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Figure 1: Examples of visual designs considered for encoding multiple types of edges in matrices. The top row shows an
example of a single matrix and the bottom row shows the encoding for each edge type. The encodings use one or more visual
variables to represent multiple edges: a) uses a coloured pie chart, b) uses opacity in a pie chart, c) uses a segmented and
coloured pie chart d) uses orientation, e) combines position and colour, f) uses size and g) combines size and colour to create

a glyph. The designs (d) and (e) were used in our experiments.

ABSTRACT

This paper reports on a formal user study on visual encodings of
networks with multiple edge types in adjacency matrices. Our tasks
and conditions were inspired by real problems in computational
biology. We focus on encodings in adjacency matrices, selecting
four designs from a potentially huge design space of visual en-
codings. We then settle on three visual variables to evaluate in a
crowdsourcing study with 159 participants: orientation, position
and colour. The best encodings were integrated into a visual analyt-
ics tool for inferring dynamic Bayesian networks and evaluated by
computational biologists for additional evidence. We found that the
encodings performed differently depending on the task, however,
colour was found to help in all tasks except when trying to find the
edge with the largest number of edge types. Orientation generally
outperformed position in all of our tasks.
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1 INTRODUCTION

Numerous visualisation techniques have been created and evalu-
ated over the past decades to render complicated networks in a more
understandable way. Surveys have been written about large net-
works [40], multilayer networks [9, 30], and dynamic networks [8],
referencing techniques for dense networks with matrices, compar-
ing graphs, tracking networks over time, as well as the techniques
to more effectively communicate information and change in net-
works. Still, networks provide a large source of complexity and
unsolved visualisation research questions.

In this paper, we explore visual encodings for multiple edge
types in networks in the context of dynamic Bayesian networks
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Figure 2: (a) The traditional representation of a DBN. The
edge types of the DBN encoded without node repetition (b)
as a node-link diagram and (c) as an adjacency matrix.

(DBNs5s) used in computational biology. Our collaborators in com-
putational biology use DBNs to model probabilistic dependencies
in complex biological processes. These processes range from gene
regulation [45] to brain connectivity [36] and ecological networks
[1]. Visualisation and comparison of these networks are crucial, e.g.,
for comparing edge types and alternative networks. For various
reasons discussed with our collaborators, including familiarity in
computational biology and strong potential for the efficient visual
encoding of cells (squares instead of lines) [2], visualising DBNs
calls for the use of adjacency matrices [39]. However, the design
space for showing multiple edges of different types in matrices is
potentially very large, including simple visual variables such as
contrast [5], simple designs such as barcharts [19], subdivisions [7],
or more carefully designed glyphs [12, 41].

In this paper, we contribute i) a structured exploration of cell-
glyph designs for matrices (Figure 1), ii) present the results of
a crowdsourcing study on those representations, and iii) report
feedback from a lab evaluation with experts’ analysis of DBNs. Our
glyph designs include visual variables such as position, orienta-
tion, and colour, resulting in 9 designs, of which we tested the 4
most promising ones in our study. Our results show that encodings
performed differently depending on the type of task. Colour was
beneficial for all tasks that required users to distinguish between
edge types, except the task where users had to identify cells with
many types of edges without regard to their type. The final two
designs were implemented in BayesPiles [39], a tool to provide
visualisation support for Bayesian network inference, and evalu-
ated by computational biology experts. We conclude with design
recommendations based on our results.

2 BACKGROUND AND RELATED WORK

This section introduces dynamic Bayesian networks (DBNs), their
representation as networks with multiple edges and reviews exist-
ing techniques to visualise networks with multiple edge types.
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2.1 Dynamic Bayesian Networks

A Dynamic Bayesian Network (DBN) is a Bayesian network which
relates variables to each other over adjacent time slices. Node-link
representations are often used to visualise them [31] where all
transitions are repeated in every time slice. An example DBN is
shown in Figure 2(a) which we use to support our definitions. In
this representation, time flows left to right. An edge connects nodes
across different time slices, indicating the latency of an interaction
called a Markov lag [43]. Markov lags are discrete and ordered based
on their duration (i.e. the number of time slices skipped before an
interaction is observed). For example, in Figure 2(a) the edge that
connects Fyp with Ayg is of type 0, because it occurs in the same
time slice, while the edge that connects Aty with Bys is of type 3
as the interaction extends 3 time slices. DBNs can become very
long when they extend many time slices and can, therefore, be hard
to visualise in this representation. More compact representations
require another encoding to help distinguish between the different
Markov lags. Figure 2(b) shows how the network becomes much
smaller when nodes are not repeated and edge types encoded using
colour, but these representations can suffer from visual clutter
[2, 23]. In this paper, we look at visual encodings for multiple sets
of edges on the same node set. Each set of edges is an edge type (i.e.
each different Markov lag is an edge type).

