inadequate. In later experiments the timing has been
changed to a hundredth of a second, but again, there exist
networks for which several alerts could conceivably be missed
within this time period.

Our tests have been able to prove that pySnorter is capa-
ble of splitting traffic over several IDS sensors. During the
implementation of our work lots of nmap, nping and hping
have been performed across a vSwitch with and without a
controller combined with and without Snort hosts monitoring
diverted traffic. In every experimentation within the limits of
the infrastructure it was proved that Snort did not face any type
of failure in its primary task of monitoring all traffic passing
over the wire.

As previously discussed we made use of GNS3, hosting
its own containers within the GNS3 VM as well as VMWare
Workstation VMs built and running in the machine running
GNS3. GNS3 proved to be a good choice, as there was a



pre-built vSwitch container within GNS3 and GNS3 handled
much of the network inter connectivity between the devices.
However, GNS3 was responsible for lots of troubleshooting
during the process of connecting it with the VM Workstation
network (ESXi). Consequently, we made a decision to change
the Snort instances to multiple Snort processes running on
a single machine, but taking care to each monitor a single
interface and to be pinned to a separate CPU thread. As it
turned out, we managed to reduce the overhead for an analyst
and infrastructure engineer by having to only maintain a single
machine for varied Snort processing.

V. CONCLUSIONS AND FUTURE WORK
We have made an attempt to develop a system that takes

advantage of one of the strong points of SDN, the ease to be
configured, to divert suspicious traffic to an IDS system for
inspection. A virtualized network has been setup where Snort
has been used as our main IDS. Eventually instead of different
instances of Snort, we have made use of multiple Snort
processes running concurrently on the same infrastructure and
diverted the traffic depending on its nature.

Our main tool pySnorter has managed to meet our needs by
diverting traffic between the Snort sensors. However, it could
be enhanced and grown to do more than it does at the present,
which is scanning for alterations to an alert file and generate
REST requests to a controller from the content of the alert
outputs. It would be possible to change its functionality, thus
making it able to communicate to several SDN devices instead
of just a single. It could also mitigate a known attack as well
as just monitor for them; a flow identified by one of the tiered
Snort instances in these tests could have a set of rules marked
up in such a manner to generate a flow to be added with drop
actions on the SDN device(s) closest to the source of the newly
classified malign traffic.

Our future work includes the addition of a large internet-
facing links along with a series of small gigabit capable
devices to be used as Snort sensors and a larger SDN (with
more than 5 physical ports) that would allow to slice up
incoming traffic into much more specific slices that could have
customised Snort instances waiting to inspect traffic. At this
point the entire testing setup could be rerun and this would
generate more interesting performance testing results.

Also it would be interesting to repeat the work emphasising
on Snort because the SDN parts were really a small subset
of our testbed and there are opportunities for way more
experimentation to bee done in regarding the performance of
Snort and other IDS. Additionally, we want to take advantage
of solutions such as Vasiliadis et al. [24], where transferring
the overhead of any IDS and the SDN controllers to the GPU
would greatly benefit the future IT infrastructures.
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