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Abstract—Drones can be used in many assistance roles in 

complex communication situations and play key roles as 

aerial wireless relays to help terrestrial network 

communications. Although a great deal of emphasis has 

been placed on the drone-assisted networks, the majority of 

existing works often focus on routing protocols and do not 

fully exploit the drones’ superiority and flexibility. To fill in 

this gap, this paper proposes a collaborative communication 

scheme for multiple drones to assist the urban vehicular ad-

hoc networks (VANETs). In this scheme, drones are 

distributed according to the predicted terrestrial traffic 

condition in order to efficiently alleviate the inevitable 

problems of conventional VANETs, such as building 

obstacle, isolated vehicles, and uneven traffic loading. To 

effectively coordinate multiple drones simultaneously, this 

issue is modeled as a multimodal optimization problem to 

improve the global performance on a certain space. To this 

end, a succinct swarm-based optimization algorithm, 

namely Multimodal Nomad Algorithm (MNA) is presented. 

This algorithm is inspired by the migratory behavior of the 

nomadic tribes on Mongolia grassland. Based on a real-

world floating car data of Chengdu city in China, extensive 

experiments are carried out to examine the performance of 

the proposed MNA-optimized drone-assisted VANET 

considering the processed mobility models. The results 

demonstrate that our scheme outperforms its counterparts 

in terms of the average number of hops, improved average 

packet delivery ratio, and throughput of the global test 

space. 

 

Index Terms—Drone, Vehicular ad-hoc networks (VANET), 

Collaborative communication, Multimodal optimization, 

Multimodal nomad algorithm (MNA). 

 

I. INTRODUCTION 

ITH the rapidly growing numbers of vehicles, the 

Intelligent Transportation System (ITS) is expected to 

play a vital role in the future enabling a plethora of applications 

such as collision avoidance, turning warning, intelligent 

guidance, and real-time transport information [1] [2] to increase 

the safety, comfort, and convenience during driving. Most 
services of ITS rely on connectivity, in which the vehicles can 

connect to neighbors wirelessly. Data can be generally 

transmitted between vehicles within the lifetime of the wireless 

link. However, once the distance between the two vehicles is 

beyond the communication range, the link will no longer exist. 

In this context, the dynamic movement of vehicles can cause 

the frequent change of topology that connectivity of such vast 

number of vehicles is always intermittent [3]. It is a serious 

challenge for ITS. Thus, Vehicular ad-hoc networks (VANET) 

[4] is designed as a special type of mobile ad-hoc networks 

(MANET) to deal with the above challenge [5, 6]. Besides the 

frequent changing topology, another challenge of urban 

VANETs is caused by link quality. Wireless links are applied 

to connect dynamic vehicles or to the base station, with 

technologies including 802.11p [7], LTE-V or future 5G-V2X 

[8] which are sensitive to environmental factors, such as 

distance, obstacles, as well as a radio signal from other devices. 

The above issues cannot be easily overcome at the networking 

level. Therefore, in recent years, researchers have begun to find 

alternative solutions such as finding assistants like drones to 

bypass the obstacles and extend the coverage of the 

infrastructures and vehicles [9].  

Recent advances in Unmanned Aerial Vehicles (UAVs), i.e., 

drones, have attracted many research attentions in networking. 

The drones hovering in the air are with less constraints, e.g. 

drones are not constrained to roads. This advantage enables the 

drones to act with faster and more-directional mobility models. 

With onboard communication device equipped, it can perform 

similar network function and link properties to any urban 

vehicle. Drone plays as a flexible but energy-constrained 

network node whose action should be meticulous controlled. To 

achieve real-time communication of drones, the flying ad-hoc 

networks (FANET) [10] are proposed. In FANETs, drones are 

expected to provide flexible and fast-deployed network access 

or relay in complex environments where infrastructure is 

unavailable such as flood zone, earthquake-stricken area, and 

accidents [11, 12]. Some key features of this type of air-ground 

communication are discussed in [13]. 

Besides these listed scenarios, drones are also shown as a 

promising player to enhance the connectivity of vehicular 

networks. For example, the authors in [14] propose a UAV-

assisted routing solution for urban VANET. It provides reliable 
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routing path and ensures alternative solutions when the path 

fails. In urban environments, the movement and communication 

of vehicles are constrained by the buildings and infrastructures 

[15]. Nevertheless, the height of drones beyond all the 

terrestrial infrastructures allows the drones arbitrarily to move 

with much less terrestrial constraints. Moreover, terrestrial 

obstacles can generate fewer influences on the transmission of 

drones in the air. All these results in that drones become a 

suitable assistant for VANET. Based on the above advances, 

the authors in [16] deploy the drones to detect the incidents on 

urban road and provides emergency vehicle guidance. A 

vehicle-drone hybrid ad-hoc network is designed to reduce the 

end-to-end delay among vehicles [17]. Applying the drones to 

boost VANETs, some routing protocols with consideration of 

drone-assistance are proposed in [18-20]. A software-defined 

network architecture consisting of drones and vehicles are also 

designed to support various vehicular services in a seamless 

manner [21].  

However, existing studies have shown prominent problems. 

Some are only proposed as a framework without the appropriate 

scenario and detailed algorithm [9, 21]. Others focus on routing 

protocols, omitting the full exploitation of the drones’ 

superiority [18-20]. In fact, all existing drone-assisted schemes 

rely on the routing protocol to optimize the performance of 

VANETs. Moreover, although these schemes achieve 

improvements on some evaluation metrics such as the delivery 

rate or throughput, there are always tradeoffs between 

performance metrics for different previous routing proposals. 

In this work, we aim to design a drone-assisted VANET to boost 

multifaceted performances of communication without 

modification of VANET protocols. According to the predicted 

distribution of the vehicles, our proposal dispatches the drones 

to the most appropriate locations in real-time. A multi-objective 

multimodal-based scheme is designed as vital to satisfy 

complex networking requirements for multi-drone 

collaboration. However, the existing multimodal optimization 

technologies are not suitable for our model due to three aspects: 

high time consumption, uncertain number, and unconstrained 

distribution of potential solutions [22]. A specialized 

multimodal optimization algorithm should be developed. The 

main contributions of this study can be summarized as follows:  

1) This paper proposes a novel collaborating network 

architecture that integrates the drones with VANETs. For a 

certain position, we define the detailed criterion to evaluate the 

demand for drones quantitatively. It considers multiple 

objectives of VANETs and builds an evaluation function for 

optimization. The purpose of this evaluation function is to find 

the optimal distribution of multiple drones to assist VANET, 

which is modeled as a multimodal optimization problem.  

2) To improve the above model, this paper designs a specific 

multimodal optimization algorithm, namely, Multimodal 

Nomad Algorithm (MNA), inspired by the migratory behavior 

of the nomadic tribes on the Mongolia prairie. MNA enables 

the instant dispatching of multiple drones to the best service 

positions in order to enhance the efficiency of drone-assisted 

VANETs.  

3) A series of the benchmark experiments are conducted to 

verify the powerful optimization capability of MNA. We also 

conduct the extensive simulation experiments and test the 

network performance based on the real map data and the 

floating car data of Chengdu city, China. The simulation results 

are discussed and analyzed in detail.  

The rest of this paper is structured as follows. Section II 

describes the collaborative model of the proposed drone-

assisted VANET and gives a detailed workflow. In Section III, 

we transform the collaboration problems into a multimodal 

optimization and present our Multimodal Nomad Algorithm to 

solve the problem. The simulations are presented and discussed 

in Section IV. Finally, the conclusion and future research 

direction are drawn in the last Section V. 

II. SYSTEM MODEL 

This section firstly gives some assumptions about diverse 

devices and environment. Then, the architecture and 

computation models of our system are also illustrated. 

A. Assumptions 

We ideally assume that all the drones and terrestrial vehicles 

are equipped with GPS system where their geographic location 

is aware for themselves and data center. To communicate, all 

vehicles and drones adopt the 802.11p [7] where the wireless 

links have bidirectional reachability within the radio range. 

More, energy consumption is not the primary concern of this 

study. Drones are distributed in the air beyond all the ground 

building. Without constraints of buildings, drones can move 

arbitrarily and line-of-sight (LoS) communicate with any node. 

Note that we generally suppose the actual communication range 

between two nodes are determined by the smaller one, if two 

nodes are with different communication abilities. In addition, 
 

TABLE I 

FEATURES COMPARISON OF THE MOST RELATED WORKS. 

Related work Application scenario Basic idea Major advantage Limitation 

Ref. [14] Urban VAENT Predicting the lifetime of path, 
providing alternative routing. 

Reliable routing path Full coverage of drones required 

Ref. [16] Surveillance, rescue Deploying drones to detect the 

incidents. 

Suitable for the high mobility and 

restricted energy scenario 

Full coverage of drones required 

Ref. [17] Infrastructure-less 

VANET 

Predicting the destination, using 

drones deliver data and collect 

information 

Low delay Each vehicle should be equipped with an 

on-board drone 

Ref. [18] VANET on two-way 

highway 

Replacing infrastructure with drones Minimized V2I delay Only V2I communication on a straight 

road 

Ref. [19] Urban VANET Deploying drones to monitor traffic 
and assist vehicles in routing 

Reduced delay and improved delivery 
ratio 

Full coverage of drones required 

Ref. [20] Urban VANET Applying drones to provide 

alternative path, and select the 

optimal path. 

Consider the stability and distribution 

of vehicles during path selecting 

Mobility of drones without rational 

scheduling 
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drones should have the extra 4G-LTE channel to communicate 

to the data center (elaborated in Section II.B). This channel is 

with minor delay and adequately wide range to cover all drones 

in the task area, which is used to transmit the scheduling 

instruction from data center to drones. To sum up, 802.11p is 

applied between drone-to-vehicle (D2V), drone-to-drone 

(D2D), and vehicle-to-vehicle (V2V) while 4G-LTE is used for 

the communication of infrastructure-to-drone (I2D) in 

particular for arranging the schedules of drones from data 

center. 

