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Abstract. Freezing of gait (FOG) is one of the most incapacitating and
disconcerting symptom in Parkinson’s disease (PD). FOG is the result of
neural control disorder and motor impairments, which severely impedes
forward locomotion. This paper presents the exploitation of 5G spectrum
operating at 4.8 GHz (a potential Chinese frequency band for Internet
of Things) to detect the freezing episodes experienced by PD patients.
The core idea is to utilize wireless devices such as network interface card,
RF signal generator and dipole antennas to extract the wireless channel
characteristics containing the variances amplitude information that can
be integrated into the 5G communication system. Five different human
activities were performed including sitting on chair, slow-walk, fast-walk,
voluntary stop and FOG episodes. A multi-class, multilayer full softmax
neural network was trained on the obtained data for classification and
performance evaluation of the proposed system. A high classification ac-
curacy of 99.3% was achieved for the aforementioned activities, compared
with the existing state-of-the-art detection systems.

Keywords: Parkinson’s disease, FOG, Classification, Softmax neural
network

1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease described
by Parkinson in 1817 [1]. Over time, PD effectively progresses and worsen and
hence called a progressive disease. A specific type of neuron known as dopamine
neuron losses during PD that causes FOG. FOG is a serious gait disorder which
interrupts walking with a transient and sudden nature. Due to sudden and seri-
ous debilitating nature, FOG disturbs the balance of PD patients and therefore
causes falls that may lead to mortality [2, 3]. The pathophysiology of FOG is
still under research and its treatment is a still an open clinical challenge [4].
However, recently, authors in [5] reported the impact of Levodopa-Carbidopa
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Intestinal Gel (LCIG) FOG and concluded that a long term control over FOG
is possible via LCIG if FOG is detected correctly. Furthermore, it is suggested
in [5] that a number of experiments are required with correct identification of
FOG in patients.

Authors in [6] reduced FOG and improved mobility via simultaneously tar-
geting motor and cognitive regions through transcranial direct current stimula-
tion. Though, authors [6] reported the improvement of mobility but correctly
predicting the state of freezing was overlooked. Therefore, to decrease the fall
rate and before providing a solution for FOG, a system must be developed to
detect FOG with higher accuracy. FOG can detected through numerous detec-
tion systems such as wearable devices and camera etc [7–11]. However, there are
several limitations associated with camera-based and wearable based systems.
For instance, the camera-based system works raise privacy concerns due to the
constant recording of images or videos. In addition, they are computationally
expensive as well since processing images or videos require dedicated hardware.
On the other hand, wearable devices have to be worn by the subject’s all the
time due to which the patients might feel uncomfortable. Moreover, more of-
ten than not, the patients forget to wear the devices after changing clothes or
taking a shower. Due to aforementioned issues, it is evident that other digital
medium should be investigated. This paper presents a wireless channel informa-
tion (WCI) based new detection method. A device free wireless sensing method
is developed and the accuracy of the proposed scheme is tested using artificial
neural network (ANN).

Over the past few years, ANN has been applied in a number of areas including
speech recognition [12], image classification [13], and energy demand prediction.
Rahim et al. [12] and Chu et al. [14] applied ANN to the speech recognition.
Moreover, ANN-based algorithms have also been used in image classification and
recognition [13,15,16]. Previously, Neural network based schemes are applied to
chemical-related research, molecular biology, medicines, environmental sciences
and ecosystems [17–20]. This paper exploits the application of multi-class, full
softmax multilayer feedforward neural network (ML-FFNN) using WCI and 5G
spectrum for FOG detection.

The core idea of the proposed work is to detect the FOG episode by clas-
sifying various human activities such as sitting/standing on chair, slow-walk,
fast-walk, voluntary stop. The classification performed using variations in WCI
data is received through wireless devices including RF signal generator, networks
interface card (NIC) and dipole antenna [21–24].

2 Experimental Setup

The general experimental setup for FOG detection is shown in Fig. 1. The exper-
iment was conducted in a room with dimensions (15 meters×15 meters) in New
Science Building, Xidian University, China. The experimental settings included
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an RF generator (DSG3000 Series), two dipole antennas, TP-link (PCE-AC68)
next generation dual-band wireless AC1900 PCIe adapter NIC, and HP desktop
computer with Ubuntu 14.10 (64 bits) and 4 GB RAM. The RF signal generator
connected with the dipole antenna operating at 4.8 GHz was set as an Access
Point (AP) to generate RF signals at multiple frequencies. The network inter-
face card wired with dipole antenna embedded in a desktop computer received
the seamless WCI data. The transmitter and receiver were kept 10 meters apart
from each other.

