
Semi-global incremental input-to-state stability of discrete-time Lur’e
systems

Max E. Gilmorea, Chris Guivera,∗, Hartmut Logemanna

aDepartment of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

Abstract

We present sufficient conditions for semi-global incremental input-to-state stability of a class of forced
discrete-time Lur’e systems. The results derived are reminiscent of well-known absolute stability criteria such
as the small gain theorem and the circle criterion. We derive a natural sufficient condition which guarantees
that asymptotically (almost) periodic inputs generate asymptotically (almost) periodic state trajectories.
As a corollary, we obtain sufficient conditions for the converging-input converging-state property to hold.
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1. Introduction

We consider stability and convergence properties of
the feedback interconnection shown in Figure 1.1,
which comprises a linear system in the forward
path and a static nonlinearity in the feedback path.
Such systems are often termed Lur’e systems, and
their stability and convergence properties is a well-
researched area. The study of the stability of Lur’e
systems is called absolute stability theory, which
seeks to conclude stability of the feedback system
given in Figure 1.1, via the interplay of frequency-
domain properties of the linear component and sec-
tor properties of the nonlinearity. Lyapunov ap-
proaches have been used to deduce global asymp-
totic stability of unforced Lur’e systems (see, for ex-
ample, [16, 23, 24]), and input-output methods, pi-
oneered by Sandberg and Zames in the 1960s, have
been used to infer L2 and L∞ stability (see, for
example, [11, 33]). More recently, forced Lur’e sys-
tems have been analysed in the context of input-
to-state stability (ISS) theory, with attention fo-
cussed on the extent to which results from classical
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absolute stability theory can be generalised to en-
sure ISS [3, 17, 18, 27, 28, 29]. Originating in the
paper [31], ISS is a property of general controlled
nonlinear systems and, roughly, ensures a natural
boundedness property of the state, in terms of ini-
tial conditions and inputs. ISS theory has been, and
still is, a very active research area, see, in addition
to the previous references, for example [9, 19, 20, 21]
and the survey papers [8, 32].

(A,B,C)

f

v
y

Figure 1.1: Lur’e system with linear part (A,B,C), nonlin-
earity f , output y and input v

Incremental ISS is concerned with bounding the dif-
ference of two state trajectories in terms of the
difference of initial conditions and the difference
of inputs. For background information regarding
incremental stability notions for general nonlinear
systems, we refer the reader to [2]. Related ideas,
which have been explored in the contexts of con-
traction methods and convergent systems, can be
found in [1, 22, 25] and the references therein. Re-
cently, in [13, 14], sufficient conditions have been
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determined which guarantee that certain infinite-
dimensional Lur’e systems are exponentially incre-
mentally ISS. Moreover, in [13, 14], exponential in-
cremental ISS is used to infer convergence proper-
ties such as the converging-input converging-state
(CICS) property (see, for example, [5]) and the
asymptotic periodicity of the response to asymp-
totically periodic inputs.

Here we consider discrete-time, finite-dimensional
Lur’e systems and the incremental stability notion
termed semi-global incremental ISS, which is con-
siderably weaker than exponential incremental ISS.
Our main result is Theorem 3.2 which provides suf-
ficient conditions, reminiscent of well-known abso-
lute stability criteria, for semi-global incremental
ISS. Theorem 3.2 underpins our subsequent investi-
gation of the asymptotic properties of the response
of discrete-time Lur’e systems to asymptotically al-
most periodic inputs. Theorem 4.3 provides suffi-
cient conditions under which, for every almost peri-
odic input vap, there exists a unique almost periodic
state trajectory xap such that any state trajectory
x generated by an input of the form vap + w with
limt→∞ w(t) = 0 satisfies limt→∞(x(t) − xap(t)) =
0. In particular, under the assumptions of Theo-
rem 4.3, state trajectories generated by asymptoti-
cally almost periodic inputs are asymptotically al-
most periodic. Sufficient conditions for the CICS
property are obtained as a corollary. The rela-
tion between the present paper and our earlier
work [5, 13, 14] is discussed in Remarks 3.3, 3.4
and 4.7.

The layout of the paper is as follows. In Section 2,
we gather some preliminary results and definitions
and, in Section 3, these are used to derive our main
results. The response to asymptotically almost pe-
riodic inputs is addressed in Section 4, and an ex-
ample is presented in Section 5.

Notation. Throughout, we denote the set of inte-
gers by Z, the set of positive integers by N and we
define Z+ := N ∪ {0}. We denote the sets of real
and complex numbers by R and C, respectively, and
define E := {z ∈ C : |z| > 1} and R+ := [0,∞). We
fix n,m, p ∈ N. We let Cm×p denote the set of com-
plex m×p matrices, which is a normed space when
equipped with the usual induced operator norm

‖K‖ := sup
‖ξ‖=1

‖Kξ‖ ∀K ∈ Cm×p .

Here the norms in Cm and Cp are the 2-norms.

Furthermore, for r > 0, we define

BC(K, r) := {L ∈ Cm×p : ‖K − L‖ < r}.

A square matrixA is said to be Schur if the eigenval-
ues of A are contained in the set {z ∈ C : |z| < 1}.
The transpose and conjugate transpose of A are de-
noted by AT and A∗, respectively.

The Hardy space H∞p×m is the set of all holomorphic
functions H : E→ Cp×m with

‖H‖H∞ := sup
z∈E
‖H(z)‖ <∞.

As usual, for Z = Z or Z+, (Rn)Z is the vector
space of functions v : Z → Rn, and `∞(Z,Rn)
is the space of all v ∈ (Rn)Z such that ‖v‖`∞ :=
supt∈Z ‖v(t)‖ <∞. We further define K as the set
of strictly increasing, continuous functions R+ →
R+ that are zero at zero. The subset of K compris-
ing all unbounded functions is denoted K∞. We let
KL stand for the set of functions ψ : R+×Z+ → R+

such that for each fixed t ∈ Z+, ψ(·, t) ∈ K and
for each fixed s ∈ R+, ψ(s, ·) is non-increasing and
limt→∞ ψ(s, t) = 0.

For t ∈ R, we define btc to be the greatest integer
less than or equal to t and dte to be the smallest
integer greater than or equal to t. Moreover, we de-
fine t := {0, 1, . . . , t} and t := {t, t+1, . . .}. Finally,
for τ ∈ Z+, the left-shift operator Λτ : (Rn)Z+ →
(Rn)Z+ is defined by (Λτv)(t) := v(t+ τ) for every
t ∈ Z+ and every v ∈ (Rn)Z+ .