B. Collaborative Drone-assisted VANET 

Existing work has enhanced the VANET by applying drones 

in many means. However, several limitations should be 

considered. The key features of the most related works are 

compared in TABLE I. All these schemes intend to improve the 

network performance of VANET. Nevertheless, they neglect to 

consider the mobility superiority of drones which a small 

number of dynamic drones with rational scheduling can replace 

many infrastructures work in a wide area. Thus, we consider 

leveraging dynamic drones to assist VANET according to the 

distribution of vehicles. 

This collaborative networking model consists of two 

components: the flying ad-hoc networks (FANET) and the 

vehicular ad-hoc networks (VANET).  

FANET is composed of a swarm of drones with wireless 

communication. These aerial nodes are scheduled by a data 

center and responsible for providing high-altitude relays. In this 

architecture, drones never actively request service for 

communication and only are used as the relay nodes. In other 

words, it cannot be the source or destination node for routing. 

However, drones take advantage of flexible mobility to be 

quickly deployed where relays required. VANET is made up of 

terrestrial vehicles in urban scenarios.. Compared with drones, 

the mobility of vehicles is restricted by the road network and 

traffic regulations. In this context, vehicles can only move along 

the road rather than free movement, where the velocity, turning, 

and parking are constrained. Also, due to the wireless links, the 

surrounding environments impact the qualities of links 

unavoidably in which the coexistence of a large number of 

wireless links and obstacles in the city make strong interference 

to the communication channel of vehicles. Therefore, we 

should introduce a more effective scheme to alleviate these 

defects.  

We use Fig. 1 to show the architecture of the drone-assisted 

VANETs in urban environments, where the vehicles can 

directly connect to neighbors within the communication range 

wirelessly. To better support the networking in such dynamic 

networks, Drone 1 flies to an appropriate location as a relay 

node for some vehicles. In that region, two cars are isolated, 

which means they are far away from other nodes who they 

relied on to transmit the data messages to the infrastructure or 

farther. Besides, various buildings and urban infrastructures 

will be the obstacles and hinder the transmissions. However, 

compared to the vehicular nodes, drones are much less 

influenced by the obstacles to make appropriate movement and 

communication. As a typical case, in Fig. 1, Drone 3 relays two 

vehicles within its coverage, whereas two vehicles are 

obstructed by a hospital to build connections.  

In this architecture, drones are first dispatched to a specific 

location. When the drones reach the designated positions, they 

will hover there and act as the relay nodes. To avoid the 

excessively frequent or infrequent change of drones, the task is 

divided into a series of time slices. The drones periodically 

update the destination when a time slice ends. For a certain 

position, the detailed criterion for assessing the demand of 

drone is outlined in Section II. C. We first give the structure of 

our proposed collaborative model by the following Fig. 2.  

The data collection module (DCM) and communication 

module (CM) are designed in each node. The former gathers 

node’s location information periodically with the timestamp, 

where the latter transmits data to other nodes. The distribution 

of drones is managed by the data center in which the control 

instructions are revived by CM and delivered to DCM to correct 

course. As for vehicles, location acquired in DCM is frequently 

reported to the data center through CM. To support data center 

management, the location information with the only micro size 

is employed to decide the distribution of drones. The data center 

is responsible for the management of the system. Once the data 

 
Fig. 1.  The architecture of drone-assisted VANETs 

   

  

 
Fig. 2.  The structure of drone-assisted VANETs. 
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center receives the vehicle information through CM, it 

maintains the information in the data store. The computation 

module of data center extracts information from the data store 

to predict the future vehicle distribution and calculates the 

optimal distribution for drones. The computing results are 

stored as a series of instructions and periodically transmitted to 

drones by CM. Afterward, the drones are dispatched to the 

destination as relay nodes. The packets transmission of D2V, 

D2D, and V2V are data information. This type of information 

consists of real required data for on-board applications and 

services. 

For a T drone assisted VANET, we randomly generate T 

positions over the geographical area at the initialization. Due to 

the time consumption of the computation and drone 

deployment, it is improper to evaluate somewhere demand for 

the drone by current vehicles distribution; the predicted future 

node distribution should be employed. For data center, all past 

positions of drones are available with timestamps, which are 

collected to construct the movement trajectory. We use the 

historical trajectory to predict the future location of vehicles. It 

is calculated as: 

 

𝑥̂(𝑡𝑛+1) = 𝑥(𝑡𝑛) + ∆𝑥(𝑡𝑛−1) + ∆𝑥̂(𝑡𝑛) (1) 

 

where 𝑥̂(𝑡𝑛+1) is a vector that represents the predicted position 

of a vehicle, at the beginning of the time slice 𝑡𝑛+1. 𝑥(𝑡𝑛) is the 

real physical position of a vehicle at the beginning of the time 

slice 𝑡𝑛, while ∆𝑥(𝑡𝑛−1) is the real position change of a vehicle 

during the time slice 𝑡𝑛−1 . Note that ∆𝑥̂(𝑡𝑛)  is a correcting 

factor to adjust vehicle position during time slice 𝑡𝑛 . The 

available historical trajectory determines this factor. The 

computational process is shown as following (2) and (3): 

 

∆𝑥(𝑡𝑛−1) = 𝑥(𝑡𝑛) − 𝑥(𝑡𝑛−1) (2) 

  

∆𝑥̂(𝑡𝑛) =∑𝜔𝑖 ∙ (∆𝑥(𝑡𝑛−𝑖) − ∆𝑥(𝑡𝑛−𝑖−1)) (3) 

 

 

Considering the influence of the past state is decreased, the 

weight of the previous i-th time slice 𝜔𝑖 should satisfy follows: 

 

∑𝜔𝑖 = 1 (4) 

 

𝜔𝑖+1 < 𝜔𝑖  (5) 

 

It means that the earlier trajectories have less influence 

weight than the fresher. This prediction has considered the 

weight discrepancy of the different time slice. By this way, the 

distribution of the vehicle at the next time slice is predicted with 

an acceptable error. According to the distribution, we can 

evaluate the demand (i.e. fitness) for a relay node for a specific 

geographical area. In this context, the area urgently demands a 

relay that should be with more considerable fitness. Thus, we 

search for several optima with the best fitness in the search 

space, and the number of drones determines the number of 

optima. Once the system has mapped out the destination for 

drones in next time slice, each drone quickly flies to the nearest 

destination and hovers there. Afterward, drones work as relay 

nodes in the air and wait for a new task in the next time slice. 

C. Computation Models 

In our drone-assisted VANET, we study how to evaluate the 

demand for drones subsequently. For optimizing the network 

performance of urban VANETs, we can apply the drone-

assisted scheme in three scenarios, including relaying isolated 

vehicles routing, assisting No-Line-of-Sight communication 

(NLoS), and minimizing the network load imbalance. Finding 

the fittest distribution which provides the best assistance for 

these three scenarios, is a multi-objective optimization problem. 

Thus, the above three scenarios are combined to build an 

evaluation function to assess the demand for drone as (6) and 

illustrated by Fig. 3. 

 

𝑓(𝑥) = 𝑐1 ∙ 𝑓1(𝑥) + 𝑐2 ∙ 𝑓2(𝑥) + 𝑐3 ∙ 𝑓1(𝑥) (6) 

 

where 𝑥 is a vector represents a position to be evaluated in test 

space, 𝑓(∙)  is the evaluation function. To satisfy multiple 

requirements simultaneously, 𝑓(∙)  consists of 3 subordinate 

functions 𝑓1 , 𝑓2  and 𝑓3  used to assess the three aspects 

mentioned earlier. All these functions are normalized to the 

 
Fig. 4.  The difference in dispersion. 

   

  

 
Fig. 3.  The combination of multiple objectives. 
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range (0, 1). 𝑐1 , 𝑐2 , and 𝑐3  are their impact weights 

respectively, where the sum of them is 1.  

Considering a more abundant connection is the primary 

prerequisite of VANET, the weights of 𝑓1  and 𝑓2  should be 

taken major accounts in this problem. Because the ‘load 

balancing’ relies on the network connectivity, and if there are a 

lot of disconnected nodes, it is meaningless to maintain load 

balance. Furthermore, although communication between 

vehicles close to intersection is hindered by obstacles, it is still 

possible for transmission with impaired probability. However, 

for an isolated vehicle, it is absolutely impossible to connect 

with any other nodes by itself. Therefore, the urgency of 𝑓1 

should be taken greater account than 𝑓2 . The final impact 

weights of these 3 objectives (𝑐1, 𝑐2, and 𝑐3) are 0.5, 0.35, and 

0.15, respectively. We will discuss each scenario in detail in the 

following subsections. 

 

1) The Isolated Vehicles Routing 

For the outlier vehicles or isolated area, relay nodes are 

urgently needed. In other words, if some vehicles are far away 

from each other but within the radio range of a drone, that is a 

suitable position for drone deployment. This condition is shown 

in Fig. 4.  

In Fig. 4(a), if the vehicles have the same communication 

range as drones, the distances between each two vehicle nodes 

are beyond the radio range; they are unable to connect. The 

vehicle nodes in Fig. 4(a) can be seen as isolated nodes without 

neighbors. However, all of them are in the communication 

range of a drone; the message can be transmitted by the drone 

relay node. In contrast, the vehicles in Fig. 4(b) are close to each 

other; links can be normally established. It is unnecessary to 

introduce drone assistance in condition (b). Additionally, the 

vehicles further away from the drone are with greater risks of 

disconnection in later period. For instance in condition (a), 

subsequently, these vehicles are likely to go beyond the 

communication range of drone and become isolated nodes 

again. Thus we define the evaluation criterion as 

 

𝑓1(𝑥) =
1

𝑛
∙∑

‖𝑋𝑖 − 𝑋̅‖2
𝑅𝑑

∙ 𝑒
−
‖𝑋𝑖−𝑥‖2
𝑅𝑑

𝑛

𝑖=1

 (7) 

 

where 𝑛 is the number of vehicles within the radio range of the 

drone. 𝑋 is the average position of 𝑛 vehicles. 𝑋𝑖  denotes the 

geographical position of the 𝑖-th vehicle. 𝑥 represents a position 

to be evaluated, i.e., a potential destination for the drone. ‖∙‖2 

is an operator to calculate the 2-norm which also be regarded as 

the Euclidean distance between two positions. The 𝑅𝑑  is the 

radio radius of drone, which is introduced to normalize the 

computational result into the range (0, 1). Equation (7) has 

considered both the discreteness among vehicles, and the 

discreteness of vehicles to drone. Within the radio range of a 

given position x, it represents the better fitness of position x for 

drone deployment if the vehicles are further away from each 

other and the vehicles are closer to  x. 

