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Low-Gain Integral Control for Multi-Input Multioutput Linear Systems
With Input Nonlinearities

Chris Guiver, Hartmut Logemann, and Stuart Townley

Abstract—We consider the inclusion of a static antiwindup com-
ponent in a continuous-time low-gain integral controller in feedback
with a multi-input multi-output stable linear system subject to an
input nonlinearity (from a class of functions that includes compo-
nentwise diagonal saturation). We demonstrate that the output of
the closed-loop system asymptotically tracks every constant refer-
ence vector, which is “feasible” in a natural sense, provided that
the integrator gain is sufficiently small. Robustness properties of
the proposed control scheme are investigated and three examples
are discussed in detail.

Index Terms—Antiwindup methods, constrained control, robust
control, stability of nonlinear (NL) systems.

I. INTRODUCTION

Integral control is a classical control engineering technique for ro-
bustly regulating the measured variables of a stable linear system to
a prescribed constant reference. The theoretical development of low-
gain integral control can be traced back to the 1970s and contributors
include [1]–[5]. Integral control is one of the three facets of celebrated
PID control, which has been described as one of the “success stories in
control” [6, p. 103].

Low-gain integral control of continuous-time, stable linear systems
pertains to the situation whereby the transfer function G of the system
is connected in series, as depicted in Fig. 1, with an integrator gK/s,
where the matrix K and the positive scalar gain g are design parameters.

The resulting closed-loop system is known to be globally exponen-
tially stable if: 1) −KG(0) is a Hurwitz matrix, and 2) the gain g > 0
is sufficiently small, in which case the output of the closed-loop system
asymptotically tracks every constant reference r.

Low-gain integral control has been further developed by the authors
present in, for example, [7]–[10], to address discrete-time systems,
sampled-data systems, classes of distributed parameter systems, to al-
low the gain parameter g to be determined adaptively, and to include
input and output nonlinearities. One situation not addressed to date is
low-gain integral control for multi-input multi-output (MIMO) systems
in the presence of input nonlinearities (such as saturation).

It is known that input saturation may lead to an undesirable degrada-
tion of tracking performance of MIMO integral controlled systems,
or even destabilize them: a phenomenon often called integrator
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Fig. 1. Block diagram of a low-gain integral control scheme. Here u, y,
and r denote the input, output, and reference signal, respectively.

windup [11]. Integrator windup is a consequence of basing controller
design on the assumption of linearity, when in reality input saturation is
an archetypal nonlinear effect. Antiwindup control refers to the study of
mechanisms to alleviate or remove integrator windup and, owing to its
importance in applications, is a well-studied topic. The chronological
bibliography of the 1995 paper [12] contains already 250 references,
for instance. We refer the reader to the tutorial [13], survey [14], or
monograph [15] and the references therein for a thorough overview
of antiwindup control. Briefly, as described, many antiwindup mecha-
nisms are designed under the assumption that the unsaturated system
has the desired closed-loop stability and performance properties and
an antiwindup compensator is subsequently included—a static or dy-
namical system driven by the error z − φ(z), where z is the state or
output of the controller and φ denotes the input nonlinearity.

We present a low-gain integral controller that includes a (direct linear,
in the terminology of [13]) antiwindup component and prove that, for
a large class of input nonlinearities, it achieves global exponential
tracking for all feasible references provided that the integrator gain is
sufficiently small. The class of nonlinearities is assumed to satisfy a
global Lipschitz type assumption. The antiwindup component contains
a matrix parameter that is required to be close, in a sense to be described,
to the matrix KG(0), and does not require the solution of a linear
matrix inequality (LMI). We recall that if the steady-state gain G(0)
is subject to uncertainty, then estimates of G(0) can be obtained by
step-response experiments (see, for example, [16] or [17]). Integrator
windup is particularly acute in the low-gain integral control of MIMO
systems as issues arise that are absent from single-input single-output
systems (SISO) systems, see Remark 11 and Example 12. Further, we
emphasize that the SISO case is well studied, and [18]–[21] all propose
solutions that do not include antiwindup components.

The closed-loop feedback system under consideration in the paper
can be rewritten in form of a Lur’e system, and we invoke absolute
stability arguments to derive our results. The reader is referred to, for
example, [22]–[25], for more background on Lur’e systems and ab-
solute stability theory. We demonstrate that the closed-loop system
has several robustness properties: with respect to uncertainty in G(0)
and with respect to additive disturbances. To establish the latter, we
make use of recent input-to-state-stability (ISS) results for Lur’e sys-
tems [26]. Additional background on ISS may be found in [27] or [28].