2. Preliminaries

We begin with some preliminary definitions and
results regarding the following controlled and ob-
served linear difference equation

x+ = Ax+Bu+ v, y = Cx, (2.1)

where (A,B,C) ∈ L := Rn×n ×Rn×m ×Rp×n, u ∈
(Rm)Z+ and v ∈ (Rn)Z+ . Here and throughout,
x+ := Λ1x for x ∈ (Rn)Z+ . We denote the transfer
function of (A,B,C) by G, that is, G(z) = C(zI −
A)−1B. For K ∈ Cm×p, we define AK := A+BKC
and denote the transfer function of (AK , B,C) by
GK . It is easily verified that

GK(z) = G(z)(I −KG(z))−1 .

For F = C or R, we denote the set of stabilising
output feedback matrices (over F) for (A,B,C) by
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SF(G), that is,

SF(G) :=
{
K ∈ Fm×p : GK ∈ H∞p×m

}
.

Furthermore, for K ∈ Cm×p and r > 0, we obtain
from [29, Lemma 6] that BC(K, r) ⊆ SC(G) if, and
only if, ‖GK‖H∞ ≤ 1/r.

Application of the feedback law u = f(y) to (2.1),
where f : Rp → Rm is a nonlinearity, leads to the
closed-loop system

x+ = Ax+Bf(Cx) + v. (2.2)

We define the behaviour of (2.2) by

Bf (A,B,C) :=
{

(v, x) ∈(Rn)Z+ × (Rn)Z+ :

(v, x) satisfies (2.2)
}
,

and note that (v, x) ∈ Bf (A,B,C) if, and only if,
(v, x) ∈ Bf−K(AK , B,C), so-called loop shifting.
For ease of notation, from hereon in we shall write
B = Bf (A,B,C) when no ambiguity shall arise. We
note that B is left-shift invariant, that is,

(v, x) ∈ B =⇒ (Λσv,Λσx) ∈ B ∀σ ∈ Z+. (2.3)

For given (A,B,C) ∈ L and K ∈ SR(G), we shall
repeatedly make use of the following assumption
throughout the rest of this paper:

(A,B,C) is (i) controllable and observable,

or (ii) stabilisable and detectable, and

min
|z|=1

‖GK(z)‖ < ‖GK‖H∞ .

 (A)

Assumption (A) is the key hypothesis underlying
the ISS theory of discrete-time Lur’e systems de-
veloped in [29]. It is required for Lemma 2.2, which
in turn underpins Theorem 3.2, the main result
on semi-global incremental ISS. The last condition
in (A) means that ‖GK‖ is not constant on the unit
circle and guarantees the existence of suitable solu-
tions to the discrete-time bounded-real Lur’e equa-
tions in the absence of controllability and observ-
ability, cf. [29, Lemma 3] and [34]. Interestingly,
the continuous-time version of the assumption on
‖GK‖ in (A) is not required in the continuous-time
setting, see [27, Lemma 2.2] and [29, pp. 1742/1743]
for more details.

We conclude the section with two technical results.
The first is elementary and so we do not provide a
proof.

Lemma 2.1. Let h : Rp → Rm be continuous, and
W ⊆ Rp be compact. Then ξ 7→ supw∈W ‖h(ξ +
w)− h(w)‖ is a continuous function.

The second result is an input-to-state stability cri-
terion for

x(t+ 1) = Ax(t) +Bg(t, Cx(t)) + v(t)

∀ t ∈ Z+ , (2.4)

a controlled Lur’e system with time-varying nonlin-
earity.

Lemma 2.2. Let (A,B,C) ∈ L, K ∈ SR(G)
and α ∈ K∞. If assumption (A) holds, then
r := 1/‖GK‖H∞ < ∞ and there exist ψ ∈ KL
and φ ∈ K such that, for all g : Z+ × Rp → Rm
satisfying, for all ξ ∈ Rp,

sup
t∈Z+

‖g(t, ξ)−Kξ‖ ≤ r‖ξ‖ − α(‖ξ‖) , (2.5)

and for every (v, x) ∈ (Rn)Z+ × (Rn)Z+ satisfy-
ing (2.4),

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + φ
(

sup
s∈t−1

‖v(s)‖
)
∀ t ∈ N.

Lemma 2.2 extends [29, Theorem 13] to the time-
varying case. The proof is a straightforward gener-
alisation of the proof of [29, Theorem 13] and we
therefore omit the details.

3. Incremental stability properties

The present section contains our main stability re-
sults. The stability notion we consider is so-called
semi-globally incrementally input-to-state stable.

Definition 3.1. Let (A,B,C) ∈ L and f : Rp →
Rm. We say that (2.2) is semi-globally incremen-
tally input-to-state stable if for any R > 0, there ex-
ist ψ ∈ KL and φ ∈ K such that, for all (vi, xi) ∈ B
with ‖xi(0)‖+ ‖vi‖`∞ ≤ R, i = 1, 2,

‖x1(t)−x2(t)‖ ≤ ψ (‖x1(0)− x2(0)‖, t)

+ φ
(

sup
s∈t−1

‖v1(s)− v2(s)‖
)
∀ t ∈ N . (3.1)

Although this stability notion is semi-global, it is
suitable for almost all practical applications, as all
relevant initial conditions and inputs are likely to
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have their norm bounded by some R > 0. We refer
the reader to papers such as [2, 13, 14] for varying
notions of global incremental stability.

The following theorem is the main result of the pa-
per.

Theorem 3.2. Let (A,B,C) ∈ L, f : Rp → Rm
and K ∈ SR(G). If (A) holds, f satisfies

‖f(ξ + ζ)− f(ζ)−Kξ‖ < r‖ξ‖
∀ ξ, ζ ∈ Rp, ξ 6= 0, (3.2)

where r := 1/‖GK‖H∞ , and there exists η ∈ Rp
such that

r‖ξ − η‖ − ‖f(ξ)− f(η)−K(ξ − η)‖ → ∞
as ‖ξ‖ → ∞ , (3.3)

then (2.2) is semi-globally incrementally input-to-
state stable.

In the next two remarks we provide some commen-
tary on Theorem 3.2, and compare and contrast our
present results to those in [5, 13, 14].