2) Non-line-of-sight Communication 

In the urban VANETs, the buildings and various 

infrastructures are ubiquitous where these obstacles inevitably 

obstruct the message transmission in wireless links. This non-

line-of-sight (NLoS) communication with severe loss always 

leads to failed transmission. While a vehicle node sends 

messages to another vehicle located on the adjacent road 

segment, the transmission has to bypass the building between 

the two segments which is infeasible with high packet dropping. 

Therefore, although this distance between the two nodes is not 

beyond the range of wireless, the message is challenging to 

deliver. Regarding NLoS communication, the drone-assisted 

network is suitable to forward the message as a relay node. The 

drones hover in the high altitude beyond the most obstacles and 

even perform the store-carry-forward in which the obstacles can 

hardly disturb the movement and communication of drones. 

The links of D2D and D2V are referred as the Line-of-Sight 

(LoS) communication without obstacles. Thus, we consider the 

condition that vehicles near the intersection communicate with 

vehicle in adjacent road segments. 

 Fig. 5 gives the comparison while the drones at a different 

location. As shown in Fig. 5(a), the closer the drone is to the 

intersection, the larger area of the road it can cover. In the 

extreme case, Drone_1 is so far to the intersection that it can 

only cover the road segment which itself located. It only assists 

vehicles within the same road, whereas it is meaningless 

because these vehicles can communicate by themselves. In 

another extreme case, the Drone_2 in Fig. 5(a) is closest to the 

intersection and exactly located there. This drone evenly covers 

all adjacent segments around the intersection and can provide 

the relay links for vehicles in every two segments. Fig. 5(b) 

reveals the effects by different angle when the distances to the 

intersection are fixed. We define the the  θ between the lines 

from drones to intersection and drone’s nearest segment. 

According to the auxiliary circle whose center located at 

intersection and radius is equal to radio range of the drone, these 

three drones have the same distance to the intersection. 

However, Drone_1 has no angle to the segment in which it can 

only cover one segment, i.e., it is useless for helping the vehicle 

communicate with nodes which are located at other segments. 

By contrast, Drone_2 has a larger angle to the nearest segment 

where it covers two segments but unsymmetrically. This drone 

can play as an aerial relay node to alleviating the building 

obstacles in slight measure. Therefore, we consider that if the 

angle between the nearest segment and drone to the intersection 

is as large as possible (e.g., Drone_3 has largest π/4 angle), such 

position is the best location for drone deployment.  

 
Fig. 5.  The comparison of drones in different locations. 
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Based on the above discussion, the preliminary evaluation 

function 𝑔(𝑥) is defined as follows 

 

𝑔(𝑥) = {

                           0                                 𝑙𝑥 > 𝑅𝑑
𝑅𝑑 − 𝑙𝑥
𝑅𝑑

+ω ∙
𝑙𝑥
𝑅𝑑
∙ cos (𝜃 −

𝜋

4
)     𝑙𝑥 ≤ 𝑅𝑑

 (8) 

 

where  𝑙𝑥 is the distance between the objective position 𝑥 and 

nearest intersection. If 𝑙𝑥  is beyond 𝑅𝑑 , the drones can cover 

one segment at most, it is meaningless for overcoming the 

communication obstacles. ω  is a controlling factor used to 

adjust the weight proportion of the distance to angle. Equation 

(8) represents that the fitness (value of evaluation function) will 

increase when the objective position is closer to the intersection 

with a larger angle 𝜃. The influence of angle will shrink with 

the decrease of the distance 𝑙𝑥. For instance, whatever the value 

of 𝜃 is, there is no difference when the objective position is 

located at intersection (i.e., 𝑙𝑥 = 0). To unify the evaluation 

standard, the value of 𝑔(𝑥) should be normalized into the range 

(0, 1) to construct the final evaluation function 𝑓2(𝑥) by (9): 

 

𝑓2(𝑥) =

{
 

 
               0                      𝑔(𝑥) = 0

𝑔(𝑥) − ω ∙ cos
𝜋
4

1 − ω ∙ cos
𝜋
4

       𝑔(𝑥) ≠ 0
 (9) 

 

3) Load Balancing 

Due to the huge number of vehicles and complicated traffic 

conditions in urban traffic, the network quality is unstable. 

However, many onboard services significantly rely on the 

network quality, such as infotainment applications, and safety 

driving applications. When the distribution of the vehicles 

becomes dense, the overhead of the network will dramatically 

increase in this area. Consequently, the load gets heavy that 

especially of the edge nodes. 

To further satisfy more requirements for service, great 

network quality is also necessary for this architecture. 

Considering the extremely high-density vehicles will take a 

heavy load to the edge nodes, meanwhile too sparse may lead 

to the lack of relay in the forthcoming mission, we define the 

evaluation function as follows: 

 

𝑓3(𝑥) =
|𝑁𝑥 − 𝑁avg|

max (𝑁avg , (max(𝑁𝑖) − 𝑁avg))
 (10) 

 

where 𝑁𝑥  and 𝑁𝑖  represent the number of vehicles within the 

radio range (𝑅𝑑) of the objective position  𝑥 and 𝑖-th drone, 

respectively. max(∙) is a function to get the maximum. 𝑁avg is 

the average number of vehicles around a drone, and it is 

calculated by Equation (11) as 

 

𝑁avg =
𝜋𝑅𝑑

2 ∙ 𝑁total
𝑆total

 (11) 

 

where 𝑁total  and 𝑆total  indicate the total size of vehicles 

number and simulation area, respectively. This mechanism 

guarantees the value of 𝑓3(𝑥) within the range (0, 1) and get 

increasing at locations with too many or too few vehicles. By 

this way, the drones are more likely to be dispatched to the 

extreme congested or desolate road segment.  

Thus, the multi-objective evaluation function (6) has been 

built on the basis of (7)-(11). The value range of evaluation 

function is (0, 1) while greater value means higher demands for 

drone-assisting. 

III. MULTIMODAL OPTIMIZATION FOR COMMUNICATION 

In the previous section, the evaluation standard has been 

established for selecting appropriate positions for multiple 

drones. The original problem is transferred to a multimodal 

optimization problem, aiming to locate multiple optima in a 

search space. However, conventional multimodal optimization 

technologies cannot provide feasible solutions for our problem, 

while the reasons will be discussed in the forthcoming 

subsection. Afterward, we design a specialized multimodal 

optimization algorithm, Multimodal Nomad Algorithm 

(MNA). Comparison experiments are also conducted to verify 

the effectiveness of our proposal. Finally, the workflow of 

MNA-optimized drone-assisted VANET is also presented in 

detail.  

A. Motivation and Inspiration Source of MNA 

To solve our formulated problem, there are three constraints 

should be satisfied simultaneously. Firstly, our drone-assisted 

VANET should operate in real-time with strict requirements for 

computation time. Moreover, each optimum of multimodal 

optimization indicates a deployment location of a drone, that is, 

we need a specified number (depending on the number of 

available drones) of different optima. Lastly, considering the 

multiple adjacent drones only redundantly play the same role, 

their locations (different optima) should keep a distance from 

others. Having reviewed and concluded various multimodal 

algorithms in TABLE II, it has been found that they are 

inapplicable to this problem [23-28]. Part of these algorithms 

[24-27] are time-consuming due to the repetitious sorting and 

distance measuring. Otherwise, the majority of multimodal 
 

TABLE II 

FEATURES COMPARISON OF THE EXISTING MULTIMODAL ALGORITHM. 

 Ref. [23] Ref. [24] Ref. [25] Ref. [26] Ref. [27] Ref. [28] Required 

Low time consumption √ × × × × √ √ 

Specified number of 
optima 

× × √ × × √ √ 

Constrained distance 

between different optima 
× √ √ √ √ × √ 
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algorithms are Niching-based [22], which require prior 

knowledge to specify niching parameters or cannot constrain 

the number and distance of optima simultaneously. Thus, the 

form of solutions found by existing algorithms does not match 

the requirements of our scenario.  

To design the feasible algorithm for the scenario of 

collaborative communication, we propose an efficient 

multimodal optimization algorithm called Multimodal Nomad 

Algorithm (MNA), which is inspired by the migratory behavior 

of nomadic tribes on the Mongolia grassland. Nomadic tribes 

are known for their migratory behavior, who always seek and 

regularly migrate to a more suitable place with lush pasture. 

Once they settle somewhere, herdsmen live and work around 

the tribe within a specific range which depends on the fitness of 

the environment. To avoid stagnation at somewhere and 

exhaustion of resources, some members are selected as Rangers 

to explore. Rangers can quickly explore a farther area for a 

better environment. For peaceful coexistence, various tribes 

will not intrude into other tribes’ territories when they migrate. 

These processes can be mathematically modeled to design our 

intelligent optimization algorithm. 

In MNA, the migrating process of nomadic tribes can be 

regarded as the search process of the algorithm. The most 

habitable places are considered the multiple best solutions, and 

the vast grassland is treated as a search space. All members of 

each tribe can be divided into two types: Herdsmen and 

Rangers. Herdsmen and Rangers are responsible for local 

exploitation and global exploration, respectively. Hence, the 

MNA consists of Herdsmen grazing, Rangers exploring, and 

migration determining strategies. This algorithm has a very 

succinct and powerful search mechanism, which predefined the 

required number and minimum spacing of optima. It quickly 

obtains a known number of most appropriate positions for 

drones. This distribution of drones enhances VANET in varies 

metrics. 