Figure 2(c) shows how the same DBN can be represented as a
directed adjacency matrix, again using colour to encode edge types.
Edges are represented by adjacent cells in the matrix read by column
and row (i.e. top-down). This representation is less cluttered than
node-link diagrams when the networks are dense [2, 23], but when
there are multiple edge types for the same edge, we need another
encoding (Figure 2(c) illustrates the problem). A solution is a glyph
that is able to represent the multiple edge types. In this paper, we
explore the design space of such glyphs for these matrices and we
evaluate their effectiveness for performing four analysis tasks.

2.2 Visualising Multilayer Networks

Several techniques have been proposed to represent and explore
multilayer networks as node-link diagrams. Most of these methods
employ colour and size as visual variables on nodes and edges [3,
4,13, 33, 38, 42]. Other techniques include auxiliary visualisations
such as bar charts or coordinated and multiple views combined with
interaction [16, 34], or aggregate novel visual designs to convey
link connectivity [18, 35]. Edge uncertainty has been explored for
node-link diagrams which shares some aspects of this problem [24].

To overcome known problems such as visual clutter in node-
link diagrams, matrices have also been used to visualise weighted
edges [14] and to compare two weighted networks [2]. Matrices
have further been used to visualise change over time for weighted
edges [5, 6]. However, it is unclear how these representations can
directly scale to support more than two edge types. Although
the effectiveness of matrix visualisations has been shown empiri-
cally [22, 32], the potential of matrices for representing multilayer
networks with different edge types has not been formally evaluated.

Glyphs provide a promising way to encode multivariate data in
the cell of a matrix. Glyph design is well studied [10, 20, 41] and has
been used for graph motif simplification [17] in node-link diagrams.
In matrices, they have been used to encode attribute patterns on
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edges [11] and in general information visualisations [12]. In this
study, we only considered integrated approaches for matrix-based
representations to extend the capabilities of an existing analytical
tool called BayesPiles [39]. We explore glyph representations as
they are scalable to several edge types and can be used with matrix
representations.

3 FROM COMPUTATIONAL BIOLOGY TO
ABSTRACT NETWORK TASKS

From four, one-hour-long interviews with our domain experts on
their use of DBNs in understanding biological networks, we identi-
fied generic analysis tasks for networks with multiple edge types.
We grouped these tasks into four levels, ranging from the simplest
level (an individual edge in a single network) to comparing edges
across multiple aggregated networks.

o Edge tasks describe tasks that look at identifying and describing
individual edges and their edge types. For example, computa-
tional biologists are interested in the dynamics of a DBN based
on its edges. When an interaction appears in multiple Markov
lags (i.e., edge types), then there is uncertainty about the actual
dynamics of that interaction in the system.

Network tasks describe tasks that look at identifying edge pat-

terns across a whole network. For example, time granularity is

related (and often coincides) to the sampling rate picked for col-
lecting expensive experimental measurements from the system.

If most of the edges in a network are of Markov lag 3, time gran-

ularity is probably too fine; most edges being of Markov lag 0

implies the opposite.

o Edge type co-occurrence refers to tasks that require identifying
co-occurrence of edge types within a network. For example, co-
occurrence of edge types help to reason about the effect of the
interactions of those Markov lags over time and determine if there
are different biological processes captured in the same network
that have different dynamics but affect the same pairs of nodes.

e Network comparison tasks include tasks that require compar-
ing edges and Markov lags across networks. For example, to
identify which network contains the highest number of a partic-
ular Markov lag or which one mostly contains Markov lags of a
particular type. Computational biologists could then choose to
include networks with uniform Markov lags as opposed to ones
with a lot of variation (and therefore uncertainty).

The above analysis tasks show the importance for computational
biologists to identify different edge types in visual representations
of DBNS. Yet, any of these tasks can be applied to any network with
multiple edges; these tasks are related with the ability to distinguish
between edge types, identify instances and combinations of them,
count them and compare them.

4 MATRIX CELL DESIGNS

The goal of our design was to find representations that can visualise
multiple types per edge in the limited space of a matrix cell. Based
on the task identification, perceptual principles, computational
biologists’ feedback and a literature review, we developed potential
visual encodings for representing DBNs with matrices (Figure 1).
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4.1 Design Criteria

e C1: Number of edge types: For matters of scalability, we ex-
pected that a successful encoding would be able to represent
clearly at least four different edge types in a single cell, as identi-
fied important in our interviews with the experts.