Remark 3.3. (i) Under the assumptions of The-
orem 3.2, it follows from [5, Lemma 4.2], that for
every ζ ∈ Rp, there exists αζ ∈ K∞ such that

‖f(ξ+ζ)−f(ζ)−Kξ‖ ≤ r‖ξ‖−αζ(‖ξ‖) ∀ ξ ∈ Rp.

In particular, if f(0) = 0, then

‖f(ξ)−Kξ‖ ≤ r‖ξ‖ − α0(‖ξ‖) ∀ ξ ∈ Rp,

which we recognise as the main assumption of [29,
Theorem 13]. Hence, in this case, the assumptions
of Theorem 3.2 guarantee input-to-state stability
of (2.2) (see, for example, [19, 29, 31]). The pa-
per [29] does not consider notions of incremental
stability.

(ii) Note that condition (3.2) can be written in the
form, for all ξ, ζ ∈ Rp, ξ 6= 0

‖GK‖H∞
‖f(ξ + ζ)− f(ζ)−Kξ‖

‖ξ‖
< 1 , (3.4)

which can be viewed as a small incremental gain
condition. However, it is not excluded that there
exists ζ ∈ Rp such that the left-hand side of (3.4)
converges to 1 as ‖ξ‖ → ∞ or ‖ξ‖ → 0, and
so, (3.4) is not a small incremental gain condition
in the sense of the classical input-output theory of
feedback systems [11, 33]. Finally, note that even
if (3.3) holds for some η ∈ Rp, then the left-hand
side of (3.4) with ζ = η may not be bounded away
from 1.

(iii) Although (A) guarantees that ‖GK‖H∞ > 0,
we highlight that, by [13, Remark 3.4], the con-
clusions of Theorem 3.2 remain valid in the situ-
ation wherein ‖GK‖H∞ = 0 (which is equivalent
to G = 0), provided that f is globally Lipschitz.
More precisely, if (A,B,C) ∈ L is stabilisable and
detectable, G = 0 and f : Rp → Rm is globally
Lipschitz, then (2.2) is semi-globally incrementally
input-to-state stable. ♦

Remark 3.4. The paper [5] considers the CICS
property for finite-dimensional, continuous-time
Lur’e systems, and does not consider incremental
stability notions. The approach in [5] is based on
ISS arguments, rather than the semi-global incre-
mental ISS framework adopted here. We note that
the assumptions (3.2) and (3.3) on the nonlinear
term f are the same as those in [5, Theorem 4.3
(2)] which guarantee the CICS property.

The papers [13, 14] derive incremental ISS proper-
ties for large classes of infinite-dimensional discrete-
time and continuous-time systems, respectively, un-
der the assumption that there exists δ > 0 such
that, for all ξ, ζ ∈ Rp

‖f(ξ + ζ)− f(ζ)−Kξ‖ ≤ (r − δ)‖ξ‖ . (3.5)

Obviously, if condition (3.5) is satisfied for some δ >
0, then (3.2) and (3.3) hold, but (3.5) is significantly
more restrictive then the combination of (3.2) and
(3.3) (see also Example 5.1). Note that if (3.5) is
satisfied for some δ > 0, then

‖GK‖H∞ sup
ξ,ζ∈Rp

ξ 6=0

‖f(ξ + ζ)− f(ζ)−Kξ‖
‖ξ‖

< 1,

which is a small incremental gain condition in the
sense of classical input-output theory [11, 33].

A key difference between the present work and [13,
14] is that Theorem 3.2, via Lemma 2.2 and [29], is
underpinned by an ISS Lyapunov theory for Lur’e
systems, whilst, in the absence of such a theory in
the infinite-dimensional case, [13, 14] is based on
small-gain and exponential weighting methods. ♦

Proof of Theorem 3.2. We seek to apply
Lemma 2.2. By invoking (3.3) and [5, State-
ment (1) of Lemma 4.2], we obtain that, for all
ζ ∈ Rp,

r‖ξ−ζ‖−‖f(ξ)−f(ζ)−K(ξ−ζ)‖ → ∞ as ‖ξ‖ → ∞ .
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Consequently,

r‖ξ‖−‖f(ξ)−f(0)−Kξ‖ → ∞ as ‖ξ‖ → ∞ . (3.6)

By setting f̃(ξ) := f(ξ) − f(0) for all ξ ∈ Rp, it is
clear from (3.2) and (3.6) that f̃ −K : Rp → Rm is
continuous, ‖f̃(ξ)−Kξ‖ < r‖ξ‖ for all ξ ∈ Rp\{0},
and r‖ξ‖− ‖f̃(ξ)−Kξ‖ → ∞ as ‖ξ‖ → ∞. Hence,
f̃ −K satisfies the hypotheses of [5, Statement 2 of
Lemma 4.2] and so, there exists α0 ∈ K∞ such that

‖f̃(ξ)−Kξ‖ ≤ r‖ξ‖ − α0(‖ξ‖) ∀ ξ ∈ Rp . (3.7)

We shall use (3.7) to establish the existence of α1 ∈
K∞ and s1 > 0 such that

‖f(ξ)−Kξ‖ ≤ r‖ξ‖ − α1(‖ξ‖)
∀ ξ ∈ Rp s.t. ‖ξ‖ ≥ s1 . (3.8)

For which purpose, we note that, for all ξ ∈ Rp,

‖f(ξ)−Kξ‖ ≤ ‖f̃(ξ)−Kξ‖+ ‖f(0)‖
≤ r‖ξ‖ − α0(‖ξ‖) + ‖f(0)‖ ,

where we have used (3.7). Defining α̃ ∈ K∞ by

α̃(s) :=

{
α0(s), if s ≥ 1,

α0(1)s, if 0 ≤ s < 1,

we obtain that, for all ξ ∈ Rp such that ‖ξ‖ ≥ 1,

‖f(ξ)−Kξ‖ ≤ r‖ξ‖ − α̃(‖ξ‖) + ‖f(0)‖.

Therefore, if we let s1 ≥ 1 be such that α̃(s) >
‖f(0)‖ for all s ≥ s1, and define α1 ∈ K∞ by

α1(s) :=

{
α̃(s)− ‖f(0)‖, if s ≥ s1
(α̃(s1)− ‖f(0)‖)s/s1, if 0 ≤ s < s1,

we obtain that (3.8) holds.