B. Design of MNA 

The proportion of the two types of members in each tribe will 

determine the balance between both global exploration and 

local exploitation. The numbers of Herdsmen, denoted by 𝑀𝐻 

is defined (taking the integer portion) as 

 

𝑀𝐻 = 𝑀 × (𝑚𝑎𝑥𝑃 −
(𝑚𝑎𝑥𝑃 −𝑚𝑖𝑛𝑃) × 𝑡

𝑀𝑎𝑥_𝑖𝑡𝑒
) (12) 

 

where 𝑀  indicates the population size of MNA, 𝑚𝑎𝑥𝑃  and 

𝑚𝑖𝑛𝑃 are the maximum and minimum proportion of Herdsmen 

in population, respectively. 𝑀𝑎𝑥_𝑖𝑡𝑒 is the maximum iterations 

of MNA. These parameters are predefined at initialization. Note 

that  𝑡 represents the current iteration times, which grows with 

the running of the algorithm. Besides Herdsmen, other 

members are employed as Rangers, whose number 𝑀𝑅  is 

calculated as follows. 

 

𝑀𝑅 = 𝑀 −𝑀𝐻 (13) 

 

To start the computation, the grazing radius is set to be big 

enough to widely search a potential space, in place of Rangers 

global exploring. With the execution of the algorithm, the 

grazing radius will be reduced gradually to a narrow range, 

which enhances the exploitation capability, while the global 

search capability has declined. Thus, more Rangers need to be 

picked to balance exploration. 

We stipulate that a tribe always located in the most liveable 

territory it found (somewhere with higher fitness). The territory 

of the i-th tribe in the search space is defined as a 𝑑-dimensional 

vector 𝑋𝑖 = {𝑥
1, 𝑥2⋯𝑥𝑑}, where each dimension represents a 

parameter of an objective function to be optimized. In other 

words, a tribe denotes a current optimal solution in the search 

space. It is generated randomly in the initialization of MNA and 

updated in each iteration. The herdsmen work near the tribe 

within a certain radius in each iteration. The grazing radius is 

calculated as 

 

𝑅𝑖(𝑡) = {

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛           𝑡 = 1                     

𝑅𝑖(𝑡 − 1) × 𝛼         𝑓𝑖(𝑡) > 𝑓𝑖(𝑡 − 1)

𝑅𝑖(𝑡 − 1) × 𝛽         𝑓𝑖(𝑡) = 𝑓𝑖(𝑡 − 1)
 (14) 

 

where 𝑅𝑖(𝑡)  is the grazing radius of i-th tribe at iteration 𝑡 . 

𝑋𝑚𝑎𝑥  and 𝑋𝑚𝑖𝑛  denote the upper and lower bounds of the 

search space. 𝛼 is the growth factor, which is higher than 1, and 

𝛽 is the reduction factor greater than 0 and less than 1. Too big 

or too small values will break the robustness of the search 

process. Through experimental comparison, we find when 𝛼 is 

1.1 and 𝛽 is 0.9 could show satisfactory performance for most 

problems. 𝑓𝑖(𝑡) represents the fitness of the position of the i-th 

tribe, i.e., the value of the best solution at iteration 𝑡.  
Equation (14) denotes that the exploit range should be set as 

the whole search space at the initialization. For i-th tribe, if a 

better solution is found, this new spot is more suitable to live, 

and Herdsmen could work on broader space; the search radius 

should be enlarged in next iteration to search more space. 

Conversely, if no better solution is found in this iteration, 

Herdsmen have to reduce their live range to make the search 

more detailed in the next iteration. These strategies provide 

more probability to find a better solution and accelerate 

convergence. 

Algorithm 1 Herdsmen Grazing 

Input: The current iteration 𝑡, the position of i-th tribe 𝑋𝑖, the fitness of 

i-th tribe 𝑓𝑖(𝑡); 

Output: The position of Herdsmen; 

1:  Calculate the number of Herdsmen 𝑀𝐻 by (12); 

2:  Calculate the grazing radius 𝑅𝑖(𝑡) by (14); 

3:  for each Herdsman do 

4:        for each dimension do 

5:              𝑋𝑘=𝑋𝑖
𝑘 + Rand(−𝑅𝑖(𝑡), 𝑅𝑖(𝑡)); 

                  // Avoid searching beyond boundaries 

6:              if 𝑋𝑘 < 𝑋𝑚𝑖𝑛
𝑘 or 𝑋𝑘 > 𝑋𝑚𝑎𝑥

𝑘then 

7:                    𝑋𝑘=Rand(𝑋𝑚𝑖𝑛
𝑘 , 𝑋𝑚𝑎𝑥

𝑘); 

8:              end if 

9:        end 

10:  end 
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The pseudocode of the Herdsmen as mentioned above grazing 

is given by Algorithm 1. 𝑋𝑚𝑖𝑛
𝑘 and 𝑋𝑚𝑎𝑥

𝑘 are the lower and 

upper bounds on 𝑘-th dimension of search space. Rand(𝐴, 𝐵) 
is a function used to uniformly generate a random number 

between 𝐴 and 𝐵. Herdsmen randomly search the vicinity of 𝑋𝑖 
within the radius 𝑅𝑖(𝑡). 

Herdsmen grazing process could guarantee the local 

exploitability of the MNA at the vicinity of the present best 

solution. However, it is not enough to make the tribe find the 

most livable place. Somewhere seems to be better than other 

adjoining areas but is not the best position in the entire search 

space, which is called local optimum. In order to avoid 

stagnating at local optimum, we send Rangers to explore more 

extensive areas. The Rangers have global search capability and 

search in the entire space according to the present location of 

the tribe. This behavior of Rangers can be briefly represented 

as follows: 

 

𝑋𝑅𝑎𝑛𝑔𝑒𝑟~𝑁(𝑋𝑖  ,  𝜎𝑖
2) (15) 

 

The position of Rangers’ exploring 𝑋𝑅𝑎𝑛𝑔𝑒𝑟  complies with a 

Gaussian distribution 𝑁(𝑋𝑖  ,  𝜎𝑖
2)  with 𝑋𝑖  as the mean value 

and  𝜎𝑖
2 as the standard deviation. 𝜎𝑖(𝑡) determines the  

 exploring amplitude of i-th tribe’s Rangers at iteration 𝑡. It 
is calculated by (16) 

 

𝜎𝑖(𝑡) = {

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛             𝑡 = 1                     

𝜎𝑖(𝑡 − 1) × 0.5        𝑓𝑖(𝑡) = 𝑓𝑖(𝑡 − 1)

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛            𝑓𝑖(𝑡) > 𝑓𝑖(𝑡 − 1)
 (16) 

 

This process can be abstracted as a Gaussian probability 

sampling. To begin with, exploring amplitude 𝜎 is set as the 

size of the search space. During the computation process, it will 

rapidly reduce if no better solution found at the previous 

iteration. Once the Rangers find somewhere with better fitness, 

the exploring amplitude 𝜎 return to the original range. Diverse 

from Herdsmen which employ the uniform distribution within 

a certain range, this type of Gaussian distribution has higher 

search probability on the closer region, also has a probability to 

search any position within the search space. 

The pseudocode of the above process is given as following 

Algorithm 2. N(𝐴, 𝐵) is a function used to generate a random 

number accord with the Gauss distribution whose mean value 

is 𝐴 and variance is 𝐵. 

 Compared with other traditional perturbation or mutation 

strategies, this method has several advantages. Firstly, many 

strategies use fixed random perturbation without heuristic 

information, which does not facilitate intelligence. Secondly, 

some perturb strategies multiply the current coordinates by a 

perturbation factor as a new position. The perturbation factor 

usually follows a certain probability distribution, such as 

Gaussian distribution or Levy distribution. These strategies 

often cause a tendency shrinking to origin. The reason for their 

acceptable test results is that optima of most benchmark 

functions exactly locate at the zero points. These traditional 

strategies, however, are infeasible when dealing with those 

functions built to solve practical problems, whose optima are 

hardly at the origin. 

The Nomad tribe tends to migrate to the best position which 

has been found. However, there are many tribes coexist on the 

grassland; a tribe should avoid intruding into the territories of 

other tribes during its migration.  If Ranger or Herdsmen have 

found a better objective (i.e. location) and this location is close 

to other tribes, they do not migrate. In other words, the tribe 

should determine whether the objective position belongs to 

another tribe before migration. The Euclidean distance is used 

as the criterion likes (17): 

 

𝑑𝑖,𝑗 = ‖𝑋𝑖 − 𝑋𝑗‖2 (17) 

 

where 𝑑𝑖,𝑗  is the Euclidean distance between two position 𝑋𝑖 

and 𝑋𝑗 . When the i-th nomad tribe finishes the search of the 

current iteration and gets another best position 𝑋𝑏 , the 

migration determining is adopted by Algorithm 3. 