Finally, the results reported here extend, generalize and refine those
in [29] where, in the context of ecological management, low-gain PI
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control of linear discrete-time positive systems (see, for example, [30]
and [31]) subject to input saturation is considered.

Notation and Terminology: The space of all rational p × m-matrices
that are bounded on the half-plane Re s > 0 is denoted by H∞, en-
dowed with the sup norm given by

‖H‖∞ := sup
Re s> 0

‖H(s)‖ = sup
s∈iR

‖H(s)‖

where ‖ · ‖ is the operator norm induced by the two-norm. As usual,
a square complex matrix M is said to be Hurwitz if every eigenvalue
of M has a negative real part. We let rk M denote the rank of M . The
symbol Iq denotes the q × q identity matrix, although the subscript
shall be omitted when the dimension is clear from the context. Finally,
for a function f : Rp → Rm and a set S ⊆ Rm , f−1 (S) denotes the
preimage of S under f , that is, f−1 (S) = {z ∈ Rp : f (z) ∈ S}. If
S = {s} is a singleton, then we write f−1 (s) := f−1 ({s}) = f−1 (S).
Finally, for a vector v, vk denotes the kth component of v.

II. LOW-GAIN INTEGRAL CONTROL WITH INPUT NONLINEARITIES

We focus on the linear control system with input nonlinearity

ẋ = Ax + Bφ(u), x(0) = x0 , y = Cx (1)

where A ∈ Rn×n is Hurwitz, B ∈ Rn×m , C ∈ Rp×n , and φ : Rm →
Rm is locally Lipschitz continuous. As usual, x and y denote the state
and output variables, respectively, whereas u is the control signal. There
are m, n, and p input, state, and output variables, respectively. We let G
denote the transfer function of the linear system specified by the triple
(A, B, C), that is, the matrix-valued function of the complex variable
s given by G(s) := C(sI − A)−1B.

We seek to apply low-gain integral control to (1), with the aim that
the output y(t) converges to a prescribed constant reference vector
r ∈ Rp as t → ∞. We say that r is feasible, if the set

Ur := {w ∈ Rm : G(0)φ(w) = r}
is nonempty. Obviously, if m = p and G(0) is invertible, then Ur =
φ−1 (G(0)−1r). If the control signal u in (1) is such that φ(u) has a
limit λ, that is, φ(u(t)) → λ as t → ∞, then, as A is Hurwitz, it is well
known that for any initial state x0 the output y of (1) has limit

lim
t→∞

y(t) = G(0) lim
t→∞

φ(u(t)) = G(0)λ.

Trivially, if r is feasible, then there exists a control signal u such that
y(t) → r (for example, u(t) ≡ w with w ∈ Ur ). On the other hand, if r
is not feasible, then there does not exist a bounded u such that φ(u(t))
converges and y(t) → r as t → ∞. Moreover, under the additional
assumption that m = p and G(0) is invertible, then, if r is not feasible,
y(t) does not converge to r whenever the control signal u is bounded.

We say that a set R ⊆ Rp of reference vectors is feasible if every r ∈
R is feasible. Given a feasible set R ⊆ Rp , we introduce the following
assumption:

(F) there exists L > 0 such that

‖φ(w + w̃) − φ(w̃)‖ ≤ L‖w‖ ∀w ∈ Rm ∀ w̃ ∈
⋃

r∈R

Ur .

Assumption (F) is certainly satisfied if φ is globally Lipschitz with
Lipschitz constant L.

A function φ : Rm → Rm with components φi is called diagonal if,
for all i = 1, 2, . . . , m and all v ∈ Rm

φi (v) = φi (Piv) , where (Piv)j :=

{
vi j = i

0 j 
= i .

Fig. 2. Graph of the saturation function satV defined in (2), here with
v1 < 0 < v2 .

The next example illustrates the feasibility property for the familiar
diagonal saturation function.

Example 1: For given v1 < v2 , set V := {v1 , v2} and define the
function satV by

satV : R → R, satV (w) := max
{
v1 , min

{
w, v2}} (2)

illustrated in Fig. 2. The diagonal saturation function sat is defined as
follows:

sat : Rm → Rm , sat(w) :=
[
satV 1 (w1 ), . . . , satVm (wm )

]T
(3)

for Vk := {v1
k , v2

k }, k = 1, . . . , m. Clearly, the set

R := {G(0)w : v1
k ≤ wk ≤ v2

k , k = 1, . . . , m} (4)

is feasible, and, since

R = {G(0)sat(w) : w ∈ Rm }
R is the maximal feasible set. Furthermore, it is straightforward to see
that sat satisfies (F) with L = 1. �

Our second example contains a saturation function that satisfies (F)
but is not diagonal.