Next, fix R > 0 and combine (3.8) with [29, Corol-
lary 17] to obtain the existence of a constant ρ > 0
such that, for all (v, x) ∈ B with ‖x(0)‖+ ‖v‖`∞ ≤
R,

‖Cx(t)‖ ≤ ρ ∀ t ∈ Z+ . (3.9)

We set W := {ξ ∈ Rp : ‖ξ‖ ≤ ρ} ⊆ Rp and claim
that

r‖ξ‖ − sup
w∈W

‖f(ξ + w)− f(w)−Kξ‖ → ∞

as ‖ξ‖ → ∞ . (3.10)

To avoid interruption of the argument, we relegate
the validation of (3.10) to the end of the proof.

Invoking (3.2), the continuity of f and compactness
of W , we conclude that, for all ξ ∈ Rp\{0},

sup
w∈W

‖f(ξ + w)− f(w)−Kξ‖ < r‖ξ‖ . (3.11)

By Lemma 2.1, the function ξ 7→ supw∈W ‖f(ξ +
w) − f(w) −Kξ‖ is continuous which, in conjunc-
tion with (3.10) and (3.11) and an application of [5,
Statement (2) of Lemma 4.2], shows that there ex-
ists α ∈ K∞ such that, for all ξ ∈ Rp

sup
w∈W

‖f(ξ + w)− f(w)−Kξ‖ ≤ r‖ξ‖ − α(‖ξ‖) .

(3.12)
Let (vi, xi) ∈ B with ‖xi(0)‖+‖vi‖`∞ ≤ R, i = 1, 2,
and define g : Z+ × Rp → Rm by

g(t, ξ) := f (ξ + Cx2(t))−f (Cx2(t))

∀ (t, ξ) ∈ Z+ × Rp .

Note that x := x1−x2 and v := v1−v2 satisfy (2.4).
Moreover, from (3.9) and (3.12), we see that (2.5)
holds. We now invoke Lemma 2.2 to obtain the
existence of ψ ∈ KL and φ ∈ K such that

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + φ
(

sup
s∈t−1

‖v(s)‖
)
∀ t ∈ N .

Since ψ and φ depend only on (A,B,C) and α (and
not on (v1, x1) or (v2, x2)), we see that this gives
semi-global incremental input-to-state stability.

All that is left to prove is (3.10). Since f is con-
tinuous, and W is compact, it follows that for each
ξ ∈ Rp, there exists wξ ∈W such that

sup
w∈W

‖f(ξ + w)− f(w)−Kξ‖

= ‖f(ξ + wξ)− f(wξ)−Kξ‖ . (3.13)

In particular, ‖wξ‖ ≤ ρ for all ξ ∈ Rp. Thus, we
estimate, by use of (3.7), that

‖f(ξ + wξ)− f(wξ)−Kξ‖
≤ ‖f(ξ + wξ)− f(0)−K(ξ + wξ)‖+ ‖f(0)‖

+ ‖Kwξ‖+ ‖f(wξ)‖
≤ r‖ξ‖+ r‖wξ‖ − α0(‖ξ + wξ‖) + ‖f(0)‖

+ ‖K‖‖wξ‖+ ‖f(wξ)‖ . (3.14)

By the reverse triangle inequality, we have that

α0(‖ξ + wξ‖) ≥ α0(‖ξ‖ − ‖wξ‖)
∀ ξ ∈ Rp, ‖ξ‖ ≥ ‖wξ‖ . (3.15)
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Hence, combining (3.13)–(3.15) gives

r‖ξ‖ − sup
w∈W

‖f(ξ + w)− f(w)−Kξ‖

≥ −r‖wξ‖+ α0(‖ξ‖ − ‖wξ‖)− ‖f(0)‖
− ‖K‖‖wξ‖ − ‖f(wξ)‖
→ ∞ as ‖ξ‖ → ∞,

establishing (3.10).

Remark 3.5. The above and subsequent results
can be generalised to systems of the form

x+ = Ax+Bu+ v, y = Cx, u = f(y + w),

where w ∈ (Rp)Z+ is an output disturbance. This
more general system can be analysed by using
methods similar to those employed here, and so, in
the interest of brevity, we do not give formal state-
ments and instead refer the reader to the forthcom-
ing thesis [12]. ♦

We conclude this section with a corollary of The-
orem 3.2. The result presents sufficient condi-
tions, reminiscent of the well-known circle-criterion
(see, for example, [23]), which guarantee that (2.2)
is semi-globally incrementally input-to-state sta-
ble. Before giving this result, we recall that a
Cm×m-valued rational function H is positive real
if H(z) + H(z)∗ is positive semi-definite for every
z ∈ E which is not a pole of H.

Corollary 3.6. Let (A,B,C) ∈ L, f : Rp → Rm
and K1,K2 ∈ Rm×p. Assume that H := (I −
K2G)(I − K1G)−1 is positive real and that either
(A,B,C) is (i) controllable and observable, or (ii)
stabilisable and detectable and there exists z ∈ C
such that |z| = 1 and H(z) + H(z)∗ is positive def-
inite. If, in addition,

〈f(ξ + ζ)− f(ζ)−K1ξ, f(ξ + ζ)− f(ζ)−K2ξ〉 < 0

∀ ξ, ζ ∈ Rp, ξ 6= 0, (3.16)

and there exists η ∈ Rp such that

1

‖ξ‖
〈fη(ξ)−K1ξ, fη(ξ)−K2ξ〉 → −∞

as ‖ξ‖ → ∞,

where fη(ξ) := f(ξ + η)− f(η), then (2.2) is semi-
globally incrementally input-to-state stable.

The following proof uses ideas and methods from
the proofs of [5, Corollary 4.15] and [29, Corollary
11].

Proof of Corollary 3.6. We begin by defining

L :=
1

2
(K1 −K2) and M :=

1

2
(K1 +K2).

We then obtain that, for all ξ, ζ ∈ Rp,

〈f(ξ + ζ)− f(ζ)−K1ξ, f(ξ + ζ)− f(ζ)−K2ξ〉
= ‖f(ξ + ζ)− f(ζ)−Mξ‖2 − ‖Lξ‖2.