A total number of 15 volunteers took part in the experimental campaign and
were asked to perform the aforementioned five activities. Each human activity
constantly disturbed the wireless medium and the unique WCI imprint induced
was used for activity recognition.

 

RF generator 

Object under 

Observation 

Receiving antenna and PC 

for observation analyzing 

Fig. 1: General setup of the experiment.

3 FOG Detection Methodology

The design of the FOG system is presented in Fig. 2 which consists of three main
parts:

1). Wireless channel information
2). Feature extraction
3). Multi-class softmax ML-FFNN training & classification for FOG detection
Step 1: Exploiting the IEEE 802.11n standards for orthogonal frequency

division multiplexing (OFDM), which divide a single channel carrier into several
subcarriers and enables the data to be transmitted in parallel to solve multipath
fading problem [25]. The signal received using network interface card can be
computed as:

Y = (H × X) + N (1)
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Fig. 2: Flowchart of the proposed FOG detection methodology.

Here X and Y are the transmitted and received signals, respectively. N denotes
the channel noise while H demonstrates channel frequency response (CFR) of
the wireless channel data which is a complex number.

H = [h1,h2,h3, ......,hn] (2)

hn = ‖hn‖ expj∠hn (3)

In equation 3, ‖hn‖ represents the variance of amplitude information and ∠hn
describes phase information for n sub-carrier. It should be noted that the phase
information obtained via NIC is extremely random and cannot be used for any
application. Therefore, in this paper we have used the variances of amplitude
information training and testing the ANN algorithm to classify FOG from other
daily life activities in an accurate and efficient way.

Step 2: In this step, time domain features such mean, standard deviation,
skewness, kurtosis, mean absolute deviation (MAD), interquartile range (IQR)
and peaks are extracted from the WCI data and plugged into the levenberg-
marquardt (LM) training algorithm. Features extraction is primarily data reduc-
tion by finding the most informative variables-based subset of the same dataset.

Mean is defined as the average of all data points in a data matrix and specify
the variability around a distinct value in some data matrix. Mean can be more
effective in case of relatively uniformly spread data with no extraordinarily high
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Fig. 3: Perturbations of amplitude information of 30 subcarriers. (a) Walking
slow. (b) Walking fast. (c) Sit-stand on chair. (d) Voluntary stop. (e) FOG.
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or low values. Mathematically, mean is defined as:

µx =

∑a×b
i=1 xi
a× b

, (4)

where a and b represent the number of rows and columns data matrix, respec-
tively. xi is a data point at index i. Standard deviation is known as the spread
(variability) of data points in a data matrix. Mathematically standard deviation
sdXcan be measured as [26]:

sdx =
1

a× b

a×b∑
i=1

(xi − µx)2 (5)

Information about the spread of data can also be obtained via interquartile
range [26]. qu computes the middle value above the median, while ql computes
the middle value below the median of a data set. Interquartile range is written
as:

iqr = qu − ql (6)

Skewness sx computes the asymmetry of the probability distribution while kur-
tosis kx computes the shape of the probability distribution of a real-valued ran-
dom variable. Skewness sx and kurtosis kx can be used to make judgments about
image surfaces. Mathematically skewness and kurtosis can be computed as [27]:

sx =
1

a× b
×

a×b∑
i=1

(
xi − µx

sdx
)3 (7)

kx =
1

a× b
×

a×b∑
i=1

(
xi − µx

sdx
)4 (8)

The mean absolute deviation about mean measure the dispersion of X about its
mean and can be mathematically written as [28]:

madx =

∑a×b
i=1 |xi − µx|
a× b

(9)

Step 3: Due to the faster operations, smaller training datasets requirement,
easy implementation and ability to learn quickly, we have utilized a multi-layer
perceptron neural network (MLPNN) with a single input layer, single hidden and
single output layer as shown in Fig. 4. Levenberg-Marquardt (LM) [29] training
algorithm is used during feature training process. LM is an iterative method
that is used for solving non-linear minimization problem. The proposed classifier
identify FOG episodes which is distinguishable from other routine activities using
the proposed method. The input layer consists of seven neurons while the output
layer consists of five neurons since we are classifying five different activities.
Sigmoid activation function is used for input and output layers. Hidden layer
which consist of ten neurons uses linear softmax activation function. Sigmoid
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Fig. 4: MLPNN schematic diagram.