C2: Design Simplicity: given the limited amount of space in
each matrix cell, we aimed for simplicity in design, tried to max-
imise the data-to-ink ratio [37], and base the design of those
encodings on perceptual principles [28] about primary visual
variables, such as colour, opacity, size, shape, texture, orientation,
position, and their combinations to create glyphs [21, 29, 41].
C3: Edge type ordering: As Markov lags are numbered (0-3),
we only considered designs in which edge types could be per-
ceived ordered and that can work both with and without colour.
Although ordering is inherent in the different Markov lags, iden-
tification of particular Markov lags was more important in the
tasks. Therefore, we used categorical colouring as double en-
coding to test its effect on encodings and make our study more
generalisable, as colour could be used to map a different attribute
in other domains.

4.2 Design Space

Figure 1 shows seven of our nine initial designs. The upper row
in this figure shows the encodings for a single matrix where we
need to visualise multiple edge types. For example, design (a) uses
colour and design (b) uses shades of grey to differentiate types of
edges. Design (c) is a variation of design (a), using equally-spaced
and coloured segments of a pie chart to indicate the presence of a
lag (one segment per lag type). Design (d) uses orientation (angle)
to differentiate edge types and encode their order. Design (e) uses
position and colour within each cell, resulting in a striped cell
design. Design (f) uses size and design (g) is a variation of design
(f) which uses both size and colour to encode category and order,
but instead of superimposed squares [2], it uses rings.

4.3 Discussing Designs

Through discussion, we rejected designs that would easily become
cluttered when multiple edge types were combined in the same
cell and those that did not make it easy to distinguish between the
different types of edges. For example, we rejected designs (a) and (b)
because edge types that coexist in the same cell are represented in a
smaller area than in cells that contain only one edge type. Design c)
(which was used by Dang et al. [15]) was found more intuitive than
the segmentation of the cell into rectangles [27], but pie segments
without colour become illegible within the limited cell space. On
the other hand, using orientation or position as a primary variable,
as in designs d) and e), results in more discernible edge types even
when colour is not used. Alper et al. [2] found that colour was not
necessary for f) and g) and that the effectiveness of the techniques is
all about contrast. As of colour-area bias, we rejected designs f) and
g) with colour. We also rejected designs in which it was more easy
to identify one edge type compared to another, such as designs (f)
and (g) without colour, because for our tasks the visual variable of
size introduced visual bias that favoured edge types of larger sizes
(easier to spot) compared to edge types of smaller sizes. Apart from
the 7 encodings shown in Figure 3, we also considered a variation
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of (d) that combined orientation with colour and a variation of (e)
that used position without colour (9 designs in total). We decided
to test designs that can work both with and without colour as a
double encoding and where visual marks for each edge types have
the same size. These designs were d) and e). This resulted in the four
most promising encodings to compare in our final study (Figure 3).

4.4 Final Designs

Examples of the final encodings used on the same multilayer net-
work are shown in Figure 4. The selected encodings use at least one
of the following visual variables: position, orientation and colour hue.
Orientation and position can stand alone or in combination with
colour, however, colour can only be used in combination with an-
other visual variable. We used ColorBrewer [26] to provide colours
that looked balanced and distinct.

Theoretically, when a five-degree change in the angle is used, the
approach could scale to encode up to 36 edge types. However, it is
unrealistic to expect that users can effectively distinguish between
a forty-degree and a forty-five-degree angle. Similarly, position can
also encode more edge types by slicing the cell in thinner stripes.
Colour can scale to encode up to 8 discernible edge types of similar
intensity [26].

All four selected encodings could sufficiently represent networks
with at least four multiple edge types, such as found in our collabo-
rators DBNs. However, we wanted to compare the encodings and
find which one was the most effective for supporting the identified
analysis tasks.

For each task we created the following two hypotheses:

e H1:Encodings using orientation outperform encodings using
position. We believe that orientation is more salient.

e H2: Redundantly encoding edge type with colour will im-
prove the performance of either encoding (position or orien-
tation).

To test our hypotheses, we ran a quantitative evaluation study to
assess the effectiveness of the final encodings. The study involved
participants from the general public who were asked to perform
simple visual analysis tasks on matrices that use those encodings.

5 USER STUDY

To test the effectiveness of the encodings in multilayer networks
represented as matrices, we performed four controlled user studies
through Amazon Mechanical Turk (AMT). The visualisation tasks
that participants were asked to complete in the study were derived
from the tasks described in Section 3. Each experiment evaluated
the encodings with a different task, with each participant perform-
ing only one task at a time. Participants could perform each task
(experiment) only once, but if they wanted they could participate
in all four of them. We present the results of the four experiments
individually and then discuss the overall results.