By combining this with (3.16), it can easily be seen
that kerL = {0}. Subsequently, LTL is invertible
and we define L̃ := (LTL)−1LT , which is a left-
inverse of L. Now, we highlight that (v, x) ∈ B if,
and only if, (v, x) satisfies

x+ = AK1x+Bg(LCx) + v, (3.17)

where g : Rm → Rm is defined by g(ξ) := f(L̃ξ) −
K1L̃ξ for all ξ ∈ Rm. To complete the proof, it
is therefore sufficient to show that (3.17) is semi-
globally incrementally input-to-state stable. To do
so, we shall show that the assumptions of Theo-
rem 3.2 are satisfied in the context of (3.17). To
this end, we set K = −LL̃ and define F to be the
transfer function of (AK1 , B, LC), the linear system
underlying the Lur’e system (3.17), that is,

F(z) := LC(zI −AK1)−1B = LGK1(z).

By invoking arguments similar to those used in the
proof of [29, Corollary 11], it can be shown that
1/‖FK‖H∞ ≥ 1 where FK = F(I − KF)−1 and
that (A) holds in the context of (3.17). Further-
more, it is also easy to show, again by following
similar arguments to those seen in proof of [29,
Corollary 11], that

‖g(ξ + ζ)− g(ζ)−Kξ‖ < ‖ξ‖ ∀ ξ, ζ ∈ Rm, ξ 6= 0,

and that there exists β ∈ K∞ such that

‖g(ξ+Lη)−g(Lη)−Kξ‖ ≤ ‖ξ‖−β(‖ξ‖) ∀ ξ ∈ Rm.

We therefore may invoke Theorem 3.2 to deduce
that (3.17), and hence (2.2), is semi-globally incre-
mentally input-to-state stable.

4. Lur’e systems subject to almost periodic
forcing

In this section, we use Theorem 3.2 to investi-
gate the response of discrete-time Lur’e systems
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to asymptotically almost periodic forcing. In par-
ticular, we will show that state trajectories corre-
sponding to asymptotically almost periodic inputs
are asymptotically almost periodic.

We begin by presenting some relevant background
material. Let Z = Z or Z+. A set S ⊆ Z is called
relatively dense (in Z) if there exists L ∈ N such
that

{a, . . . , a+ L} ∩ S 6= ∅ ∀ a ∈ Z.

For ε > 0, we say that τ ∈ Z is an ε-period of
v ∈ (Rn)Z if

‖v(t)− v(t+ τ)‖ ≤ ε ∀ t ∈ Z.

We denote by P (v, ε) ⊆ Z the set of ε-periods of
v and we say that v ∈ (Rn)Z is almost periodic
if P (v, ε) is relatively dense in Z for every ε > 0.
We denote the set of almost periodic functions v ∈
(Rn)Z by AP (Z,Rn) and note that AP (Z,Rn) is
a closed linear subspace of `∞(Z,Rn). Trivially, a
periodic function is almost periodic. An example of
a function which is almost periodic but not periodic,
is v ∈ (Rn)Z defined by

v(t) := sin(π
√

2t) ∀ t ∈ Z .

The straightforward proof of the following lemma
is left to the reader.

Lemma 4.1. If vap ∈ AP (Z+,Rn), then, for every
T ∈ Z+

sup
t∈Z+, t≥T

‖vap(t)‖ = ‖vap‖`∞ .

Furthermore, if vap ∈ AP (Z,Rn), then, for every
T ∈ Z,

sup
t∈Z, t≥T

‖vap(t)‖ = ‖vap‖`∞

and sup
t∈Z, t≤T

‖vap(t)‖ = ‖vap‖`∞ .

A consequence of Lemma 4.1 is that almost peri-
odic functions are completely determined by their
“infinite tails”: if v, w ∈ AP (Z+,Rn) and there ex-
ists τ ∈ Z+ such that v(t) = w(t) for all t ∈ τ , then
v = w; similarly, if v, w ∈ AP (Z,Rn) and there ex-
ists τ ∈ Z such that v(t) = w(t) for all t ∈ τ , or for
all t ∈ −τ , then v = w.

We say that a function v ∈ (Rn)Z+ is asymptoti-
cally almost periodic if it is of the form v = vap +w
with vap ∈ AP (Z+,Rn) and w ∈ c0(Z+,Rn), where

c0(Z+,Rn) is the space of functions u ∈ (Rn)Z+

such that limt→∞ u(t) = 0. The space of all asymp-
totically almost periodic functions v ∈ (Rn)Z+ is
denoted by AAP (Z+,Rn), that is,

AAP (Z+,Rn) = AP (Z+,Rn) + c0(Z+,Rn).

Noting that, by Lemma 4.1,

‖v + w‖`∞ ≥ ‖v‖`∞ ∀ v ∈ AP (Z+,Rn),

∀w ∈ c0(Z+,Rn),

it is easy to see that AAP (Z+,Rn) is a closed sub-
space of `∞(Z+,Rn).

As an immediate consequence of Lemma 4.1, we
obtain the following result.

Lemma 4.2. The following statements hold.

(i) AP (Z+,Rn) ∩ c0(Z+,Rn) = {0}.

(ii) If v ∈ AAP (Z+,Rn), then the decomposition
v = vap + w, where vap ∈ AP (Z+,Rn) and
w ∈ c0(Z+,Rn), is unique.

It is well-known that v ∈ (Rn)Z is almost periodic
if, and only if, the set of translates {Λτv : τ ∈ Z}
is relatively compact in `∞(Z,Rn). Since, for any
v ∈ c0(Z+,Rn), the set of translates {Λτv : τ ∈ Z+}
is relatively compact in `∞(Z+,Rn), it is clear that
the above characterisation of almost periodicity on
Z is not valid for functions in (Rn)Z+ . Interestingly,
the elements of AAP (Z+,Rn) are precisely the
functions v in (Rn)Z+ for which the set {Λτv : τ ∈
Z+} is relatively compact in `∞(Z+,Rn), see [10].
For more information on and further characterisa-
tions of almost periodicity, we refer the reader to
the literature, see, for example, [6, 7, 15, 30].