Example 2: For fixed θ > 0, the function ρ : Rm → Rm defined by

ρ(v) :=

{
v ‖v‖ ≤ θ

θ v
‖v ‖ ‖v‖ > θ

satisfies (F) with L = 1 (crucially using that ‖ · ‖ is the two-norm).
Note that for general norms on Rm (not considered here), ρ satisfies
(F) with L ∈ [1, 2] and the upper bound 2 may be achieved. The set

R := {G(0)w : w ∈ Rm , ‖w‖ ≤ θ}
is the maximal feasible set. �

Given the control system (1) and a feasible set R ⊆ Rp , let r ∈ R
and consider the control law

u̇ = gK(r − y) − gΓ
(
u − φ(u) − ur + φ(ur )

)
(5)

where g > 0, K ∈ Rm ×p , and Γ ∈ Rm ×m are design parameters and

ur ∈ Ur . (6)

The assumption that R ⊆ Rp is feasible implies that Ur is nonempty
and hence (6) is meaningful. Note that if Γ = 0 or φ = id, the identity
function, then (5) reduces to “pure” integral control. Of course, in
the case φ = id, the control system (1) is in fact linear. The term
gΓ
(
w − φ(w) − ur + φ(ur )

)
is the so-called antiwindup component

of the controller.
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In the following, we will focus on the analysis of the feedback
interconnection of (1) and (5):

ẋ = Ax + Bφ(u), y = Cx

u̇ = gK(r − y) − gΓ
(
u − φ(u) − ur + φ(ur )

)

x(0) = x0 , u(0) = u0 .

⎫
⎪⎪⎬

⎪⎪⎭
(7)

Remark 3: Finding ur satisfying (6) requires knowledge of G(0),
in general. However, in numerous applications, this knowledge is not
required. For instance, when φ = sat, the saturation nonlinearity in (3),
and R is given by (4), then, for every r ∈ R, there exists ur ∈ Ur

such that φ(ur ) = ur and so −ur + φ(ur ) = 0 in (5). We note that in
this case, (7) may be placed in the antiwindup framework as presented
in [13] with static antiwindup dynamics. �

The following result is the main contribution of this note.
Theorem 4: Given the closed-loop integral control system (7) with

feasible R ⊆ Rp , assume that
(a) A is Hurwitz;
(b) −Γ is Hurwitz; and
(c) (F) holds.

Then, for all g > 0, r ∈ R, ur ∈ Ur , and (x0 , u0 ) ∈ Rn × Rm ,
there exists a unique solution (x, u) of (7) defined on R+ .
Furthermore, if

sup
s∈iR

∥∥(sI + Γ)−1
∥∥ · ‖Γ − KG(0)‖ < 1/L (8)

then there exists g∗ > 0 such that, for all g ∈ (0, g∗), r ∈ R, ur ∈ Ur ,
and (x0 , u0 ) ∈ Rn × Rm , the solution (x, u) of (7) satisfies
(C1) u(t) → ur ;
(C2) x(t) → −A−1Bφ(ur );
(C3) y(t) = Cx(t) → r; and
(C4) ẋ(t) → 0

as t → ∞, and the rates of convergence are exponential.
Remark 5: At first glance, the hypotheses of Theorem 4 place very

few constraints on m, p, and KG(0). However, assuming that hypothe-
ses (a)–(c) and inequality (8) are satisfied, it follows that for nonlinear-
ities φ with L ≥ 1 (which is the case for the diagonal and nondiagonal
saturation functions in Examples 1 and 2, respectively)

‖Γ − KG(0)‖ <
ρ

L
≤ ρ (9)

where ρ := 1/ sups∈iR ‖(sI + Γ)−1‖. Now ρ is the (unstructured)
complex stability radius (see [32]) of the Hurwitz matrix −Γ, and
thus, since −KG(0) = −Γ + (Γ − KG(0)), it follows from (9) that
−KG(0) is Hurwitz. In particular, if (a)–(c) are satisfied and L ≥ 1,
then rk G(0) = m (implying that p ≥ m) is a necessary condition
for (8) to hold. The assumption rk G(0) = p, and thus necessarily
m ≥ p, is typically made in output regulation problems so that in
the unsaturated case (φ = id) every reference vector in Rp is feasi-
ble; see for instance [35]. Our results do not apply when L ≥ 1 and
m > p. �

The proof of Theorem 4 is based on Lemma 6, stated and proven in
the following.