5.1 Data Generation and Pilot Studies

In discussion with our computational biology collaborators, it was
clear that their real-world data sets were limited to four edge types
in networks of around 30-50 nodes, which are also common testing
conditions in network evaluations [44]. To keep study complex-
ity manageable while assuring the validity of results, our studies
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Figure 3: Proposed visual encodings for the different types
of edges tested in the user study: a) orientation without
colour (ORI), b) orientation with colour (ORI+COL), c) position
without colour (POS) and d) position with colour (POS+COL).
Columns (i), (ii), (iii) and (iv) show the encoding of Markov
lag 0, 1, 2 and 3 respectively. Columns (v), (vi) and (vii) show
how the combination of two, three and four edge types look
in the different encodings.
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Figure 4: An example of the final encodings showing the
same multilayer network: a) orientation without colour
(ORI), b) orientation with colour (ORI+COL), c) position with-
out colour (POS) and d) position with colour (POS+COL).

tested only four edge types. We therefore generated Watts-Strogatz
networks of two sizes (30 and 50 nodes) using NetworkX [25], to
target a wide range of real-world networks which often exhibit
small-world properties. The probability of a random edge (p) was
set to 0.25 and to avoid disconnected networks, every node was ini-
tially connected to its 4 neighbouring nodes (k = 4). These networks
had similar properties to those found in our application domain
of multilayer networks. To generate multiple trials we randomly
removed 15% of edges resulting in networks of similar structure
with the same number of connections for each trial. We also ex-
tended the algorithm to generate multilayer networks of four edge
types. The distribution of percentages for every combination of
edge types could be controlled in each network. Thus, the number
of cells that contained a particular combination of edge types was
always known. This network generation process ensured precision
and control over the properties of the networks so that each data
set would consist of different networks with similar characteristics,
such as structure, size, regularity, connectivity and difficulty.

We performed a series of pilot studies to find data sets of re-
alistic sizes. In our pilots, we tested networks of two sizes (of 30
and 50 nodes) and four difficulty levels (“very easy”, “easy”, “hard”
and “very hard”). To increase the difficulty level, we incrementally
added distractors to the data set, and the number of distractors
added in each difficulty level varied depending on the task. For
instance, in each trial of the first task, there was only one correct
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answer (i.e. a cell that contained 3 or 4 edge types) and distractors
were considered the cells that contained just one edge type less
than the correct answer (i.e. 2 or 3 edge types respectively). Every
participant in the pilot study performed one task in all 4 difficulty
levels to identify the correct level of difficulty to avoid floor and
ceiling effects. We found that participants had high response times
and error rates for “hard” or “very hard”. In those difficulty levels,
the number of distractors was more than 50% of the total edges in
the entire network, a condition which is unusual in real data sets.
Therefore, we only used “very easy” or “easy” networks of 30 nodes
each, which corresponds to typical real-world data sets. Also, we
observed that using the grid helped participants perform better in
all tasks. Therefore, we chose to use the grid in all our experiments.
In particular, participants reported that the grid helped them distin-
guish between glyphs in neighbouring cells, especially for larger
matrices (of 50 nodes) and when position was used in the encoding.

5.2 Study Tasks

For each level of task identified in Section 3, we chose a specific
representative task and performed a crowdsourcing user study.
T1(T-EpGE)—Find the edge with the highest number of edge
types. The task required participants to (a) identify the densest cell
in the matrix and (b) compare it to other dense cells in the same
matrix to verify their choice. The participant would click on the
cell with the most edge types. In each trial, the correct answer was
only one cell in the entire matrix, and either contained all four edge
types or three out of four edge types. Therefore, the possibility of
clicking on the correct cell just by chance was very low.

T2 (T-NETwWORK)—Which edge type appears most frequently
in the matrix? Participants had to: (a) distinguish between the
four edge types and (b) compare their frequency of appearance in
the matrix. The participant selected an answer via a multiple-choice
question. In each trial, the correct answer had a double number of
instances compared to any other type and 25% of those instances
appeared alone and the rest in combination with a second edge
type distributed in equal numbers.

T3 (T-EpGeE Co-0ccURRENCE)—Which combination of two
edge types appears most often in the matrix? Participants had
to: (a) distinguish between the 6 possible combinations of two edge
types and (b) compare their frequency of appearance in the matrix.
In many ways, this task is similar to T2 but instead of looking for
single edge types, we are interested in combinations of two edge
types and their resulting visual encoding. The participant selected
an answer via a multiple-choice question. In each trial, the correct
answer had a double number of instances compared to any other
combination of two edge types. Also, while there were cells with
a single edge type or combinations of more than two edge types,
they appeared in the same proportion.