 According to this algorithm, if the objective position found 

by a tribe is closer to another tribe than to itself, or too close to 

other tribes, it does not update the position although there are 

more suitable for living. The γ is a coefficient to determine the 

boundary of a tribe’s territory, i.e., the minimum distance 

between two different tribes. This mechanism could avoid the 

multiple tribes falling into similar solutions.  Based on the 

above expressions and algorithms, the architecture of MNA is 

established. It is constituted of Herdsmen grazing, Rangers 

exploring and Migration determining processes. We assume 

that the population size of a tribe is set to 𝑁, and the number of 

Algorithm 2 Ranger Exploring 

Input: The current iteration 𝑡, the position of i-th tribe 𝑋𝑖, the fitness of 

i-th tribe 𝑓𝑖(𝑡); 

Output: The position of Rangers; 

1:  Calculate the number of Herdsmen 𝑀𝑅 by (13); 

2:  Calculate the exploring  amplitude 𝜎𝑖(𝑡) by (16); 

3:  for each Ranger do 

4:        for each dimension do 

5:              𝑋𝑘=𝑋𝑖
𝑘 + N(0, 𝜎𝑖(𝑡)

2); 

                  // Avoid searching beyond boundaries 

6:              if 𝑋𝑘 < 𝑋𝑚𝑖𝑛
𝑘 or 𝑋𝑘 > 𝑋𝑚𝑎𝑥

𝑘then 

7:                    𝑋𝑘=Rand(𝑋𝑚𝑖𝑛
𝑘 , 𝑋𝑚𝑎𝑥

𝑘); 

8:              end if 

9:        end 

10:  end 

Algorithm 3 Migration Determining 

Input: The i-th tribe’s new best position 𝑋𝑏 and its fitness; 

Output: The position of  i-th 𝑋𝑖 and its fitness 𝑓𝑖(𝑡); 

1:  Calculate the 𝑑𝑖,𝑏 by (17); 

2:  for every other tribe 𝑋𝑗 do 

3:        Calculate the 𝑑𝑏,𝑗  by (17); 

4:        if 𝑑𝑖,𝑏 > 𝑑𝑏,𝑗 or 𝑑𝑏,𝑗  < γ ∙ (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)then 

5:              End the Algorithm 3 without any operation; 

6:        end 

7:  end 

8:  Update 𝑋𝑖 and 𝑓𝑖(𝑡) 
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Nomad tribes 𝑇 is determined by the problem to be solved. If 

the algorithm ends in t generation, the time complexity is 

simplified to 𝑂(𝑡 × 𝑇 × 𝑁). The complete process is given by 

Algorithm 4. 

Algorithm 4 Multimodal Nomad Algorithm 

Input:  The search space, dimensions, the objective function of the problem, 

required number of solution, and the parameters of MNA; 

Output:  The multiple solutions and their value; 

1:  Initialize parameters of MNA; 

2:  do 

3:        for each tribe do 

4:              Herdsmen grazing by Algorithm 1; 

  5:              Rangers exploring by Algorithm 2; 

6:              Evaluate each member’ s fitness; 

7:              Select the best one as 𝑋𝑏; 

8:              Migration determining by Algorithm 3; 

9:        end 

10:        Iterations++; 

11: until getting the expected precision or maximum iterations; 

12: return coordinates and fitness of all tribes as multiple optima; 

 

C. Efficiency Verification  

In this part, comparison experiments are conducted to 

analyze our proposal. Comparing MNA with other niching-

based multimodal algorithms are infeasible due to all these 

algorithms are constructed in different forms. Hence, only the 

optimization accuracy and speed on global space are considered 

for simulation. We select five well-known algorithms as 

competitors, which are widely applied in the field of industrial 

optimization, Particle Swarm Optimization (PSO) [29], 

Gravitational Search Algorithm (GSA) [30], Flower Pollination 

Algorithm (FPA) [31], Whale Optimization Algorithm (WOA) 

[32], and Crow Search Algorithm (CSA) [33].  

Owing to the common searching strategy of each tribe in 

MNA, a single tribe’s behavior is an independent algorithm to 

demonstrate the optimization capability. With the same 

population size, we set a single tribe against other algorithms. 

As given in Table III, twelve well-known benchmark functions 

are utilized to verify the effectiveness of algorithms. 

The Dim represents the dimensions of each function, i.e., the 

number of parameters determines the result of the problem. The 

range indicates the size of the search space. The unimodal 

functions ( 𝑓1 − 𝑓4 ) with high dimensions can examine the 

exploitation ability of algorithms. In contrast, the multimodal 

functions (𝑓5 − 𝑓12) with quite many local optima can examine 

the exploration ability and local optima avoidance of 

algorithms.  

Due to the indeterminacy of swarm-based intelligence 

algorithms, multiple independent experiments should be 

conducted to reduce the accidental error. With 30,000 times of 

evaluation, Table IV gives the statistical mean (Mean) and 

standard deviation (Std) of error value optimized by different 

algorithms over 50 independent runs. The best results for each 

benchmark function are marked in bold in the table. It shows 

that MNA has the best accuracy on all the twelve benchmark 

functions. Apart from 𝑓10, MNA also achieves the minimum 

standard deviations on most functions. With the same 

evaluation times, it is clear that MNA outperforms other 

algorithms in optimization accuracy and stability. This 

superiority means that MNA can obtain better solutions for 

most problems under the same computation burden. To further 

study the convergence, more evaluations (300,000) are utilized.    

Algorithm 5 MNA-optimized Drone-assisted VANETs  

Input: The range of simulation area (𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥), the objective function (6), 

the required number of drones T; 

Output: The positions in time for T drones; 

1: 

2: 

3: 

4: 

5: 

6: 
 

7: 

8: 
 

9: 

10: 

Randomly initialize T positions as drones; 

do      

Predict the distribution of vehicles in next time slice by (1-3); 

      Built the evaluation function (6) by (7-11); 

      Perform the MNA by Algorithm 4 to get T global optima; 

      Assign optimal positions for T drones by SA that makes the total path 

shortest; 

𝑇 drones respectively fly to their destinations; 

Drones hover at the designated position until the current time slice 

is exhausted; 

until Terminate condition is satisfied  

end 

  

The convergence curves of these six algorithms on each 

benchmark test function also have been shown in Fig. 6. MNA 

gets the best accuracy on all the 12 benchmark functions. For 

unimodal functions 𝑓1 − 𝑓4, the accuracy of MNA is far more 

than others, especially for 𝑓1 , 𝑓2 and 𝑓4 , curves keep a 

downward tendency, and they will descend to better accuracy 

with more evaluations. It demonstrates MNA’s powerful 

exploitation capability in local search. In the cases of 

multimodal functions 𝑓5 − 𝑓12 , MNA also rapidly finds the 

global optimum with extreme accuracy. Some convergence 

curves sharply descend and perpendicularly intersect with the 

horizontal axis (e.g., MNA on 𝑓10 − 𝑓12 ). It means that the 

algorithm gets the highest accuracy solution under the 

computer's machine epsilon at current evaluations. Although 

FPA and CSA get the same best accuracy as MNA on 𝑓10 − 𝑓12 

whose dimensions are fixed and low, their disadvantage in most 

conditions represents they are feeble in practices. In all the rest 

of cases, MNA is superior to its competitors on both 

convergence speed and accuracy. These experiments and 

discussions have verified that MNA is an efficient optimization 

algorithm who can quickly obtain extreme high accuracy in a 

complex problem. 

D. Optimize the Drone-assisted VANETs by MNA 

The drone-assisted VANET deploys multiple drones on 

different positions which have high demands for assistant 

nodes. It is a typical multimodal optimization problem, and our 

proposed MNA can be applied for this architecture. The 

parameters setting of MNA should refer to the requirements of 

this application. Thus, we set the number of tribes 𝑇 equals to 

the number of drones, the bounds of the search space, 𝑋𝑚𝑎𝑥  and 

𝑋𝑚𝑖𝑛, are determined by the simulation area.  

Obviously, our scheme is designed for infrastructure-less 

scenarios, which results in a shortage of the relay nodes. If the 

number of drones is sufficient for full coverage, the position of 

drones could be fixed without the necessity of scheduling. T 

should be less than that the required number for full coverage, 

which is calculated as follows: 
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𝑇𝑓𝑐 = (⌈
𝐿𝑒𝑛

𝑅𝑑
⌉ − 1) ∙ (⌈

𝑊𝑖𝑑

𝑅𝑑
⌉ − 1) (18) 

where 𝐿𝑒𝑛 and 𝑊𝑖𝑑 are length and width of the rectangle task 

area, respectively. 𝑅𝑑  represents the communication range of 

drones. Tfc indicates the minimum number of drones for fully 

covering the task area, where drones are uniformly dispersed. 

 Moreover, the total consumption of time and energy for 

drones should be considered for minimization. When the 

algorithm obtains new positions as many as the number of 

drones, a sequence should be built to indicate each drone flies 

to which destination. As assigned by this sequence, the total 

distance of all drones from the original position to their 

destination will be minimized. This requirement can be reduced 

to a Traveling Salesman Problem (TSP) and solved by standard 

Simulated Annealing (SA) [34].  

The pseudocode of MNA-optimized drone-assisted VANET 

is abstracted as following Algorithm 5. By this mechanism, this 

drone-assisted communication system can run continuously in 

TABLE III 

THE BENCHMARK TEST FUNCTIONS. 

Function Formulation Dim Range 

Sphere 𝑓1 = ∑ 𝑥𝑖
2𝐷

𝑖=1   30 [-100,100] 

Axis Parallel Hyper Ellipsoid 𝑓2 = ∑ 𝑖𝑥𝑖
2𝐷

𝑖=1   30 [-100,100] 

Rotated Hyper Ellipsoid 𝑓3 = ∑ (∑ 𝑥𝑗
2𝑖

𝑗=1 )
2𝐷

𝑖=1   30 [-100,100] 

Schwefel 2.22 𝑓4 = ∑ |𝑥𝑖|
𝐷
𝑖=1 +∏ |𝑥𝑖|

𝐷
𝑖=1   30 [-100,100] 

Griewank 𝑓5 = 1 + ∑
𝑥𝑖
2

4000

𝐷
𝑖=1 −∏ cos(

𝑥𝑖

√𝑖
)𝐷

𝑖=1   30 [-600,600] 

Rosenbrock 𝑓6 = ∑ 100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (1 − 𝑥𝑖)
2𝐷−1

𝑖=1   30 [-15,15] 

Ackley 𝑓7 = 20 + 𝑒 − 20 exp(−0.2√
1

𝐷
∑ 𝑥𝑖

2𝐷
𝑖=1 ) − 𝑒𝑥𝑝 (

1

𝐷
∑ cos (2𝜋𝑥𝑖)
𝐷
𝑖=1 )   30 [-32,32] 

Schwefel 2.26 𝑓8 = 𝐷 ∗ 418.9829 + ∑ −𝑥𝑖sin (√|𝑥𝑖|)
𝐷
𝑖=1   30 [-500,500] 

Rastrigin 𝑓9 = ∑ (𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝐷
𝑖=1    30 [-15,15] 

Schaffer 𝑓10 = (sin
2(√𝑥1

2 + 𝑥2
2) − 0.5) (1 + 0.001(𝑥1

2 + 𝑥2
2))

2
⁄ + 0.5  2 [-100,100] 

Drop Wave 𝑓11 = −(1 + cos(12√𝑥1
2 + 𝑥2

2))  (0.5(𝑥1
2 + 𝑥2

2) + 2)⁄       2 [-5.12,5.12] 

Easom 𝑓12 = −cos(𝑥1) ∗ cos(𝑥2) ∗ exp(−(𝑥1 − 𝜋)
2 − (𝑥2 − 𝜋)

2) 2 [-100,100] 

 

 
TABLE IV 

MEAN AND STD OF ERROR VALUE OPTIMIZED BY MNA, PSO, GSA, FPA, WOA, AND CSA. 