function maps the interval (−∞,∞) onto (0, 1) while softmax function squashes
an x size vector between 0 and 1. Furthermore, softmax function normalized
the exponential function to make the sum of whole vector equal to 1. Therefore,
the output softmax function interpret a set of specific features belong to certain
class. Mathematically sigmoid (φ) and softmax (Φ) functions can be computed
as in [30] and in [31], respectively:

φ(x) =
1

1 + exp−x
(10)

Φ(xi) =
expxi∑N
n expxn

(11)

4 Result and Discussion

The variances of amplitude information for 30 subcarriers obtained using wireless
devices exploiting 5G spectrum of five different activities is presented in Fig. 3,
respectively. In Fig. 3, x-axis indicate total number of subcarriers, y-axis shows
the total number of packets and z-axis is the relative power in dB indicating the
variations in amplitude information. It can be observed that each human activity
has resulted in a unique WCI signature which can be classified using multi-
class ML-FFNN with the LM learning algorithm. Figure 5 shows the overall
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Fig. 5: Amplitude variation of a random subcarrier.

time history of five human activities for subcarrier number 6th. It illustrates the
relative power level fluctuated between 4 dB to 16 dB for packet number 1 to
220. However, there is a shift in power level when the subject stands stationary
(with small scale body movements such as breathing or small limb movements).
Moreover, the power level varied around 24 dB when person was asked to walk
slowly within area of interest. An increase in the variances of power level in
packet numbers 900 to 1800 is observed when the person walks at a fast pace.
While, for FOG episodes, the variations power level fluctuations between 24 dB
to 26 dB are observed.

Table 1 illustrates the performance of our system as compared to the state-
of-the-art latest works [7–11, 32–36] in the domain of FOG detection leveraging
traditional systems, such as wearable devices, smart phone sensors and vision
based systems. The proposed system exploits 5G spectrum to detect and classify
FOG with a high accuracy of 99.3% (see confusion matrix, Table 2) with an
increase of approximately 6% over the second best method [33].

5 Conclusion

This study presented the design and implementation of an FOG system lever-
aging wireless devices operating at 4.8 GHz (compatible with 5G spectrum for
IoTs) in conjunction with multi-class softmax feedforward neural networks. The
wireless channel information was extracted for five different human activities in
indoor settings to classify the FOG episodes from sitting on chair, walking slowly,
walking with fact pace and voluntary stop. The multi-class ML-FFNN leverag-
ing features such as mean, standard deviation, skewness, kurtosis and peaks of
power spectrum were used to classify the particular human activities. It was
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Table 1: Comparison of FOG detection systems

Authors Detection system Types of sensors Algorithm Accuracy

Prateek et al. [7] Wearable devices Inertial measurement unit Generalized likelihood ratio test (GLRT) 81.03%

Camps et al. [8] Wearable devices Inertial measurement unit Convolution neural network (CNN) 89%

Samà et al. [9] Wearable devices Accelerometer Support vector machine 89.6%

Rodŕıguez et al. [32] Wearable devices Accelerometer Support vector machine 76.8%

Aminis et al. [11] Vision based Camera, depth sensor position/head offset & angle tracking 86.6%*

Bigy et al. [10] Vision based Camera, depth sensor subject/body joint positions 92%

Kim et al. [33] Smart phone Accelerometer, gyroscope Convolution neural network (CNN) 93.8%

Capecci et al. [34] Smart phone Accelerometer Power spectrum and cadence measures 92.86%

Kim et al. [35] Smart phone Accelerometer, gyroscope AdaBoost.M1 86%

Pepa et al. [36] Smart phone Accelerometer Fuzzy inference system 89%

Proposed 5G Spectrum Wireless sensing Multi-class softmax FFNN 99.3%
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Table 2: Confusion Matrix
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0

0.0%
99.6%
0.4%

2
2

0.1%
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0
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0.6%
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1.0%

100%
0.0%

99.2%
0.8%

99.8%
0.2%

99.3%
0.7%

1 2 3 4 5
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observed that the system provided an average accuracy of 99.3% for various
subjects under test.
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