There exists a close relationship between the spaces
AP (Z+,Rn) and AP (Z,Rn) which we now briefly
explain. Following an idea in [4, Remark on p. 318],
for every v ∈ AP (Z+,Rn), we define a function
ve ∈ (Rn)Z by

ve(t) = lim
k→∞

v(t+ τk) ∀ t ∈ Z,

where τk ∈ P (v, 1/k) for each k ∈ N and τk → ∞
as k →∞. For given t ∈ Z, we have

‖v(t+ τk)− v(t+ τl)‖ ≤ ‖v(t+ τk)− v(t+ τk + τl)‖
+ ‖v(t+ τk + τl)− v(t+ τl)‖

≤ 1

l
+

1

k
,
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for all k, l ∈ N sufficiently large, and so (v(t+ τk))k
is a Cauchy sequence. Hence ve(t) is well-defined
for each t ∈ Z. It is clear that ve(t) = v(t) for all
t ∈ Z+, that is, ve extends v to Z. Furthermore, it is
not difficult to show that ve ∈ AP (Z,Rn) and there
is no other function in AP (Z,Rn) which extends v
to Z. Moreover, Lemma 4.1 guarantees that

sup
t∈Z
‖ve(t)‖ = sup

t∈Z+

‖v(t)‖.

It is now clear that the map AP (Z+,Rn) →
AP (Z,Rn), v 7→ ve is an isometric isomorphism.

The next result is our main result of this section.

Theorem 4.3. Imposing the assumptions of The-
orem 3.2, let vap ∈ AP (Z+,Rn). The following
statements hold.

(i) There exists a unique xap ∈ AP (Z+,Rn) such
that (vap, xap) ∈ B and, for all (v, x) ∈ B such
that v − vap ∈ c0(Z+,Rn),

lim
t→∞

‖x(t)− xap(t)‖ = 0 . (4.1)

Furthermore, for all ε > 0, there exists δ > 0
such that P (vap, δ) ⊆ P (xap, ε). In particular,
if vap is τ -periodic, then xap is τ -periodic.

(ii) The almost periodic extension xape of xap to Z
is the unique bounded solution on Z of

z+ = Az +Bf(Cz) + vape . (4.2)

Remark 4.4. (i) Theorem 4.3 shows that, under
the assumptions of Theorem 3.2, asymptotically al-
most periodic inputs generate asymptotically al-
most periodic state trajectories.

(ii) Statements (i) and (ii) remain valid if, in The-
orem 4.3, the assumptions are replaced by the
hyptheses of Corollary 3.6.

(iii) Under the assumptions of Theorem 3.2, it
is straightforward to show, by combining Theo-
rem 3.2, Lemma 4.1 and Theorem 4.3, that for
all R > 0, there exists φ ∈ K such that, for
all (vi, xi) ∈ B with vi ∈ AAP (Z+,Rn) and
‖xi(0)‖+ ‖vi‖`∞ ≤ R, i = 1, 2,

‖xap1 − x
ap
2 ‖`∞ ≤ φ(‖vap1 − v

ap
2 ‖`∞) ,

where vapi and xapi are the almost periodic parts of
vi and xi, respectively, i = 1, 2. ♦

The proof of Theorem 4.3 is facilitated by a tech-
nical lemma, which we state and prove first. For
a function Φ : Rp → Rp and U ⊆ Rp, we let
Φ−1(U) denote the preimage of U under Φ, and
denote its cardinality by #Φ−1(U). For ξ ∈ Rp, we
set Φ−1(ξ) := Φ−1({ξ}). Finally, we let θ denote
the constant function on Z+ with value one.

Lemma 4.5. Imposing the assumptions of Theo-
rem 3.2, define FK : Rp → Rp by

FK(ξ) := ξ −GK(1)(f(ξ)−Kξ) ∀ ξ ∈ Rp .

The following statements hold.

(i) FK is surjective and #F−1K (ξ) = 1 for all ξ ∈
imC.

(ii) For all v∞ ∈ Rn, by letting y∞ ∈ F−1K (C(I −
AK)−1v∞) and setting

x∞ := (I −AK)−1
(
B(f(y∞)−Ky∞) + v∞

)
,

we have that y∞ = Cx∞ and (v∞θ, x∞θ) ∈ B.

Proof. Statement (i) is a discrete-time analogue
of [5, Proposition 4.1]. The proof carries over
to the discrete-time case and is therefore omit-
ted. For statement (ii), fix v∞ ∈ Rn and let
x∞ ∈ Rn be as in statement (ii) where, by state-
ment (i), y∞ is the unique element in the singleton
F−1K (C(I −AK)−1v∞). We then see that

y∞ = FK(y∞) + GK(1)(f(y∞)−Ky∞)

= C(I −AK)−1(B(f(y∞)−Ky∞) + v∞)

= Cx∞,

and thus,

x∞ = AKx∞ +B(f(y∞)−Ky∞) + v∞

= Ax∞ +Bf(Cx∞) + v∞.

Consequently, (v∞θ, x∞θ) ∈ B, establishing state-
ment (ii).

Proof of Theorem 4.3. We begin by proving state-
ment (i). For which purpose, we use Lemma 4.5 to
yield that, for every v∗ ∈ Rn, there exists (a unique)
x∗ ∈ Rn such that (v∗θ, x∗θ) ∈ B. Fix such a pair
(v∗, x∗). Let (vap, x) ∈ B and note that, since vap is
almost periodic, vap is bounded. Thus there exists
R1 > 0 such that

‖x(0)‖+ ‖vap‖`∞ , ‖x∗‖+ ‖v∗‖ ≤ R1. (4.3)
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Hence, by Theorem 3.2, there exist ψ1 ∈ KL and
φ1 ∈ K (dependent on R1) such that

‖x(t)− x∗‖ ≤ ψ1 (‖x(0)− x∗‖, t)

+ φ1

(
sup
s∈t
‖vap(s)− v∗‖

)
∀ t ∈ N .

Combining this with (4.3), we conclude that x is
bounded. Hence, there exists R > 0 such that

‖x‖`∞ + ‖vap‖`∞ ≤ R .

Since vap is almost periodic, there exists τk ∈
P (vap, 1/k) for every k ∈ N such that τk → ∞
as k →∞. Inspired by an argument from the proof
of [2, Proposition 4.4], we claim that (Λτkx)k∈N is
a Cauchy sequence in `∞(Z+,Rn). To show this,
we first invoke Theorem 3.2 to obtain ψ ∈ KL
and φ ∈ K (dependent on R) such that, for all
(v1, x1), (v2, x2) ∈ B, (3.1) holds, provided that
‖xi(0)‖ + ‖vi‖`∞ ≤ R for i = 1, 2. Subsequently,
we let k, l ∈ N be sufficiently large so that

ψ(2R, τk), ψ(2R, τl) ≤
ε

2
and φ

(
1

k
+

1

l

)
≤ ε

2
,

and, without loss of generality, assume that τl ≥ τk.
Then, for all t ∈ Z+,

sup
s∈τk
‖vap(s+ t)− vap(s+ t+ τl − τk)‖

≤ sup
s∈τk
‖vap(s+ t)− vap(s+ t+ τl)‖

+ sup
s∈τk
‖vap(s+ t+ τl)− vap(s+ t+ τl − τk)‖

≤1

l
+

1

k
.