 

Function 

MNA 

Mean (Std) 

PSO 

Mean (Std) 

GSA 

Mean (Std) 

FPA 

Mean (Std) 

WOA 

Mean (Std) 

CSA 

Mean (Std) 

1f  0.000000 

(0.000000) 

2.004647 

(0.728381) 

0.000000 

(0.000000) 

1834.600 

(714.4833) 

8.233581 

(3.746787) 

259.7336 

(148.2135) 

2f  0.000000 

(0.000000) 

24.14500 

(9.458851) 

0.000000 

(0.000000) 

13841.341 

(3710.609) 

167.7244 

(114.4379) 

3366.529 

(1009.984) 

3f  0.000000 

(0.000000) 

323.8981 

(794.4772) 

1254.705 

(587.0469) 

1313.523 

(689.3279) 

28939.25 

(9919.102) 

5.7982e+8 

(2.8135e+8) 

4f  0.002367 

(0.000731) 

6.638470 

(4.983921) 

136.4034 

(41.05784) 

1.850e+11 

(1.849e+11) 

1.310373 

(0.398997) 

4.4097e+9 

(2.3405e+9) 

5f  0.008867 

(0.006979) 

0.111006 

(0.047333) 

45.74147 

(10.25388) 

12.18651 

(3.648560) 

1.069219 

(0.024095) 

2.469631 

(0.988741) 

6f  17.03999 

(7.054571) 

2161.197 

(5692.326) 

28.60900 

(8.393017) 

2871.898 

(1830.691) 

27.19862 

(0.535644) 

1209.539 

(188.2314) 

7f  0.000189 

(0.000101) 

2.485380 

(0.348010) 

0.165836 

(0.077859) 

15.09203 

(2.025805) 

5.756136 

(1.255586) 

4.968268 

(1.233254) 

8f  0.000385 

(0.000006) 

5935.619 

(889.1302) 

9954.876 

(585.3515) 

5238.598 

(200.2004) 

1177.963 

(1622.258) 

8123.234 

(7881.231) 

9f  0.602605 

(0.491013) 

154.2373 

(30.03182) 

29.84874 

(7.612125) 

246.9591 

(23.54817) 

107.9073 

(35.27835) 

245.0780 

(128.2357) 

10f  0.006477 

(0.004580) 

0.009434 

(0.003884) 

0.026764 

(0.036737) 

0.00839 

(0.001713) 

0.007125 

(0.004296) 

0.007286 

(0.00628) 

11f  0.000000 

(0.000000) 

0.000000 

(0.000000) 

0.009682 

(0.015221) 

0.000000 

(0.000000) 

0.017001 

(0.028193) 

0.000000 

(0.000000) 

12f  0.000000 

(0.000000) 

0.000000 

(0.000000) 

0.793226 

(0.349634) 

0.000118 

(0.000272) 

0.133333 

(0.339934) 

0.000000 

(0.000000) 
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real-time. During the whole conduction of this system, drones 

always have communication capability as relay nodes, whether 

they are moving or hovering. In any time slice, the drone-

assisted VANET model predicts the distribution of future 

 
 

Fig. 6.  Convergence curves of MNA, PSO, ABC, FPA, WOA, and CSA on benchmark functions. (a) Sphere function; (b) Axis Parallel Hyper Ellipsoid 

function; (c) Rotated Hyper Ellipsoid function; (d) Schwefel-2.22 function; (e) Griewank function; (f) Rosenbrock function;(g) Ackley function; (h) Schwefel-

M function; (i) Ackley function; (j) Schwefel-2.26 function; (k) Drop Wave function; (l) Easom function; 

 

1.E-100

1.E-80

1.E-60

1.E-40

1.E-20

1.E+00

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(a)

MNA
PSO
GSA
FPA
WOA
CSA

1.E-100

1.E-80

1.E-60

1.E-40

1.E-20

1.E+00

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(b)

MNA
PSO
GSA
FPA
WOA
CSA

1.E-60

1.E-40

1.E-20

1.E+00

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(c)

MNA
PSO
GSA
FPA
WOA
CSA

1.E-50

1.E-30

1.E-10

1.E+10

1.E+30

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(d)

MNA

PSO

GSA

FPA

WOA

CSA

1.E-20

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(e)

MNA

PSO

GSA

FPA

WOA

CSA

1.E-02

1.E+00

1.E+02

1.E+04

1.E+06

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(f)

MNA

PSO

GSA

FPA

WOA

CSA

1.E-16

1.E-12

1.E-08

1.E-04

1.E+00

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(g)

MNA

PSO

GSA

FPA

WOA

CSA

1.E-04

1.E-02

1.E+00

1.E+02

1.E+04

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(h)

MNA
PSO
GSA
FPA
WOA
CSA

0

100

200

300

400

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(i)

MNA

PSO

GSA

FPA

WOA

CSA

1.E-20

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(j)

MNA

PSO

GSA

FPA

WOA

CSA

1.E-20

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(k)

MNA

PSO

GSA

FPA

WOA

CSA

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30

o
p

ti
m

a

Evaluation                 x104

(l)

MNA

PSO

GSA

FPA

WOA

CSA



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

12 

vehicles according to the movement of current a  such as current 

positions and velocities. Based on the predicted distribution of 

vehicles, the fitness of arbitrary position, which means the 

demands for drone assistance, can be evaluated by our model. 

Afterward, the MNA is conducted to obtain multiple global 

optimal solutions, i.e., the expected locations for drones. This 

rational dispatching of drone relays brings significant 

improvement to terrestrial VANET communication. 

IV. SIMULATION AND MODEL VALIDATION 

In this section, we show the simulations conducted to 

evaluate the efficiency of our model. The proposed MNA-

optimized drone-assisted (MNAD) VANET is compared to 

three VANET schemes. First, as the baseline, the conventional 

VANET with No Drone-assisted (ND) are compared. Second, 

the Fixed Drones-assisted (FD) VANET is utilized likes 

infrastructures, which show why VANETs need drones rather 

than base stations. Last, the Cruising Drones-assisted (CD) 

VANET is set as one counterpart to evaluate MNA. The CD 

evenly divided task area into T (the number of drones) sub-

areas, while each drone flies within one sub-area with a smooth 

random walk mobility model [35]. By applying the same 

routing protocol, our proposal enhances VANETs on 

multifarious network performance. Considering our proposal 

aims to enhance network performance but is independent from 

routing protocols, four evaluation metrics of the network are 

adopted to simulation including packet delivery ratio (PDR), 

end-to-end delay (EED), the average number of hops (HOPs), 

and throughput.  

A. Simulation Environment and Parameters 

All the network simulations are implemented by NS-2 [36] 

where the well-known AODV [37] is applied as the routing 

protocol. To make our simulations approaching the real urban 

scenario, we adopt the real geographic data provided by 

OpenStreetMap [38] and relevant floating car data provided by 

Didi [39]. Due to the low density of floating car data, 

unprocessed data are unsuitable for network simulation. 

According to 1,000,000 floating car data corresponding to the 

simulation area, we make a statistic to obtain the motion 

features, including the maximum parking time, the maximum, 

minimum, and average speeds. These features and map data are 

delivered to SUMO [40] to generate the vehicle mobility model. 

The downtown of a prosperous city (Chengdu City, China) is 

modeled as following Fig. 7, in which the simulation 

parameters are summarized in Table V. To avoid the accidental 

discrepancy and get meaningful statistical results, 30 

independent runs are conducted for each simulation scenario to 

calculate the average value. 

B. Analyses of Network performance 

1) Packet Delivery Ratio (PDR) 

The Packet Delivery Ratio (PDR) is the percentage of 

successfully delivered packets. It is calculated by 𝑃𝑅/𝑃, which 

𝑃𝑅  represents the number of data packets received by the 

destination node, and 𝑃 is the number of data packets generated 

by the source node. This metric can be also replaced by Packet 

Loss Rate, which is always equal to ‘1-PDR’ and evaluates 

network in the same aspect. We compare the PDR of different 

VANETs scheme with a various number of drones. The 

simulation also considers the vehicles density, which is divided 

into the sparse scenarios (100 vehicles) and the dense scenarios 

(200 vehicles). Fig. 8 demonstrates the average PDR of these 

scenarios.  

As displayed in Fig. 8, our MNAD has the highest PDR in all 

scenarios. The fixed drones (FD) and cruising drones (CD) 

assisted VANET show similar performances, which are better 

than ND only in sparse-vehicle scenarios. For the dense-vehicle 

scenario, the PDR of each scheme becomes decrease. These 

losses are attributed to the poor scalability of routing protocol, 

i.e., the network quality tends to be worse with increased nodes. 

More nodes can lead to more opportunities for connectivity as 

 
Fig. 7.  The simulation area. 