Lemma 6: Given (A, B, C) as in (1) with A Hurwitz, and trans-
fer function G, let K ∈ Rm ×p , Γ ∈ Rm ×m and assume that −Γ is
Hurwitz. For g > 0 define

A :=

[
A 0

−gKC −gΓ

]
, B :=

[
B

gΓ

]
, C :=

[
0 I

]
(10)

and let G denote the transfer function of the triple (A,B, C). Then,
G ∈ H∞ for every g > 0. Moreover, for each ε > 0, there exists g∗ > 0

such that for all g ∈ (0, g∗)

‖G‖∞ ≤ ε + sup
s∈iR

∥∥(sI + Γ)−1
∥∥ · ‖Γ − KG(0)‖ . (11)

Proof: The matrices A and −gΓ for g > 0 are Hurwitz by assump-
tion, so that A in (10) is clearly Hurwitz. Hence, G ∈ H∞ for all g > 0.
An elementary calculation shows that

G(s) = g(sI + gΓ)−1 (Γ − KG(s))

and so

G = G1 + G2 (12)

where G1 and G2 are given by

G1 (s) := g(sI + gΓ)−1K
(
G(0) − G(s)

)

G2 (s) := −g(sI + gΓ)−1(KG(0) − Γ
)
.

Since −gΓ is Hurwitz for g > 0 and G ∈ H∞, it is clear that G1 ,G2 ∈
H∞. To prove (11), let ε > 0 be given. We proceed to estimate ‖G1‖∞
and ‖G2‖∞. Since −Γ is Hurwitz it follows that there exists M > 0
such that

∥∥(I + zΓ)−1
∥∥ ≤ M ∀ z ∈ iR . (13)

Next, define J ∈ H∞ by

J(s) :=

{
1
s
K
(
G(s) − G(0)

)
s 
= 0

KG′(0) s = 0

where G′(0) denotes the derivative of G at s = 0. Let s ∈ iR. If s 
= 0,
we use (13) to estimate

‖G1 (s)‖ ≤ g
∥∥∥(I + (g/s)Γ)−1

∥∥∥ · ‖J(s)‖ ≤ gM‖J‖∞.

Since G1 (0) = 0, it follows that

‖G1‖∞ ≤ gM‖J‖∞
and thus, setting g∗ := ε/(M‖J‖∞) > 0, we conclude that

‖G1‖∞ ≤ ε ∀ g ∈ (0, g∗). (14)

To estimate ‖G2‖∞, we note that

G2 (s) = −((s/g)I + Γ
)−1(

KG(0) − Γ
)

and hence obtain, for every g > 0

‖G2‖∞ ≤ sup
s∈iR

∥∥(sI + Γ)−1
∥∥ · ∥∥KG(0) − Γ

∥∥. (15)

Combining (12), (14), and (15) yields (11), completing the proof. �
Proof of Theorem 4 Note that by hypothesis (F), the nonlinearity

φ is affinely linearly bounded, and thus, by [33, Proposition 4.12], it
follows that, for all g > 0, r ∈ R, ur ∈ Ur , and all (x0 , u0 ), the unique
maximally defined solution (x, u) of (7) exists on R+ .

Let r ∈ R and ur ∈ Ur and set

z := x + A−1Bφ(ur ) and v := u − ur . (16)

Then

ż = ẋ = Ax + Bφ(u) = Az + B
[
φ(v + ur ) − φ(ur )

]

= Az + Bφu r (v) (17)

where φu r : Rm → Rm is defined by

φu r (w) := φ(w + ur ) − φ(ur ) ∀w ∈ Rm . (18)
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Furthermore

v̇ = u̇ = gK(r − Cx) − gΓ
[
u − φ(u) − ur + φ(ur )

]

= −gKCz − gΓ
[
v − φu r (v)

]
(19)

where we have used that r = G(0)φ(ur ) = −CA−1Bφ(ur ). We re-
cast (17) and (19) as

[
ż

v̇

]
=

[
A 0

−gKC −gΓ

][
z

v

]
+

[
B

gΓ

]
φu r (v)

= A
[

z

v

]
+ Bφu r

(
C
[

z

v

])
(20)

where A, B, and C are as in (10). By (F), the nonlinearity φu r satisfies

‖φu r (w)‖ ≤ L‖w‖ ∀ w ∈ Rm . (21)

Invoking (8), it is clear that there exists ε > 0 such that

ε + sup
s∈iR

∥∥(sI + Γ)−1
∥∥ · ‖Γ − KG(0)‖ < 1/L .