Hence,

φ
(

sup
s∈τk
‖vap(s+ t)− vap(s+ t+ τl − τk)‖

)
≤ ε

2
,

which, when combined with (2.3) and (3.1), implies

‖(Λτkx)(t)− (Λτlx)(t)‖
= ‖(Λtx)(τk)− (Λt+τl−τkx)(τk)‖

≤ ψ(‖x(t)− x(t+ τl − τk)‖, τk) +
ε

2

≤ ψ(2R, τk) +
ε

2
≤ ε .

Whence, we have shown that (Λτkx)k∈N is a Cauchy
sequence in `∞(Z+,Rn) and so converges to a func-
tion xap ∈ `∞(Z+,Rn). To show that (vap, xap) ∈

B, we note that, for all k ∈ Z+ and t ∈ Z+, by (2.3)

(Λτkx)(t+ 1) = A(Λτkx)(t) +Bf(C(Λτkx)(t))

+ (Λτkv
ap)(t).

Since f is continuous, by using that τk ∈
P (vap, 1/k) for all k ∈ N and taking the limit as
k →∞, we see that (vap, xap) ∈ B.

To show that xap ∈ AP (Z+,Rn), we fix ε > 0 and
note that, since φ(0) = 0 and φ is continuous, there
exists δ > 0 such that

φ(s) ≤ ε ∀ s ∈ [0, δ]. (4.4)

Let τ ∈ P (vap, δ). Then, by combining (2.3)
with (3.1) and (4.4), we see that, for all t ∈ Z+

and all k ∈ N,

‖(Λτkx)(t)− (Λτkx)(t+ τ)‖
= ‖(Λtx)(τk)− (Λt+τx)(τk)‖
≤ ψ (‖x(t)− x(t+ τ)‖, τk) + ε. (4.5)

Since (τk)k∈N converges to∞ as k →∞, (4.5) yields
that

‖xap(t)− xap(t+ τ)‖ ≤ ε ∀ t ∈ Z+ ,

showing that τ ∈ P (xap, ε). It follows that
P (vap, δ) ⊆ P (xap, ε). Since vap is almost periodic,
it follows that P (xap, ε) is relatively dense in Z+,
showing that xap ∈ AP (Z+,Rn).

In order to establish (4.1), let (v, x) ∈ B such that
v − vap ∈ c0(Z+,Rn). Obviously, v is bounded,
and so an application of Theorem 3.2 yields the
existence of R̃ > 0 such that

‖x‖`∞ + ‖v‖`∞ , ‖xap‖`∞ + ‖vap‖`∞ ≤ R̃ .

Furthermore, Theorem 3.2 guarantees the existence
of ψ̃ ∈ KL and φ̃ ∈ K such that, for all (vi, xi) ∈ B
with ‖xi(0)‖ + ‖vi‖`∞ ≤ R̃, i = 1, 2, (3.1) holds
with ψ and φ replaced by ψ̃ and φ̃, respectively. In
particular, setting w := v− vap and using (2.3), we
see that, for all t ∈ N,

‖x(t)− xap(t)‖
= ‖(Λbt/2cx)(dt/2e)− (Λbt/2cx

ap)(dt/2e)‖
≤ ψ̃ (‖x(bt/2c)− xap(bt/2c)‖ , dt/2e)

+ φ̃
(

sup
s∈dt/2e

∥∥(Λbt/2cw)(s)
∥∥) .
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By applying (3.1) to the term ‖x(bt/2c) −
xap(bt/2c)‖ in the above inequality, we deduce that,
for all t ∈ N,

‖x(t)− xap(t)‖ ≤ ψ̃

(
ψ̃(‖x(0)− xap(0)‖, bt/2c)

+ φ̃
(

sup
s∈bt/2c

‖w(s)‖
)
, dt/2e

)
+ φ̃

(
sup

s∈dt/2e

∥∥(Λbt/2cw)(s)
∥∥).

Finally, the right hand side of the above inequal-
ity converges to 0 as t → ∞, showing that (4.1)
holds. It is easily seen, by a combination of (4.1)
with Lemma 4.2, that xap is the unique almost pe-
riodic function in (Rn)Z+ satisfying (4.1) and such
that (vap, xap) ∈ B, completing the proof of state-
ment (i).

We proceed to prove statement (ii). To this end,
note that the almost periodic extension xape of xap

to Z is bounded. We shall now show that xape sat-
isfies (4.2). To this end, note that since Λ1x

ap
e is

the almost periodic extension of Λ1x
ap, we hence

see that Λ1x
ap
e is also the almost periodic exten-

sion of Axap + Bf(Cxap) + vap. Moreover, since
xape is almost periodic and f is (globally) Lips-
chitz, f(Cxape ) is almost periodic and, consequently,
Axape + Bf(Cxape ) + vape is also an almost periodic
extension of Axap +Bf(Cxap)+vap. Hence, by the
uniqueness of almost periodic extensions,

Λ1x
ap
e = Axape +Bf(Cxape ) + vape ,

that is, xape is a solution of (4.2).

To show that xape is the unique bounded solution
of (4.2) on Z, let x̃ ∈ (Rn)Z be another bounded
solution of (4.2). Let R > 0 be such that

‖xape ‖`∞ + ‖x̃‖`∞ + ‖vape ‖`∞ ≤ R,

and apply Theorem 3.2 to obtain the existence of
ψ ∈ KL and φ ∈ K such that (3.1) holds for all
(vi, xi) ∈ B with ‖xi(0)‖ + ‖vi‖`∞ ≤ R, i = 1, 2.
Let ε > 0 and t ∈ Z and choose τ ∈ Z such that
τ ≤ t and

ψ(2R, t− τ) ≤ ε.

