
 

  
Abstract— This article investigates the feasibility of designing 

a high-gain on-chip antenna on silicon technology for sub-
terahertz applications over a wide frequency range. High-gain is 
achieved by exciting the antenna using an aperture fed 
mechanism to couple electromagnetics energy from a metal slot-
line, which is sandwiched between the silicon and polycarbonate 
substrates, to a 15-element array comprising circular and 
rectangular radiation patches fabricated on the top surface of the 
polycarbonate layer. An open ended microstrip line, which is 
orthogonal to the metal slot-line, is implemented on the underside 
of the silicon substrate. When the open ended microstrip line is 
excited it couples the signal to the metal slot-line which is 
subsequently coupled and radiated by the patch array. Measured 
results show the proposed on-chip antenna exhibits a reflection 
coefficient of less than -10 dB across 0.290 THz to 0.316 THz with 
a highest gain and radiation efficiency of 11.71 dBi and 70.8%, 
respectively, occurred at 0.3THz. The antenna has a narrow 
stopband between 0.292 THz to 0.294 THz. The physical size of 
the presented sub-terahertz on-chip antenna is 20×3.5×0.126mm3. 

Index Terms— Terahertz (THz) On-chip antenna, coupling 
feeding mechanism, terahertz applications, high gain, silicon 
technology, wide frequency range. 

I. INTRODUCTION 
     Recent technological advances have established 

possible the generation and discovery of Terahertz (THz) 
radiation [1-6]. This has resulted in a formerly inaccessible 
zone of the electromagnetic (EM) spectrum attainable, which 
is a territory of large potential for medical imaging and radio 
astronomy. Characteristics of the THz band permit it to 
occupy a unique niche as other parts of the EM spectrum are 
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already well established [7-9]. One of the main obstacles 
encountered in realizing a commercial THz system is the high 
path-loss and atmospheric attenuation incurred by the signal 
[10,11]. This necessitates high-gain transmit and receive THz 
antennas. Typical THz antennas include a lens antenna which 
is combined of an expanded hemispherical silicon lens [12], 
and a diagonal multilayer horn [13]. Although these types of 
antennas provide high gain up to 12.5 dB however, they are 
bulky structures that limits their applications.  
    In this research work, the viability of an on-chip antenna 
has been demonstrated to offer wide frequency range and 
high-gain performance across 0.290 THz to 0.316 THz with a 
narrow stopband between 0.292 THz to 0.294 THz. High-gain 
performance is achieved by employing an aperture feed 
mechanism whereby THz electromagnetic energy is coupled 
from an open ended microstrip-line via a metal slot-line to the 
radiation patch array with minimal loss. The antenna is 
fabricated on low permittivity THz substrate and on silicon 
technology. The proposed THz antenna for on-chip integration 
is simple to design and implement, and furthermore a low-
profile structure. 

 
II. DESIGN PROCEDURE OF THE ON-CHIP ANTENNA EXCITED 

WITH A INNOVATIVE FEEDING STRUCTURE 
Fig.1 displays the 3-D vision of the proposed sub-THz on-

chip antenna. The antenna includes of a periodic array of 15 
radiating elements fabricated on the top surface of a 
polycarbonate layer. Each radiating element comprises a 
rectangular patch and a circular patch. Dimension of the 
rectangular patch is 2.8×0.2 mm2, and the circular patch has a 
radius of 0.25 mm. Gap between the center of the two patches 
is 0.6 mm. Spacing between adjacent pairs of patches is 0.25 
mm, which corresponds to the guided wavelength of the metal 
slot-line at 0.3 THz, thus ensuring the field distribution is 
uniform over the aperture of the antenna. 

The antenna array is fed serially through the open-circuited 
conductive slot-line with length and width of l = 19 mm and w 
= 0.16 mm, which is embedded in the high resistivity intrinsic 
silicon-substrate layer with a relative permittivity of 𝜀𝜀𝑟𝑟=11.9, 
tan𝛿𝛿=0.00025, and a thickness of h1=70 𝜇𝜇m. Polycarbonate 
substrate is used to support the radiation patches. It has a 
relative permittivity of 𝜀𝜀𝑟𝑟=2.1, tan𝛿𝛿=0.01 and a thickness of 
h2=50 𝜇𝜇m. The silicon and polycarbonate substrates were 
bonded together using thermal compression. Silicon is a low-
thermal-expansion material however polycarbonate can 
experience thermal stresses during the annealing treatment 
which can induce fracturing in the polycarbonate substrate. It 
was found that by limiting the maximum annealing 
temperature the fracturing can be avoided. The metallization 
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layer was created using sputter deposition process. The feed 
mechanism proposed here to excite the array is realized using 
an open-ended microstrip line which is implemented on the 
underside of the silicon-layer and is orthogonally arranged 
relative to the metal slot-line. Dimensions of the open-
circuited microstrip-line are 2.8×0.2 mm2. The conductive 
slot-line is embedded on the top-surface of the silicon layer  
and is sandwiched between polycarbonate and silicon 
substrates to facilitate effective coupling of electromagnetic 
energy between the open-circuited microstrip-line to the patch 
array. The radiation patches and open-ended microstrip-line 
are made of Aluminum with conductivity of 3.8×107 S/m, 
thickness of 3 microns and surface roughness of 0.2 microns. 
Unlike previous antenna designs the proposed technique gets 
rid of the otherwise bulky structure. Parameters of the metal 
slot-line and radiation elements were optimized to match with 
the impedance of the feeding-line in order to achieve high-
gain performance over the antenna’s sub-THz working band. 