Combining this with Lemma 6, we see that there exists g∗ > 0 such
that, for all g ∈ (0, g∗)

‖G‖∞ ≤ ε + sup
s∈iR

∥∥(sI + Γ)−1
∥∥ · ‖Γ − KG(0)‖ < 1/L . (22)

Let g ∈ (0, g∗). The claims (C1)–(C3) follow once the zero equilibrium
of the Lur’e system (20) is shown to be globally exponentially stable
which in turn follows from (21) and (22) and an absolute stability
result, such as [32, Corollary 5.6.50] or [34, Th. 5 (iii)] (while the latter
result is for SISO systems, it is not difficult to show that it extends to the
MIMO case). To establish (C4 ), we note that ẋ = ż = Az + Bφu r (v)
and use (C1), (C2), (17), and (21) to obtain that, for all t ≥ 0

‖ẋ(t)‖ ≤ ce−γ t
(‖z(0)‖ + ‖v(0)‖)

for suitable positive constants c > 0 and γ, as required. �
We continue with some remarks on Theorem 4, particularly the

existence of a suitable matrices K and Γ.
Remark 7:

i) Recall from Remark 5 that p ≥ m and rk G(0) = m are necessary
conditions for (a)–(c) and (8) to hold (in the usual case that L ≥ 1).
The rank condition on G(0) implies that G(0) has a left inverse:
for example, (G(0)T G(0))−1G(0)T . Choosing K as any left
inverse of G(0) and Γ := KG(0) = I , ensures that (b) holds
and (8) is trivially satisfied for every L > 0. In the special case
that m = p and G(0) is invertible, then the above choices simplify
to K := G(0)−1 and Γ := I .

ii) Assume that the system (A, B, C) is subject to parametric un-
certainty, and that the “true” linear system is given by (Ã, B̃, C̃)
with Ã Hurwitz. If the “nominal” steady-state gain G(0) is such
that there exists K with −KG(0) Hurwitz and

sup
s∈iR

∥∥(sI + KG(0))−1
∥∥ · ‖K(G(0) − G̃(0)

)‖ < 1/L (23)

where G̃ is the transfer function of (Ã, B̃, C̃), then, with the choice
Γ = KG(0), it is guaranteed that the conclusions of Theorem 4
hold in the context of the “true” system (Ã, B̃, C̃). Assuming
that rk G(0) = m, and in light of part (i), choosing K as any left
inverse of G(0) and Γ := I , the condition (23) simplifies to

‖I − KG̃(0)‖ < 1/L (24)

which is certainly satisfied if

‖G(0) − G̃(0)‖ <
1

L‖K‖ . (25)

We comment that the estimate (25) may equivalently be formu-
lated as a ball condition (with center G̃(0) and known radius). To
summarize the above discussion, Theorem 4 applies to all plants
with (unknown) steady-state gain G̃(0) if the design of Γ and
K based on the (nominal) steady-state gain G(0) and G̃(0) is
sufficiently close in norm to G(0). In other words, the closed-
loop system (7) is locally robust with respect to uncertainty in the
steady-state gain, captured by the estimates (23)–(25).

iii) We comment further that it is possible to augment (7) with an
adaptation for the parameter g, replacing it by a dynamic variable
(in the spirit of [10]) and obviating the requirement that it is chosen
“sufficiently small.” The conclusions of Theorem 4 may still be
shown to hold, although a formal statement and proof of this claim
is beyond the scope of the present note. �

Theorem 4 can be applied to the problem of regulating the output of
a stable linear control system to a prescribed constant reference vector
in the presence of input constraints. To this end, consider the linear
system

ẋ = Ax + Bv, x(0) = x0 , y = Cx (26)

where A ∈ Rn×n is Hurwitz, B ∈ Rn×m , and C ∈ Rm ×n , together
with the control objective of asymptotic tracking of constant reference
vectors subject to the input constraint v(t) ∈ V ⊂ Rm for all t ≥ 0,
where V := [v1

1 , v2
1 ] × · · · × [v1

m , v2
m ]. This problem has been studied

in [35], where a solution is proposed that determines v in (26) adap-
tively. We will show that Theorem 4 provides an alternative solution.