Now, since the restrictions of (Λτv
ap
e ,Λτx

ap
e )

and (Λτv
ap
e ,Λτ x̃) to Z+ are in B and satisfy

‖(Λτxape )(0)‖+ ‖(Λτ x̃)(0)‖+ ‖Λτvape ‖`∞ ≤ R, (3.1)

guarantees that

‖xape (t)− x̃(t)‖ = ‖(Λτxape )(t− τ) + (Λτ x̃)(t− τ)‖
≤ ψ(‖xape (τ)− x̃(τ)‖, t− τ)

≤ ψ(2R, t− τ) ≤ ε.

Since ε was arbitrary, we see that xape (t) = x̃(t) and,
since t was also arbitrary, it follows that xape = x̃,
completing the proof.

From Lemma 4.5 and Theorem 4.3 we obtain the
following corollary which states that, under the as-
sumptions of Theorem 3.2, the Lur’e system (2.2)
has the CICS property.

Corollary 4.6. Imposing the assumptions of The-
orem 3.2, let v∞ ∈ Rn be given, and let x∞ be
as in statement (ii) of Lemma 4.5. Then, for all
(v, x) ∈ B with limt→∞ v(t) = v∞, it follows that
limt→∞ x(t) = x∞.

Remark 4.7. (i) Corollary 4.6 is a discrete-time
version of continuous-time results in [5]. The incre-
mental ISS methodology used here to obtain Corol-
lary 4.6 is quite different to that invoked in [5].

(ii) It may appear that x∞ and y∞ in Lemma 4.5
depend on the choice of K. But this is not the
case, as follows from Corollary 4.6, or from a purely
“algebraic” argument based on condition (3.2). ♦

Under the assumptions of Theorem 3.2, consider
the (non-autonomous) system

z(t+ 1) = g(t, z(t)), (4.6)

where g(t, ξ) := Aξ +Bf(Cξ) + v(t) for all (t, ξ) ∈
Z× Rn and v ∈ AP (Z,Rn). For (t0, x

0) ∈ Z× Rn,
we denote the solution to (4.6) with initial state x0

at time t0 by x(· ; t0, x0). Theorem 4.3 yields the
existence of a unique bounded solution xb ∈ (Rn)Z

of (4.6). If we now apply Theorem 3.2 and use
methods similar to those employed in the proof of
statement (ii) of Theorem 4.3, we obtain that for
all R > 0, there exists ψ ∈ KL such that, for all
(t0, x

0) ∈ Z× Rn with ‖x0‖ ≤ R,

‖x(t; t0, x
0)− xb(t)‖ ≤ ψ(‖x0 − xb(t0)‖, t− t0)

∀ t ∈ Z, t ≥ t0.

This shows that (4.6) satisfies a semi-global version
of the definition of a uniformly convergent system
given in [25].
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We conclude this section with a brief comparison
of Theorem 4.3 to related results in the literature.
The most relevant results in this context are [26,
Theorem 1] and [35, Theorem 1], both of which
consider continuous-time systems and are restricted
to ‘scalar’ nonlinearities, that is, m = p = 1. A
state-space and Lyapunov approach is used in [35],
whilst the analysis in [26] is based on input-output
methods. A careful inspection of the assumptions
imposed in [26, Theorem 1] and [35, Theorem 1]
shows that, in each case, they are equivalent to the
existence of a δ > 0 such that

|f(ξ+ζ)−f(ζ)−kξ| ≤ (r−δ)|ξ| ∀ ξ, ζ ∈ R, (4.7)

where r = 1/‖Gk‖H∞ and k is a suitable stabilizing
scalar real gain. Note that (4.7) is simply the scalar
version of (3.5) and we conclude that the assump-
tions required in [26, Theorem 1] and [35, Theorem
1] are considerable more restrictive than those im-
posed in Corollary 4.3, cf. statements (iii) and (iv)
of Remark 3.3. Finally, we note that neither [26]
nor [35] addresses the relationship between the al-
most periods of the almost peridic forcing vap and
its corresponding almost periodic state trajectory
xap.

5. An example

We consider a simple system for which the hypothe-
ses of Theorem 3.2 hold, but not the (stronger) as-
sumptions of [13, Theorem 3.2]. This latter result
guarantees exponential incremental input-to-state
stability of (2.2).

Example 5.1. Consider the Lur’e system (2.2)
with

A :=
1

2

 2 1 0
−1 1 1
1 0 0

 , B :=

0
0
1


and C = (1, 0, 0), and f : R→ R given by

f(ξ) :=
1

2
sign(ξ) ln(1 + |ξ|) ∀ ξ ∈ R.

It is easy to check that A is Schur, that

G(z) =
1/4

(z − 1/2)3
,

and further, that

|G(z)| ≤ 2 = |G(1)| ∀ z ∈ {λ ∈ C : |λ| ≥ 1}.

We hence deduce that

‖G‖H∞ = |G(1)| = 2.

Moreover, it can easily be verified that (A) holds.
Since f ′(0) = 1/2, it is also clear that there does
not exist δ > 0 such that

|f(ξ + ζ)− f(ζ)| ≤ (1/2− δ)|ξ| ∀ ξ, ζ ∈ R, (5.1)

that is, f does not satisfy the assumptions of [13,
Theorem 3.2]. However, since f is continuously dif-
ferentiable with

f ′(0) =
1

2
and f ′(ξ) ∈ (0, 1/2) ∀ ξ ∈ R\{0},

[5, Lemma 4.9] yields that (3.2) holds with K = 0
and r = 1/2. Finally,

1

2
|ξ| − |f(ξ)| → ∞ as |ξ| → ∞

and so (3.3) is satisfied with K = 0, r = 1/2 and
η = 0. Therefore, Theorem 3.2 gives that (2.2)
is semi-globally incrementally input-to-state sta-
ble. Moreover, Lemma 4.5 yields that (2.2) has the
CICS property and, from Theorem 4.3, we obtain
that asymptotically almost periodic inputs generate
asymptotically almost periodic state trajectories.

We comment that the nonlinearity f is a modifica-
tion of that found in [5, Example 4.12], and does
not satisfy (5.1) for ζ = 0 as ξ → 0. It is easy
to find other examples of functions which instead
do not satisfy (5.1) at infinity, that is, there exists
ζ ∈ R,

1

|ξ|
|f(ξ + ζ)− f(ζ)| → 1

2
as |ξ| → ∞,

but do satisfy (3.2) and (3.3). ♦
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