(a) 

(b) 

 
(c) 

 

 
(d) 

 
                                                            (e) 
Fig. 1. Silicon-based integrated on-chip antenna, (a) top-side, (b) side-vision 
with a partially enlarged section, (c) back view, (d) manufactured prototype 
(top-side), and (e) manufactured prototype (bottom-side). The proposed on-
chip antenna has a total dimension of 20×3.5×0.126 mm3. It is constructed 
from three different layers, i.e.: (i) polycarbonate, (ii) silicon, and (iii) 
aluminum.  
 

In the proposed on-chip antenna structure the travelling-
wave propagating along the slot-line excites two orthogonal 
TM11 patch modes when the circular-patch is placed on the 
aperture of the metal slot-line [14]. The two modes have a 90° 
phase difference because the phase of the electric field is 90° 

in advance of the current on a resonant patch [15]. As the 
amplitudes of the two-modes are difficult to control it was 
necessary to include a linearly polarized rectangular patch. 
The combination of two different patches generates the 
required circularly polarized radiation. The phase and axial-
ratio of the two orthogonal-modes can be controlled by 
adjusting two parameters, i.e. the spacing between adjacent 
pairs of patches and the open-circuit slot line width.  

The antenna's reflection-coefficient (S11<-10dB) shown in 
Fig.2 was determined with two different 3-D full-wave 
electromagnetic computational techniques (CST Microwave 
Studio & HFSS). The simulated and measured results show 
that, the proposed structure operates over the frequency range 
of 290-316 GHz for S11≤-10dB, which corresponds to an 
impedance bandwidth of 8.5%. It is noticed that the antenna 
has a narrow stopband from 292 GHz to 294 GHz, and there is 
excellent correlation observed between the two simulation 
tools. The empirical results in Fig.2 verify the viability of the 
proposed THz antenna for wide frequency range applications. 
The discrepancy observed between the measured and 
simulated results is due to (i) the unknown dielectric loss-
tangent over the required frequency range in the foundry’s 
design kit when the 3D model of the antenna was constructed; 
(ii) manufacturing tolerances; and (iii) feed mismatch losses. 
 

 
Fig. 2. Simulated and measured reflection coefficient (S11≤-10 dB). 

 

   The simulated surface current distribution over the radiation 
elements at 300 GHz is shown in Fig.3 for different phase 
angles. It is evident that the rectangular-patches participate 
towards a y-axis polarized radiation, and the circular patches 
participate towards both x- and y-axis polarizations, to yield 
left-handed circularly polarized radiation. 
 

(a) 0° 

 
(b) 90° 

 
  (c) 270° 

Fig. 3. Surface-current distribution over the radiation elements at 300 GHz for 
different phase angles. 



 

 
    The antenna's radiation specifications were tested applying 
a compact antenna test range as illustrated in [16]. The 
antenna measurement setup with the attached horn antenna on 
the transmitter is shown in Fig. 4(a). To decrease multipath 
reflections in the test area, RF absorbing material has utilized 
to nearly all metallic surfaces and objects on the probe station 
as shown in Fig. 4(b). A vacuum pump was used to hold down 
the chip to the rigid microwave absorber while the RF probe 
touched down. The actual measurements using the standard 
horn were made from below the AUT in Fig. 4(b). E- and H-
planes radiation patterns at the operating frequencies of 295, 
300, and 305 GHz are plotted in Figs. 5(a) and (b), 
respectively. Axial-ratio E-plane of the THz antenna array at 
various spot frequencies across the antenna’s working band 
are given in Table I. It shows the broadside axial-ratio is 
maintained under 3dB across the operating frequency range. 
Gain and radiation efficiency curves throughout the working 
frequency band is plotted in Fig.6. The radiation efficiency 
was determined by taking the ratio of the measured radiated 
power to the input power. The measurement equipment of 
high thermal stability was carefully calibrated with highly 
accurate verification standards to minimize errors. Broadside 
gain and efficiency at 300 GHz are 11.71dBi and 70.8%. 
Although, because of the characteristics of series fed antenna, 
when the operating frequency is away from 0.3 THz the beam 
is tilts slightly and the gain is marginally affected. The 3 dB 
bandwidth is shown to reduce at frequencies higher than 0.3 
THz. The radiation gain and efficiency are also affected by the 
high conductor and dielectric loss at sub-THz band. 
 