To that end, let r ∈ G(0)V , where G denotes the transfer function
matrix of (26). Defining sat as in Example 1, it follows from Theorem 4
that the control objective is achieved by the control law

v = sat(u), u̇ = gK(r − y) − gΓ
(
u − sat(u)

)

provided that −Γ is Hurwitz, the estimate

sup
s∈iR

∥∥(sI + Γ)−1
∥∥ · ‖Γ − KG(0)‖ < 1 (27)

holds and g > 0 is sufficiently small. Recall from Remark 7 that if K
is equal to a left inverse of G(0) (requiring that rk G(0) = m) and
Γ = I , then (27) holds.

Compared to [35], the controller proposed here is much simpler
and easier to implement, particularly in the (high dimensional) MIMO
case. However, more information—namely, of the steady-state gain
G(0) and a sufficiently small gain g—is required. We emphasize that
the problems considered here and in [35] are related, but not identical,
as we permit nondiagonal as well as unbounded input nonlinearities.

We next show that, under the assumptions of Theorem 4, the equi-
librium (−A−1Bφ(ur ), ur ) of the system (7) is ISS with respect to
additive disturbances. We refer the reader to [27] and [28] for a detailed
discussion of ISS.

Proposition 8: Consider the closed-loop system

ẋ = Ax + Bφ(w) + d1 , y = Cx + d2

ẇ = gK(r − y) − gΓ(w − φ(w) − ur + φ(ur )) + d3

x(0) = x0 , u(0) = u0

⎫
⎪⎪⎬

⎪⎪⎭
(28)

where r ∈ R for feasible R ⊆ Rp , ur ∈ Ur , d1 ∈ L∞
loc(R+ ; Rn ), d2 ∈

L∞
loc(R+ ; Rp ), and d3 ∈ L∞

loc(R+ ; Rm ). Assume that A and −Γ are
Hurwitz and (F) holds. Then, if (8) is satisfied, there exists g∗ > 0
such that for all g ∈ (0, g∗), there exist constants c1 , c2 , γ > 0 such
that for all (x0 , u0 ) ∈ Rn × Rm , all r ∈ R and all d1 , d2 , d3 ∈ L∞

loc,
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the solution (x, u) of (28) and the output y satisfy
∥∥∥∥∥∥∥∥

⎡

⎢⎢⎣

x(t) + A−1Bφ(ur )

u(t) − ur

y(t) − r

⎤

⎥⎥⎦

∥∥∥∥∥∥∥∥
≤ c1e

−γ t

∥∥∥∥∥

[
x0 + A−1Bφ(ur )

u0 − ur

]∥∥∥∥∥

+ c2

3∑

j=1

‖dj ‖L∞(0 , t) ∀ t ≥ 0 . (29)

Proof: Let K ∈ Rm ×p , Γ ∈ Rm ×m , and assume that −Γ is Hur-
witz and (8) holds. Defining the variables z and v as in (16) and setting

ζ :=

[
z

v

]
, Be :=

[
I 0 0

0 −gK I

]
, and d :=

⎡

⎢⎢⎣

d1

d2

d3

⎤

⎥⎥⎦

the system (28) may be rewritten as

ζ̇ = Aζ + Bφu r (Cζ) + Bed (30)

where (A,B, C) and φu r are given by (10) and (18), respectively.
Equation (30) is a Lur’e system with additive forcing. The assumptions
of Theorem 4 are satisfied and so there exists g∗ > 0 such that, for
all g ∈ (0, g∗), (22) holds. Now, by (F), (21) is also satisfied, and
consequently, the claim follows from [26, Th. 3.2 and comment after
the proof of Th. 3.2]. �

Remark 9: In the undisturbed case (di = 0 for i = 1, 2, 3),
(−A−1Bφ(ur ), ur ) is an equilibrium of system (28). Proposition 8
implies that this equilibrium is ISS (with respect to d1 , d1 , and d3 ).
In particular, the tracking error is “small” for “small” disturbances.
An important consequence of Proposition 8 is that “small” uncertain-
ties in φ and ur [both quantities appear on the right-hand side of the
control law (5)] will cause only a small deterioration of the tracking
performance. �

III. EXAMPLES

In the absence of an input nonlinearity (that is, φ = id), the control
law (5) reduces to

u̇ = gK(r − y), u(0) = u0 (31)

and it is well known that if A and −KG(0) are Hurwitz, then, for
all sufficiently small g > 0, the integrator (31) in feedback connection
with (1) achieves asymptotic tracking for all initial conditions (x0 , u0 )
and all r in the image of G(0). In Example 10 given below, we construct
an example that demonstrates that this in general is not true when an
input nonlinearity is present.