T4 (T-NETWORK COMPARISON)—Which matrix has more edges
with edge type X?; X being replaced with different types 0-3 for
each trial. Participants had to: (a) distinguish between the 4 edge
types to find the one requested and (b) compare the frequency of
its appearance between two matrices. This task is similar to T2 but
involves the comparison of two matrices. Participants clicked on
the matrix to indicate their response. Answer possibilities were:
“Both the same” and ‘T don’t know”, but those options were never the
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correct answer in the test. In each trial, the wrong matrix had the
same percentage of either edge type. However, the correct matrix
had an increased percentage of the requested edge type, while the
rest of the edge types shared an equal percentage of instances. Thus,
both matrices maintained the same density (i.e. the total number of
edges).

5.3 Experimental Procedure

Each of the four user studies tested one task in a within-subject 2 X
2 design ( X 2 techniques: orientation/position X 2 colour schemes:
with/without colour), testing the following 4 experimental con-
ditions (i.e. encodings in Figure 3): a) orientation without colour,
b) orientation with colour, c) position without colour and d) posi-
tion with colour. For each task we recruited around 45 participants
through AMT, resulting in a total of 177 participants. After remov-
ing invalid participants, we were left with 159 valid. Average age
was 37, male-female ratio was 66% male and 34% female. About half
of the participants did not have any experience with data visualisa-
tion; only about 7% used visualisations on a daily basis.

The first page of each study contained information about the
study and a list of terms which participants were asked to read care-
fully. Then participants were asked demographic questions such
as: age, gender, familiarity using data visualisations, and the device
they were using for the study (laptop, desktop, tablet or phone). In
the case they selected phone, the website showed a message that
participation was not possible due to the small available screen size.
Throughout each study, the entire information was shown in one
full-screen window without a need to zoom or pan.

Each study had 4 blocks (parts) of trials, one for each encod-
ing. Before each block, there was a page with instructions that
explained the task and demonstrated how to use the interface to
submit answers. Participants were asked to first complete the task
on a demo trial before proceeding to the main study, to familiarise
themselves with the interface. Following feedback explained why
their response was correct or incorrect. Except for the demo trial at
the beginning of each block, participants did not receive feedback
on the correctness of their answers in the recorded trials.

After the demo trial, each block contained 3 training trials, fol-
lowed by 12 recorded trials for tasks T1 and T3 and 8 recorded
trials for tasks T2 and T4. Fewer trials were used for tasks that
participants spent more time to complete in our pilot studies. Also
for tasks T2, T3 and T4, an attention (gold standard) trial was placed
randomly within the recorded trials showing a very simple situation
where an attentive participant would not be expected to make an
error. Attention questions were similar to the recording trials with
the only difference that the correct answer was very easy to find.
For example, for T2 the correct answer would appear in a very high
percentage compared to all other answers (e.g. in 90% of the edges).
Those trials were later used to identify participants who were not
invested in the experiment or who did not understand the task. In
task T1, there was no gold standard and the participant attention
to the task was evaluated by comparing mean error rate with an
error rate close to chance. In between trials, a neutral screen would
appear for two seconds to help participants focus their attention
on the next image.
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The blocks of the experiment were counterbalanced to allevi-
ate the effects of presentation order (learning and fatigue effects).
Visual encodings were very different, precluding randomising ex-
perimental trials. For each of the four experiments, roughly half the
participants started the experiment orientation first. Within each
encoding (orientation and position), roughly half performed the
task with colour first. Except for the order of blocks, the recorded
trials were also shuffled within each block for each participant.
Between the 4 blocks, participants were encouraged to take breaks.

The effectiveness of each encoding was evaluated through two
dependent variables: (a) participants’ response time (in milliseconds),
that measured efficiency and their (b) error rate, that measured ac-
curacy. For each trial, there was only one correct answer, so the
average error rate of each block ranged between 0 and 1. How-
ever, regarding participants’ response times, there was a danger
of including outliers by taking the average, since we did not have
control over the study environment. Therefore, for each encoding,
the average response time was calculated as the 25% truncated
(trimmed) mean of response times within each block of recorded
trials. This would exclude the minimum and maximum response
times of each block from calculating the mean. Thus, from the 8-12
trials in each block, we only considered 6-10.

Each study was run on Amazon Mechanical Turk (AMT), linking
to our own JavaScript website. All participants were located in the
US and paid $3 for completing the test which lasted approximately
15 minutes. Participants were told to answer as fast and accurate as
possible. There was no time limit to complete the study. Multiple
participation in the same study was prohibited, but participants
could participate in all four studies. At the end of the test, an au-
thentication code would appear on screen which participants could
use to claim payment through AMT for completing the task.

6 RESULTS

We analyse the results considering each task as a separate experi-
ment. Our statistical protocol was set out in advance and applied
separately to the response time and error rate of the four combina-
tions of factors: ORI (Orientation without Colour), ORI+COL (Orien-
tation with Colour), POS (Position without Colour), and POS+COL
(Position with Colour). Before analysis, we applied data quality
checks. We removed participants who (i) did not complete the full
experiment, (ii) they had an average error rate close to chance (ap-
plied to T1), or (iii) they failed to answer more than half of the gold
standard questions (applied to T2, T3 and T4).