 
(a) 

 

    
 (b) 

Fig. 4. (a) Sub-THz antenna measurement setup, and (b) RF absorber material 
seen as black spongy sheets. The on-chip AUT was located on a Cascade 
Microtech rigid microwave absorber and probed applying the GSG RF probe. 
Physical contact was used to connect the ground pads of the GSG probe with 
the ground plane of the microstrip.   
 

TABLE I. MEASURED AXIAL-RATIO E-PLANE 
Frequency (THz) Axial-ratio E-plane 

0.295 1.80 
0.3 1.25 

0.305 2.30 
 
 

                            0.295 THz                                               0.3 THz 
 
 
 
 
 
 
 
 
 
 
 
 
 

         0.305 THz 
(a) E-plane 

                            0.295 THz                                                    0.3 THz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               0.305 THz 
(b) H-plane  

 

Fig. 5. Radiation patterns at 295 GHz, 300 GHz, and 305 GHz. 
 

 
                (a) 



 

    
             (b) 

Fig. 6. (a) Gain, and (b) radiation efficiency as a function of frequency. 
 

    Performance parameters of the proposed silicon-based on-
chip antenna has compared with recently published 
millimeter-wave antennas in Table II. It is evident that 
previous works are based on newer fabrication processes of  
0.09-μm, 0.13-μm, and 0.18-μm technologies however in this 
work the on-chip antenna was fabricated on a standard 120-
μm process as the smallest dimension in the design is limited 
to 200-μm. The purpose of this investigation was to determine 
by how much we could extend the operating frequency range 
of a terahertz antenna using the standard silicon technology. 
Compared to the publications cited it exhibits a higher gain 
and radiation efficiency. Although its radiation efficiency is 
lower than [23] that operates at 45-70 GHz however the 
proposed antenna works at a significantly higher frequency 
band of 290-316 GHz. 
 

TABLE II. COMPARISON RESULTS 
 

Ref. 
 

Antenna 
Type 

Meas. 
Freq. 
Band 
(GHz) 

Meas. 
Gain 
(dBi) 

Meas. 
Eff. 
(%) 

Size 
(mm3) or 

(mm2) 

 
Process 

[17] Bowtie-slot 90-105 ≤-1.78 - 0.71×0.3
1× 

0.65 

IHP  
0.13-μm  

Bi-CMOS 

[18] Differential-
fed Circularly 

Polarized 

50-70  ≤-3.2 - 1.5×1.5 
×0.3 

0.18-μm 

[19] Ring-shaped 
Monopole 

50-70  ≤0.02  ≤ 35 - CMOS 
0.18-μm 

[20] Circular 
Open-loop 

57-67  ≤ -4.4  - 1.8×1.8 
×0.3  

CMOS 
0.18-μm 

[21] AMC 
embedded 

squared slot 
antenna 

15-66 ≤ 2  - 1.44× 
1.1 

CMOS 
0.09-μm 

[22] Monopole 45-70 ≤4.96  - 1.9×1.9×
0.25  

Silicon 
CMOS 

[23] Loop Antenna 65-69 ≤8  ≤96 0.7× 
1.25 

CMOS 
0.18-μm 

[24] Dipole-
Antenna 

95-102  ≤4.8 - - Bi-CMOS 

[25] Tab 
Monopole 

45-75 ≤0.1  ≤42 1.5×1  Standard 
CMOS 
Silicon 

This 
work 

Coupled 
Feeding 

Mechanism 

290-316 ≥9.6 ≥55 20×3.5×0
.126 

Standard 
120-μm 
Silicon  

 

III. CONCLUSIONS 

    Feasibility of an on-chip antenna model is investigated for 
sub-THz applications. The antenna model is implemented on 
silicon technology for easy on-chip integration. The antenna 

employs aperture fed mechanism comprising an open-
circuited microstrip-line that is electromagnetically coupled to 
an orthogonal metal slot-line and periodic array of radiating 
elements. The proposed on-chip antenna with small 
dimensions of 20×3.5×0.126 mm3 operates across 0.290 THz 
to 0.316 THz with an optimum gain of 11.71 dBi and radiation 
efficiency of 70.8% at 0.30 THz, and it radiates circularly 
polarized energy. The antenna has a narrow stopband between 
0.292 THz to 0.294 THz. 
 