Example 10: Consider (1) with

A = −I4 , B = C = I4 , φ = sat (32a)

where sat is as in Example 1 with saturation bounds given by

V1 := {0, 300}, V2 := {0, 300}
V3 := {0, 356}, V4 := {137, 300}.

}
(32b)

Evidently A is Hurwitz and G(0) = I4 . We choose

K :=

⎡

⎢⎢⎢⎢⎣

23 20 18 17

23 26 29 26

56 56 62 68

−90 −90 −96 −97

⎤

⎥⎥⎥⎥⎦
(32c)

Fig. 3. Simulation: low-gain controller (7) applied to model data (32).
(a) State variables. (b) Saturated inputs in solid lines, inputs in dashed-
dotted lines, and saturation bounds in dashed lines. In both panels,
dotted lines indicate the limits.

which has the property that −KG(0) = −K is Hurwitz. The reference
vector

r := 200
[
1 1 1 1

]T
(32d)

is feasible since it trivially satisfies r = G(0)r = G(0)sat(r). Defining

u0 :=
[
291 8.5 357 136

]T
and x0 := sat(u0 ) (32e)

we note that u0
3 > 356 = v2

3 and u0
4 < 137 = v1

4 . Now

r − sat(u0 ) =

⎡

⎢⎢⎢⎢⎣

200

200

200

200

⎤

⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎣

291

8.5

356

137

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

−91

191.5

−156

63

⎤

⎥⎥⎥⎥⎦

and a calculation shows that, for every g > 0

gK(r − Cx0 ) = gK(r − sat(u0 )) = g

⎡

⎢⎢⎢⎢⎣

0

0

240

−180

⎤

⎥⎥⎥⎥⎦
. (33)

Furthermore, we have that

Ax0 + Bsat(u0 ) = −x0 + sat(u0 ) = 0 . (34)

Defining (x, u) by

x(t) := x0 = sat(u0 ), u(t) = u0 + gt

⎡

⎢⎢⎢⎢⎣

0

0

240

−180

⎤

⎥⎥⎥⎥⎦
∀ t ≥ 0

we see that sat(u(t)) = sat(u0 ) for all t ≥ 0 and therefore it follows
from (33) and (34) that (x, u) solves the integral control system given
by (1) and (31). Consequently, the feedback systems is unstable for any
choice of g > 0. In particular, y(t) 
→ r as t → ∞. We conclude that, in
the presence of input nonlinearities, the “pure” integral controller (31)
does not guarantee asymptotic tracking (actually, may fail to achieve
global stability).

We now apply the controller (7) to the model data (32) with Γ =
KG(0) = K . Theorem 4 then guarantees convergence of y(t) to r for
all sufficiently small integrator gains g. Fig. 3 contains the resulting
simulation for g = 0.027. We see that, although the performance is
somewhat sluggish (not unexpected because the K matrix has been
chosen rather “badly”), the inputs and states (the latter are equal to the
outputs) converge and the states track the reference. �
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Fig. 4. Simulations of the low-gain integral control systems from Ex-
ample 12. The dotted lines denote reference values and the limits of
the saturated inputs. In each panel, the solid and dashed-dotted lines
correspond to the controllers (31) and (7), respectively. (a) Outputs and
reference components. (b) Saturated inputs and saturation limits.

Remark 11: When φ = sat and A and −KG(0) are Hurwitz, then
the equilibrium (−A−1Bφ(ur ), ur ) of the low-gain integral control
feedback system (1) and (31) is known to be locally asymptotically
stable for every feasible r and all sufficiently small g > 0. Under
the additional assumptions that KG(0) is symmetric, the equilibrium
is globally asymptotically stable (this can be proved using absolute
stability arguments and [36, Proposition 3.9]). However, the symme-
try assumption is extremely nonrobust to parametric uncertainty in
G(0) and hence is unrealistic (except in the SISO case, where it holds
trivially). Finally, note that in Example 10, the matrix KG(0) is not
symmetric. �

The next example relates to Remark 11. We provide a simulation that
illustrates the fact that if KG(0) is symmetric, then a “pure” integral
controller does achieve asymptotic tracking for all sufficiently small
g > 0. The example also shows that the rate of convergence may be
worse than that obtained by using the integral/antiwindup controller (7).