After the quality checks, the response time and error rate data
were analysed separately. For each of the four distributions, we
used a Shapiro-Wilk test with a significance level of & = 0.05 to
determine if the data were normally distributed. We also plotted
the distributions to visually check for normality. In all cases for re-
sponse time and error, at least one of the distributions was found to
not be normally distributed. Therefore, we ran a Friedman test with
a significance level of @ = 0.05 to determine if there was a signifi-
cant difference between the four distributions. We used a post-hoc
approximative (Monte Carlo) Nemenyi-Damico-Wolfe-Dunn test
to determine the pairwise significant differences. For all results bar
charts (Figure 5), the margin of error for 95% confidence intervals
is shown in each bar while the black lines between bars indicate
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Figure 5: Mean (a) response times and (b) error rates for task
1. Mean (c) response times and (d) error rates for task 2. Mean
(e) response times and (f) error rates for task 3. Mean (g) re-
sponse times and (h) error rates for task 4. The lines indicate
significance between visual encodings.

significance between visual encodings. The difference between bar
heights indicates the magnitude (absolute effect size). Mean and
median values are indicated below each bar.

T1 (T-EpGE)— Our first experiment asked: Click on the cell with
the most marks. We collected the data from 42 participants in this
experiment, but one was excluded as they did not complete the full
experiment. We analysed the data of the remaining 41 participants.
None of the participants gave answers with an average error rate
close to chance (error rate of 98%).

Results. Figure 5 (a) and (b) shows our results. We find signif-
icant results for response time (y? = 75.117, df = 3, p < 0.05).
Our post-hoc analysis reveals that ORI was significantly faster
than both ORI+COL and POS+COL. POS was significantly faster than
ORI+COL and POS+COL. Also, we find significant results for error
rate (y? = 71.032, df = 3, p < 0.05). Our post-hoc analysis reveals
that ORI produced significantly fewer errors than POS, ORI+COL,
and POS+COL. ORI+COL produced significantly fewer errors than
POS and POS+COL.

As POS was faster than ORI+COL but produced more errors, we
performed a correlation analysis between response time and error.
The analysis showed negative correlation between response time
and error for both POS and ORI+COL distributions. This means that
participants who answered faster tended to answer incorrectly.
However, the error rate for POS was still low (near 20%).

Discussion. Our results are surprising as they provide evidence
that colour significantly hurts the efficiency (response times) of par-
ticipants completing the task in all cases (reject H2). For this task,
users were not required to differentiate between types of marks
across cells. Thus, colour seems to have added distracting com-
plexity to the representation. Orientation consistently produces
significantly fewer errors than position with no significant differ-
ence in response time (accept H1). As with most online studies, it
is very hard to gather good qualitative data or observations of the
participants through crowdsourcing. However, our expert evalu-
ation, presented in Section 7, provides some further evidence for
these interpretations.
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T2 (T-NETWORK)— Our second experiment asked: Which mark
appears most often in the image? In total, 50 participants performed
experiment 2. From those 4 were excluded because of incomplete
data and 1 because they used a phone. No participant had an aver-
age error rate close to chance (75%). We analysed the data of the
remaining 45 participants.

Results. Figure 5 (c) and (d) shows our results. We find significant
results for response time (y?> = 77.948, df = 3, p < 0.05). Our
post-hoc analysis reveals that ORI+COL is significantly faster than
ORI and POS. Similarly, POS+COL is significantly faster than ORI and
POS. We also found that ORI is significantly faster than POS. We find
significant results for error rate (y? = 96.746, df = 3, p < 0.05). The
pairs of results are exactly the same as those found in response time.
Our post-hoc analysis reveals that ORI+COL is significantly more
accurate than ORI and POS. Similarly, POS+COL is significantly more
accurate than ORI and POS. We also found that ORI is significantly
more accurate than POS.

Discussion. In general, the results show that for this task it is

preferable to use colour for encoding the different types of edges
(accept H2). For this task, it could be that colour provides a method
for quickly gauging the number of marks of each type at a glance,
allowing for the quick identification of a more prevalent one. When
colour is not used, orientation seems to perform better than position
(accept H1). It could be that since the marks for orientation have
a more unique appearance, it is easier to judge the number of such
marks in the matrix visualisation.
T3 (T-EDGE C0-0CcCURRENCE)— Our third experiment asked:
Which combination of two marks appears more often in the image? In
total, 45 participants took part in experiment 3. When checking the
data quality, 4 participants were excluded because of incomplete
data and 1 did not answer at least half of the four gold standard
questions. None of the remaining participants had an average error
close to chance (84%). We analysed the data of the remaining 40
participants.