   

  
TABLE V 

SIMULATION PARAMETERS 

Parameters Value 

Simulation scenario  

Simulation area 

Simulation time 
Mobility generator 

Number of road segments 

Number of intersections 
Number of vehicles 

Number of drones 

Vehicles speed 
Drone speed 

Length of time slice 

2000 m × 2000 m 

180 s 
SUMO [34] 

208 

102 
100, 200 

4, 8, 12, 16, 20 

0-60 km/h  
0-90 km/h 

5 s 

Routing  

Vehicles communication range  

Drones communication range 

Drones altitude 
Mac protocol 

Routing protocol 

% of nodes requesting data 
Radio-propagation model 

Type of Traffic 

CBR Interval 
Packet Size  

500 m  

600 m 

200 m 
802.11p 

AODV [31] 

10% 
TwoRayGround 

Constant Bit Rate (CBR) 

0.1 s 
512 Bytes 
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well as more interference, load, computation, and changes. All 

these additions may result in potential accidents for routing 

protocol so that the scalability problem is unavoidable for any 

protocol. Under the common deterioration in the dense-vehicle 

scenario, MNAD still outperforms its contrast schemes with 

varies numbers of drones.  

Due to the imbalance distribution and frequent movement of 

vehicles, the isolated node also appears with a sufficient 

number of vehicles. However, the probability will decrease 

with the growing number of vehicles, which has been verified 

by the changes of PDR. With consideration of isolated vehicles, 

the PDR improvement of our scheme for sparse scenario is 

about 10% while for dense scenario is only around 5%. 

Meanwhile, no improvement for other drone-assisted schemes 

in dense scenario. It means that the disconnected island rarely 

appears in dense scenario. 

To observe the distribution of the results of the experiments, 

the box-plot PDR figure is presented by Fig. 8(c). It shows that 

all the indicators of box-plot of our proposed MNAD are higher 

than its contrasts. The highest PDR of MNAD has achieved 

94%, which is superior to other schemes’ upper limits. For the 

worst conditions, ND and CD are inefficient as lower than 20%, 

FD gets 23% but still no more than MNAD’s 27%. Half of the 

MNAD’s PDR is higher than 60%, which has a slight advantage 

to the other three schemes. For all metrics of the PDR boxplot, 

MNAD has noticeable superiorities to other schemes. Thus, it 

is considered to have higher PDR in general. 

2) The average number of hops (HOPs) 

The HOPs demonstrates the number of MAC layer 

transmissions made from source node to destination node. In 

other words, the number of hops is equal to the number of 

intermedia nodes on the communication path plus 1 (source 

node). More hops represent high cost on transmission link, i.e., 

an ideal link should have as few hops as possible. The statistical 

results of the HOPs are shown in Fig. 9.  

There is no critical distinction of HOPs for ND, FD, and CD 

whatever the densities of vehicles and drones are. The only 

discrepancy is the unstable FD has relatively noticeable 

fluctuation. While for the MNAD, HOPs has been reduced in 

each scenario. With the sparse-vehicle scenario (100 vehicles in 

the simulation area), MNAD has about one hop advantage over 

other schemes. This advantage tends to grow with the 

increasing number of drones. In the dense-vehicle scenario, 

MNAD has almost two hops reduction than other comparison 

schemes which fluctuate around six hops. It is noticed that the 

HOPs are growing when the vehicles become dense.  

As shown in box-plot Fig. 9(c), MNAD still has great 

superiority on all evaluation indictors. Three-quarters results of 

MNAD are lower than five hops, and the minimum is even less 

than two hops. For the worst hops, MNDA has clear two hops 

advantage to its competitors. The rational scheduling of drones 

 
 

Fig. 9.  (a) The HOPs of sparse-vehicle scenario. (b) The HOPs of dense-vehicle scenario. (c) Box-plot of HOPs with 30 independent repeated experiments. 
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Fig. 8.  (a) The average PDR of sparse-vehicle scenario. (b) The average PDR of dense-vehicle scenario. (c) Box-plot of PDR with 30 independent repeated 

experiments. 
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by our model and algorithm explains this advance. The 

existence of drones on the appropriate area can help the 

transmission avoid unnecessary hops. In contrast, the 

unplanned drones only play as redundant nodes and take the 

extra burden to the reactive routing protocol. 

3) Average End-to-end Delay (EED) 

End-to-end delay is the actual time taken by the transmission 

of a valid data packet. The average EED depends on the ratio of 

the total time taken (sum of each EED) to the number of 

successfully received packets. The network quality is evaluated 

by average EED, which is expected to be lower. 

According to Fig. 10, drone-assisted mechanisms do not take 

effect in this metric. The average EED are arbitrarily fluctuating 

in the sparse-vehicle scenario. This condition also happens in 

dense-vehicle scenario expect for MNAD, which unfolds a 

worse tendency. That is due to the EED, as the real-time 

consumption of transmission, also includes the time of routing 

discovery. In urban VANET, because of the extremely high 

dynamic of vehicles, the routing discovery can be highly 

frequent. In this case, the time consumption of discovery cannot 

be neglected. It also should be noticed that the failed 

transmission is not considered in the computation of EED. 

Without our MNAD, the isolated vehicles are often in a state in 

which there will be no available routing path to the destination. 

These failed processes of routing discovery can contribute to 

the packet losses and additional time cost but with no impact 

for EED. For these complex scenarios, our scheme spends extra 

time on discovery but obtains a reachable path that improves 

the average result of EED. 

As box-plot depicted in Fig. 10(c), there are at least half of 

the EEDs of MNAD beyond 0.5 second, which is worse than 

most of the other methods. More than one-quarters EEDs of 

MNDA are beyond 1 second; especially the maximum is 

reached 2.1 seconds. However, in comparison, even under the 

worst scenarios, the other three schemes are lower than 1.8 

seconds. Due to our proposal expending extra time to obtain 

better accuracy on routing, this compromise between time 

consumption and accuracy results in that MNAD fail into 

disadvantage on EEDs. However, these defects can be 

overcome by geography-based routing protocols [6] whose time 

taken by path discovery is generally enough to be ignored. 

4) Throughput 

Throughput represents the total amount of data can be 

successfully transmitted during a period. This evaluation metric 

reflects the real transmission efficiency of the network. Fig. 11 

gives the statistics of each scenario’s throughput. Due to the 

application of the Constant Bit Rate (CBR) for routing traffic, 

 
 

Fig. 10.  (a) The average EED of sparse-vehicle scenario. (b) The average EED of dense-vehicle scenario. (c) Box-plot of average EED with 30 independent 

repeated experiments. 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0 4 8 12 16 20

E
E

D
 (

s)

Number of drones

(a)

ND
FD
CD
MNAD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 4 8 12 16 20

E
E

D
 (

s)

Number of drones

(b)

ND
FD
CD
MNAD

0

0.5

1

1.5

2

2.5

ND FD CD MNAD

E
E

D
s

Scheme

(c)

 
 

Fig. 11.  (a) The throughput of sparse-vehicle scenario. (b) The throughput of dense-vehicle scenario. (c) Box-plot of throughput with 30 independent repeated 

experiments. 
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throughput is positively correlated with PDR. The statistics of 

throughput in Fig. 11 are similar to PDR in Fig. 8. 

MNAD achieves the highest throughput among the four 

schemes. Although all the throughput is decreased in the dense-

vehicle scenario, MNAD still keeps the highest performance. 

By reviewing the previous analysis of PDR, we would like to 

explain why MNAD achieves the best throughput despite its 

inferior EED. The calculation of EED only considers the 

successfully received packet, whereas quite a few packets are 

lost. Although other three schemes have lower average delay 

for each packet transmission, their heavy loss of packet results 

in fewer data transmitted during the same period, i.e., lower 

throughputs.  

C. Summary of Simulation 

Refer to the real maps and floating car data of Chengdu city 

in China, we design a series of simulations to exam the 

effectiveness and flexibility of our proposed MNA-optimized 

Drone-assisted (MNAD) VANET. The weakness of contrastive 

cases (ND, FD, and CD) verifies that the improvement of 

VANET which is due to the utilization of our proposed 

evaluation model and optimization algorithm rather than the 

simple adoption of drones. It can be seen that MNAD has 

outstanding performance in terms of packet delivery ratio 

(PDR), average number of hops (HOPs), and throughput. 

Increased PDR and throughput represent few-failed routing and 

high-quality links. In contrast, decreased HOPs means the 

shorter path. These improvements are benefited from the 

optimal distribution of multiple drones which are deployed at 

the most critical positions.  

Another evaluation metric average end-to-end delay (EED) 

gets a little loss with MNAD that is attributed to the 

compromise between routing discovery time and routing 

quality. However, the improvements in throughput have 

rectified that this compromise is worthwhile.  For the global 

perspective, higher throughput represents the MNAD 

mechanism could transmit more valid packets with the same 

duration.  

For the number of drones, diverse simulations have 

illustrated that the increasing number of drones is unnecessary. 

A limited number of drones, such as 8 drones in 2 km × 2 km 

area, are sufficient for assisting VANET with noticeable 

improvement while more drones take no advantage or even 

some negative effect. In other words, the scalability problem 

also emerges in our scheme. Nevertheless, it has few impacts 

because our scheme is proposed specifically for infrastructure-

less scenarios. This paper intends to fill the shortage of network 

infrastructure, in which the communication model is equipped 

on the dynamic drones to receive the intelligent dispatching 

schedules. If there were more drones act as relay nodes to 

guarantee the full coverage, a schedule will not be necessary, 

an issue that is out of the scope of this paper. 

V. CONCLUSION 

In this work, we designed a collaborative-based drone-

assisted VANET networking model. In this model, FANET 

consists of drones that serve as relay nodes in the air. The 

deployment of drones relies on the prediction of vehicles 

distribution, which helps isolated vehicles routing, NLoS, and 

load balancing networking. To enable better collaboration of 

multiple drones, the best distribution of drones is transferred 

into a multimodal optimization problem. In particular, we 

propose a novel intelligent multimodal algorithm, named 

Multimodal Nomad Algorithm, to solve the problem efficiently. 

According to the number of drones, this algorithm can obtain 

multiple optimal positions for drones simultaneously. 

Simulation experiments have been conducted to test network 

performance. We compared our model with conventional 

VANET, VANET with fixed auxiliary drones, and cruising 

drones assisted VANET without optimization. The 

experimental results demonstrate that our proposed Multimodal 

Nomad Algorithm optimized Drone-assisted VANET is 

superior to other models in terms of average packet delivery 

rate, the average number of hops (HOPs), and throughput. 