ACKNOWLEDGMENTS 
This work is partially supported by RTI2018-095499-B-C31, 
Funded by Ministerio de Ciencia, Innovación y Universidades, 
Gobierno de España (MCIU/AEI/FEDER,UE), and innovation 
programme under grant agreement H2020-MSCA-ITN-2016 
SECRET-722424, and the financial support from the UK 
EPSRC under grant EP/E022936/1. 
 

REFERENCES 
[1] S. S. Dhillon, et al., “The 2017 terahertz science and technology 
roadmap,” J. Phys. D. Appl. Phys., 50(4), 043001, 2017.  
[2] Nagatsuma, T., et al., “Advances in terahertz communications accelerated 
by photonics,” Nat. Photonics,  10, 371–379, 2016.   
[3] I. F. Akyildiz, et al., "Terahertz band: Next frontier for wireless 
communications," Physical Communication, 12, 16-32, 2014.  
[4] H. J. Song and T. Nagatsuma, “Present and future of terahertz 
communications,” IEEE Trans. THz Sci. Tech., 1, 256-263, Sep 2011. 
[5] Y. Shimada, et al., “Recent research trends of terahertz measurement 
standards,” IEEE Trans. THz Sci. Tech., 5(6), 1166–1172, 2015. 
[6] R. Al Hadi, et al., “A 1k-pixel video camera for 0.7-1.1 terahertz imaging 
applications in 65-nm CMOS,”IEEE J. of Solid-State Cir.,47,2999-3012,2012. 
[7] G. Hanson, “Radiation efficiency of nano-radius dipole antennas in the 
microwave and far-infrared regimes,” IEEE Ant&Prop. Mag. 50, 66-77, 2008. 
[8] D.-K. Lee, “Highly sensitive and selective sugar detection by terahertz 
nano-antennas,” Sci. Rep. 5, 15459, 2015. 
[9] Feuillet-Palma, et al., “Strong near field enhancement in THz nano-
antenna arrays,” Sci. Rep. 3, 1361, 2013. 
[10] M. Tamagnone, et al., “Analysis and design of THz antennas on 
plasmonic resonant graphene sheets,” J. Appl. Phys., 112(11), 114915, 2012. 
[11] M. Dragoman, et al., “Terahertz antenna based on graphene,” J. Appl. 
Phys., 107(10), 104313, 2010. 
[12] N. Llombart, et al., “Silicon micromachined lens antenna for THz 
integrated heterodyne arrays,”IEEE Trans. THz Sci. Tech.,3(5),515-523,2013. 
[13] W. Hou, et al., “A terahertz diagonal multilayer horn antenna based on 
MEMS technology,”  IEEE MTT-S IMWS-AMP, Suzhou, 1-3, 2015. 
[14] H. Yi, et al., “Antenna array excited by spoof planar plasmonic 
waveguide,” IEEE AWPL, 13,1227-1230, 2014. 
[15] J. R. James and P. S. Hall, Handbook of Microstrip Antennas, 1989 
[16] C. Liu, X. Wang, “Design and Test of a 0.3 THz Compact Antenna Test 
Range,” PIER Letters, 70, 81–87, 2017. 
[17] M. S. Khan, et al., “Design of bowtie-slot on-chip antenna backed with 
E-shaped FSS at 94 GHz,” 10th EuCAP, Davos, 1-3, 2016. 
[18] L. Wang and W. Z. Sun, “A 60-GHz differential-fed circularly polarized 
on-chip antenna based on 0.18-m COMS technology with AMC structure,” 
IET Int. Radar Conf., Hangzhou, 1-4, 2015. 
[19] H. T. Huang, et al., “A circular ring-shape monopole on-chip antenna 
with artificial magnetic conductor,”  IEEE APMC, 1-3, 2015. 
[20] X. Y. Bao, et al., “60-GHz AMC-Based Circularly Polarized On-Chip 
Antenna Using Standard 0.18-m CMOS Technology,” IEEE Trans. on Ant. 
and Prop., 60(5), 2234-2241, 2012. 
[21] F. Lin and B. L. Ooi, “Integrated millimeter-wave on-chip antenna design 
employing artificial magnetic conductor,” IEEE RFIT, pp. 174-177, 2009. 
[22] S. Upadhyay and S. Srivastava, “A 60-GHz on-chip monopole antenna 
using silicon technology,” IEEE AEMC, 1-2, 2013. 
[23] Y. Song, et al., “The design of a high gain on-chip antenna for SoC 
application,” IEEE MTT-S IMWS-AMP, Suzhou, 1-3, 2015. 
[24] M. Nafe, et al., “Gain enhancement of low profile on-chip dipole antenna 
via Artificial Magnetic Conductor at 94 GHz,” 9th EuCAP, 1-3, 2015. 
[25] W. Yang, et al., “A 60GHz on-chip antenna in standard CMOS silicon 
Technology,” IEEE APCCAS, Kaohsiung, 252-255, 2012. 


	I. INTRODUCTION