Results. Figure 5 (e) and (f) shows our results. We find significant
results for response time (y? = 14.91, df = 3, p < 0.05). Our post-
hoc analysis reveals only one significant difference with ORI+COL
being significantly faster than ORI. In terms of error rate, we find
significant differences (y? = 45.608, df = 3, p < 0.05). ORI+COL
has significantly fewer errors when compared to POS+COL and POS.
POS+COL has significantly fewer errors than POS. Also, ORI has
significantly fewer errors than POS.

Discussion. The error rates indicate that orientation has signifi-
cantly fewer errors than position in many cases (accept H1). When
orientation is used, it either reduces the error rate with no difference
in response times or it reduces response times with no difference
in error rate (accept H1). Colour, when used in combination with
orientation, seemed to reduce response times and when it was used
in combination with position it reduced error rates (accept H2).

In this task, we asked users to select the pair of marks that
occurred most frequently together. Colour may have helped the
participant judge the frequency of each mark type at a global level
and select the pair that occurred more frequently. As the orientation
marks are more unique in appearance, it could have helped the
participants make this judgement.

T4 (T-NETWORK CoMPARISON)— Our fourth experiment asked:
Which matrix had the most cells of a particular mark type. In total,
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40 participants performed the experiment. From these participants,
3 failed more than half of the gold standard questions, 2 had incom-
plete data, and 2 had a variance of answers equal to zero — meaning
they clicked on the same answer for the duration of the experiment.
All these 7 participants were excluded. From the remaining 33 par-
ticipants, no one had an average error rate close to chance (75%).
We analysed the data from the remaining 33 participants.

Results. Figure 5 (g) and (h) shows our results. We find significant
results for response time (y* = 30.018, df = 3, p < 0.05). Our post-
hoc analysis reveals that ORI+COL was significantly faster than ORI
and POS. We also find that POS+COL is significantly faster than POS.
In terms of error rate, we find significant differences ( )(2 =71.181,
df =3, p < 0.05). ORI+COL has significantly fewer errors than ORI
and POS. POS+COL has significantly fewer errors than ORI and POS.
Finally, ORI has significantly fewer errors than POS.

Discussion. From the results, it is clear that colour provides the
most benefit and helps participants perform this task (accept H2).
When colour is not used, then orientation produces significantly
lower error rates than position (accept H1). As the task requires
the participant to make a global assessment of the presence of a
particular mark in the matrix, colour could have provided a means
to quickly gauge the number of marks. If no colour is present, the
uniqueness of the marks in the orientation condition might have
helped participants make this judgement.

7 EXPERT EVALUATION

To better understand our techniques with realistic data sets and
tasks, we conducted an expert evaluation with three computational
biologists (1 researcher, 2 PhD students). Based on the results of our
experiment, we extended the design of BayesPiles to use orientation
and enabled colour toggling (on/off).

7.1 Data Set Used in the Evaluation

To create a realistic collection of networks, we ran BANJO on the
songbird data [36] to create 17 DBNs. This collection of networks
was then modified to ensure known correct answers. For example,
we inserted networks into the collection that were permutations
of copies of the top-scoring network with single edge types and
frequently occurring pairs of edge types added to keep density rel-
atively constant. In one network, we inserted an edge with all four
edge types. Also, networks in the solution space were edited to have
three score levels with more edges of observed type combinations
into those networks with the lowest score. The result was a curated
collection of 30 realistic DBNs with patterns in the data set that
had been observed and known correct answers, used to evaluate
T1-T4 in a controlled way with our experts.

7.2 Evaluation

The single two-hour session including all three experts began with
a brief demonstration of BayesPiles. Then, we distributed an evalu-
ation form asking the experts to load the 30 network data sets into
BayesPiles and asked them to perform the tasks with and without
colour. Legends were included to specify the encodings of Markov
lags. A specification of the task was provided, and participants were
evaluated on the correctness of their answer. At the end of the form,
participants could provide qualitative feedback and comments.



AVI *20, September 28-October 02, 2020, Island of Ischia, Italy

7.3 Results

Although the tasks the experts performed were the same as those
tested in the crowdsourcing experiment, our experts were required
to perform the tasks on piles of networks with weighted edges, mak-
ing it more demanding; edge weight was encoded as lightness of the
respective edge mark. For T1 most participants visually inspected
all 30 networks juxtaposed as small multiples and successfully found
the densest cell in the whole collection. Participants that answered
correctly preferred not to use colour for this task, confirming the
results in our controlled study. P2 commented that “it was easier
to see a dense block of lines without colour. With colour, the ‘star’ of
all blended into the vertical Markov lag 1 below it, and didn’t look
so different from networks 4-8 which didn’t have the Markov lag 1 in
the ‘star’ but did in the cell directly below it.”