Although the end-to-end delay of our proposal has a slight loss, 

the increase in throughput has verified the global transmission 

capability is improved. In urban VANETs, our collaborative 

networking model is promising for large-scale data 

transmission application, such as onboard multimedia 

transmission. As a concrete step towards future work, 

integrating our proposed model with other networks, such as the 

software-defined network, can enhance the management and 

network control. 

ACKNOWLEDGMENT 

This study is funded by the Key Projects of Liaoning 

Provincial Department of Education Science Foundation 

(L201702), the National Science Foundation of China 

(61701322), the Young and Middle-aged Science and 

Technology Innovation Talent Support Plan of Shenyang 

(RC190026) and the Liaoning Provincial Department of 

Education Science Foundation (JYT19052). 

REFERENCES 

 
[1] B. Hassanabadi and S. Valaee, “Reliable periodic safety 

message broadcasting in VANETs using network coding,” 

IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1284-

1297, Mar. 2014. 

[2] J. Chen, G. Mao, C. Li, W. Liang, and D. Zhang, “Capacity 

of cooperative vehicular networks with infrastructure 

support: Multiuser case,” IEEE Trans. Veh. Technol., vol. 67, 

no. 2, pp. 1546-1560, Feb. 2018. 

[3] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, 

“Connected vehicles: solutions and challenges,” IEEE 

Internet of Things J., vol. 1, no. 4, pp. 289-99, Aug. 2014. 

[4] M. Sivasakthi and S. R. Suresh, “Research on vehicular ad 

hoc networks (VANETs): an overview,” Int. J. Appl. Sci. 

Eng. Res., vol. 2, no.1, pp. 23-27, Sep. 2013. 

[5] J. Cheng, J. Cheng, M. Zhou, F. Liu, S. Gao, and C. Liu, 

“Routing in internet of vehicles: A review,” IEEE Trans. 

Intell. Transp. Syst., vol. 16, no. 5, pp. 2339-2352, Oct. 2015. 

[6] S. Boussoufa-Lahlah, F. Semchedine, L. Bouallouche-

Medjkoune, “Geographic routing protocols for Vehicular Ad 

hoc NETworks (VANETs): A survey,” Veh. Commu., vol. 

11, pp. 20-31, Jan. 2018. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

16 

[7] C. Campolo and A. Molinaro, “Multichannel 

communications in vehicular ad hoc networks: A survey,” 

IEEE Commun. Mag., vol. 51, no. 5, pp. 158-169, May. 2013. 

[8] R. Molina-Masegosa and J. Gozalvez, “LTE-V for sidelink 

5G V2X vehicular communications: A new 5G technology 

for short-range vehicle-to-everything Communications,” 

IEEE Veh. Technol. Mag., vol. 12, no. 4, pp. 30-39, Dec. 

2017.  

[9] W. Shi, H. Zhou, J. Li, W. Xu, and N. Zhang, “Drone assisted 

vehicular networks: architecture, challenges and 

opportunities,” IEEE Netw., vol. 32, no. 3, pp. 130-137, 

May/Jun. 2018.  

[10] I. Bekmezci, O. K. Sahingoz, and S. Temel, “Flying ad-hoc 

networks (FANETs): A Survey,” Ad Hoc Netw., vol. 11, no. 

3, pp. 1254-1270, May. 2013. 

[11] J. Wu, L. Zou, L. Zhao, A. Al-Dubai, L. Mackenzie, and G. 

Min, “A Multi-UAV Clustering Strategy for Reducing 

Insecure Communication Range,” Comput Netw., vol. 158, 

pp. 132-142, Jul. 2019. 

[12] C. Luo, W. Miao, H. Ullah, S. McClean, G. Parr, and G. Min 

“Unmanned Aerial Vehicles for Disaster Management, in 

Springer Natural Hazards, Geological Disaster Monitoring 

Based on Sensor Networks., T. S. Durrani, W. Wang, and S. 

M. Forbes, Eds., Singapore: Springer Singapore, 2019, pp. 

83107. 

[13] Unmanned aircraft systems: Air-ground channel 

characterization for future applications,” IEEE Vehicular 

Technology Magazine, vol. 10, no. 2, pp. 79–85, 2015. 

[14] UAV-assisted supporting services connectivity in urban 

VANETs. IEEE Transactions on Vehicular Technology, 

2019, vol. 68, no 4, p. 3944-3951. 

[15] C. Sommer, D. Eckhoff, R. German, F. Dressler, "A 

computationally inexpensive empirical model of IEEE 

802.11p radio shadowing in urban environments,” Proc. 

2011 8th Int. Conf. Wireless On-Demand Netw. Syst. Serv., 

pp. 84-90, 2011. 

[16] Leveraging Communicating UAVs for Emergency Vehicle 

Guidance in Urban Areas. IEEE Transactions on Emerging 

Topics in Computing, 2019.  

[17] X. Wang, L. Fu, Y. Zhang, X. Gan, and X. Wang, “VDNet: 

An infrastructure-less UAV-assisted sparse VANET system 

with vehicle location prediction,” Wireless Commun. Mobile 

Comput., vol. 16, no. 17, pp. 2991-3003, Sep. 2016. 

[18] O. S. Oubbati, A. Lakas, M. G¨unes¸, F. Zhou, and M. B. 

Yagoubi, “UAV assisted reactive routing for urban 

VANETs,” in Proc. Symp. Appl. Comput.,ACM, 2017, pp. 

651–653 

[19] H. Seliem, R. Shahidi, M. H. Ahmed, and M. S. Shehata, 

“Drone-based highway-VANET and DAS service,” IEEE 

Access., vol. 6, pp. 20125-20137, 2018.  

[20] O. S. Oubbati, A. Lakas, F, Zhou, M. Gunes, N. Lagraaet, 

and M. B. Yagoubi, “Intelligent UAV-assisted routing 

protocol for urban VANETs,” Computer Communications., 

vol. 107, pp. 93-111, July. 2017.  

[21] N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and 

X. Shen, “Software defined space-air-ground Integrated 

vehicular networks: challenges and solutions,” IEEE 

Commun. Mag., vol. 55, pp. 101-109, Mar. 2017.  

[22] X. Li, M. G. Epitropakis, K. Deb, and A. Engelbrecht, 

“Seeking multiple solutions: An updated survey on niching 

methods and their applications,” IEEE Trans. Evol. Comput., 

vol. 21, no. 4, pp. 518-538, Aug. 2017.  

[23] J. Liang, B. Qu, X. Mao, and T Chen, “Differential evolution 

based on fitness Euclidean-distance ratio for multimodal 

optimization,” Neurocomputing., vol. 137, pp. 252-260, Aug. 

2014 

[24] C. Rim, S. Piao, G. Li, and U. Pak, “A niching chaos 

optimization algorithm for multimodal optimization,” Soft 

Comput., vol. 22, no. 2, pp. 621-633, Jan. 2016. 

[25] Q. Yang, W. Chen, Z. Yu, T. Gu, Y. Li, H. Zhang, and J. 

Zhang, “Adaptive Multimodal Continuous Ant Colony 

Optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 2, 

pp. 191-205, Apr. 2017. 

[26] N. Nekouie and M. Yaghoobi, “A new method in multimodal 

optimization based on firefly algorithm,” Artif Intell 

Rev., vol. 46, no. 2, pp. 267-287, Aug. 2016. 

[27] B. Y. Qu, P. N. Suganthan, and J. J. Liang, “Differential 

evolution with neighborhood mutation for multimodal 

optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 5, pp. 

601-614, Oct. 2012. 

[28] J. Li and Y Tan, “Loser-Out Tournament-Based Fireworks 

Algorithm for Multimodal Function Optimization,” IEEE 

Trans. Evol. Comput., vol. 22, no. 5, pp. 679-691, Oct. 2018. 

[29] J. Kennedy and R. Eberhart, “Particle swarm optimization,” 

in Proceedings of ICNN'95-International Conference on 

Neural Networks., Perth, WA, Australia, Nov. 1995, pp. 

1942–1948. 

[30] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: a 

gravitational search algorithm,” Inf Sci., vol. 179, no. 13, pp. 

2232-2248, Jun. 2009. 

[31] X. S. Yang, M. Karamanoglu, and X. He, “Flower pollination 

algorithm: a novel approach for multi objective 

optimization,” Engineering Optimization., vol. 46, no. 9, pp. 

1222-1237, Sep. 2014. 

[32] S. Mirjalili and A. Lewis, “The whale optimization 

algorithm,” Adv Eng Softw., vol. 95, pp. 51-67, May. 2016. 

[33] A. Askarzadeh, “A novel metaheuristic method for solving 

constrained engineering optimization problems: crow search 

algorithm,” Comput Struct., vol. 169, pp. 1-12, 2016. 

[34] J. W. Pepper, B. L. Golden, and E. A. Wasil, “Solving the 

traveling salesman problem with annealing-based heuristics: 

A computational study,” IEEE Trans. Syst. Man Cybern. A 

Syst. Humans, vol. 32, no. 1, pp. 72-77, Jan. 2002. 

[35] A 3D Smooth Random Walk Mobility Model for FANETs. 

21th IEEE HPCC-2019, pp. 460-467. 

[36] K. Fall, K. Varadhan. [2007]. The Network Simulator (ns-2). 

[Online]. Avaliable: http://www.isi.edu/ nsnam/ns. 

[37] C. E. Perkins, E. M. Royer, and S. Das, Ad Hoc On-Demand 

Distance Vector (AODV) routing, 2003, [online] Available: 

http://www.ietf.org/rfc/rfc3561.txt.  

[38] OpenStreetMap. [Online]. Avaliable: 

http://www.openstreetmap.org/. 

[39] Didi Chuxing GAIA Initiative. [Online]. Avaliable: 

https://gaia.didichuxing.com 

[40] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, 

“Recent development and applications of SUMO—

Simulation of urban mobility,” Int. J. Adv. Syst. Meas., vol. 

5, no. 3/4, pp. 128-138, 2012. 

 

http://www.openstreetmap.org/
https://gaia.didichuxing.com/