For T2, all participants could identify which edge type was the
most common in the matrix, but all participants found this task
difficult. P1 said, “it would be helpful if there was some information
about the number of edges at different Markov lags, as it is easy to
make mistakes if the edges have to be detected by eye, especially in
larger networks”. For piles, the task was particularly demanding due
to opacity. P2 said “it was easier to compare different opacity levels in
the grey scale, but the trade-off was that it was harder to distinguish
between Markov lags when colour was not present.

There was significant variation for task T3; finding the most
common combination of Markov lags. Participants needed to es-
timate both weight in the pile and the frequency of the pairs and
many pairs had low weights, appearing “faint” in the pile, making
this one of the hardest tasks. This made it challenging for the partic-
ipants to correctly estimate the overall weight of each combination
of two Markov lags appearing in the matrix and then compare those
estimations effectively.

Regarding T4, two experts could identify the pile that contained
the highest concentration of a particular edge type. However, this
task became much harder when experts were required to estimate
the overall weight of an edge type in a pile of heterogeneous net-
works. Combining opacity with colour tends to affect the distinc-
tiveness of the colour, which often becomes difficult to recognise for
edges that have a lower weight. When colour is not used, it becomes
even more challenging to both identify all instances of a particular
type and also estimate their overall summary. P2 commented that T
found this the hardest task. [...] It was easier to identify Markov lag 2
with colour, but then I was unsure if perhaps the shading might make
there be less overall Markov lag 2, even though there was clearly more
“kinds™ of Markov lag 2.”.

8 DISCUSSION

Effectiveness of Encodings—Considering all four experiments,
ORI outperformed POS and colour was usually of benefit. Thus,
we were able to accept all hypotheses except H2 for T1. When a
precise task is unknown, we suggest using orientation with colour
encoding (ORI+COL).

The tasks where colour was most beneficial (T2, T3, T4) asked
participants to judge the prevalence of a mark globally in the vi-
sualisation. This result agrees with similar results on node-link
diagrams [4]. One possible explanation for the negative impact of
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colour in T1 is that this task requires retrieving detailed informa-
tion within a cell but marks do not need to be distinguished. In
this case, the shape of the glyph (star-like shape in orientation)
was the predominant factor while colour added unnecessary visual
complexity. ORI might be scalable to more values through smaller
adaptations in shape and position of bars [20]. POS is unlikely to be
scalable. Future studies are required. Also, we would like to see if
the results generalise to larger networks.

Recommendations—Based on our evaluations, we recommend
the following to make best use of our findings:

R1: Orientation+Colour first—use colour + orientation (ORI+COL).

R2: Optional-colour—if your interface is interactive, provide an
option to turn colour on and off.

R3: Avoid Opacity+Colour—using opacity to encode edge weights
in coloured glyphs can be problematic. We recommend to use
size (width or length) to encode edge weights when colour is
also used in the glyph.

R4: Connected-glyphs—generally, choose glyphs and visual en-
codings that result in connected glyph designs. Fragmented
glyphs become harder to perceive as one, especially when
they are located next to other glyphs and occupy a small area.
For example, in Figure 4 (c) and (d), the two glyphs between
neighbouring cells (1,3) and (1,4) are hard to distinguish.

R5: Grid—for any encoding, leave margins between neighbouring
matrix cells (i.e., glyphs) or use a salient visual grid.

Limitations and Future Work—Further experimentation is nec-
essary. We have only tested four edge types. This decision was based
on our domain which only required four Markov lags. BayesPiles [39]
is very scalable in terms of the number of networks and in this
paper we investigated how BayesPiles could be extended to dy-
namic Baysian networks. Informed by this previous research and
the specific requirements in the field, we focussed primarily on
the visual encoding of individual networks. Our findings form a
basis for future work that can deal with issues such as the scalabil-
ity such as a larger number of edge types, edge weights, network
density, and comparing more than two networks. Our proposed
glyphs should also be evaluated for other tasks, such as identifying
clusters or other patterns of interest.

9 CONCLUSION

In this research, we collaborated with computational biologists to
create encodings for dynamic Bayesian networks. Our encodings
apply to networks with multiple edge types. Our main contribution
is a formal evaluation of encodings that can inform the design of
visualisation tools for domains with multilayer networks. We ran
four crowdsourced experiments to evaluate these encodings. The
performance of our visual encodings was task-dependent. For more
local tasks, we found that colour hindered performance, but for
all other tasks, it improved performance. In all tasks, orientation
outperformed position.
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