Example 12: Consider (1) with

A =

[−2 1

1 −2

]
, B = C = I2 (35a)

and where φ : R2 → R2 is the nondiagonal saturation function from
Example 2 with θ = 2 (and the usual Euclidean two-norm). Note that
φ satisfies (F) with L = 2. It is readily verified that A is Hurwitz with
A = AT and B = C = CT , so that

−G(0) = CA−1B = A−1 = −1
3

[
2 1

1 2

]

is Hurwitz and symmetric. Consider the data

r =

[
0.75

0

]
, u0 =

[
5

−5

]
, x0 =

[
0

0

]
(35b)

and note that r is feasible since r = G(0)ur = G(0)φ(ur ), where

ur =
[
1.5 −0.75

]T
. Finally, we choose K = I , g = 1, and Γ =

G(0). Fig. 4 shows simulations of the closed-loop dynamics generated
by the integral controller (31) and controller (7) with antiwindup com-
ponent. We observe that the rate of convergence of the saturated inputs
and outputs is faster for the latter: in light of Fig. 4(b), the closed-loop
dynamics “spend less time” at the saturation bounds than in the “pure”
integral control scenario. �

Example 13: As a final illustrative example of the theory presented,
consider the electrical circuit depicted in Fig. 5 with two inductors,
two resistors, a single capacitor, and two external voltage sources.

For k = 1, 2, let Lk and iL k
denote the inductance and current,

respectively, of the kth inductor, and let Ca and vC a denote the

Fig. 5. Sample circuit diagram from Example 13.

capacitance and voltage across the capacitor, respectively. Let Rk de-
note the resistance of the kth resistor for k = 1, 2. We assume that the
voltage sources are subject to saturation.

Invoking Kirchoff’s Laws with state variables

x1 := L1 iL 1 , x2 := L2 iL 2 , x3 = Ca vC a

and input and output variables

u1 := v1 , u2 := v2 , y1 := iL 2 , y2 := vC a

leads to the MIMO control system of the form (1) with

A =

⎡

⎢⎢⎣

−R 1
L 1

0 1
C a

0 −R 2
L 2

1
C a

− 1
L 1

− 1
L 2

0

⎤

⎥⎥⎦, B = −

⎡

⎢⎢⎣

1 0

0 1

0 0

⎤

⎥⎥⎦

C =

[
0 1

L 2
0

0 0 1
C a

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(36a)

and φ = sat, with saturation bounds Vk to be specified. A routine
calculation shows that the matrix A is Hurwitz for all Ca , L1 , L2 , R1 ,
R2 > 0.

For the following simulation, we assume that the actual parameter
values are unknown, but within 10% of the nominal values:

Ca = 3 × 10−3 F, L1 = 0.01 H, L2 = 0.05 H,

R1 = 1 Ω, R2 = 1.5 Ω .

}
(36b)

Let G denote the transfer function of the triple in (36a) with the nominal
values in (36b). As−G(0) has two eigenvalues both with real part equal
to −0.4, it is Hurwitz and so we choose K = I in (5) and Γ = KG(0).
With saturation bounds

V1 = {0, 7.5} and V2 = {−5, 7.5} (36c)

(units in volts) it follows from (4) that

R := {G(0)v : v1 ∈ [0, 7.5], v2 ∈ [−5, 7.5]}
is the maximal set of feasible references for the nominal system, and
is depicted in Fig. 6. The actual set of feasible references depends on
the uncertain “true” system. For

r :=

[−2

4

]
, u0 :=

[−1

4

]
, x0 := 0, and g := 2 (36d)

simulations of the dynamics generated by the integral/antiwindup con-
troller (7) are plotted in Fig. 7. We see that both the saturated inputs
and outputs converge and that the outputs track the reference. The sim-
ulation shown in Fig. 7 was performed by (pseudo)randomly drawing
parameter values from within 10% of the nominal values. A calculation
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Fig. 6. Maximal feasible region (shaded area) of the nominal electrical
circuit example (36) and reference (cross) r in (36d).

Fig. 7. Simulation: circuit example controlled by (7). (a) Outputs in solid
lines with dotted lines denoting reference components. (b) Saturated in-
puts in solid lines, the dash-dotted lines denote the unsaturated inputs for
comparison purposes, the dashed lines are selected saturation bounds,
and the dotted lines are the input limits.

shows that the nominal and “true” steady-state gains are given by

G(0) =
1

R1 + R2

[
1 −1

R2 R1

]
, G̃(0) =

1
R̃1 + R̃2

[
1 −1

R̃2 R̃1

]

respectively. It is readily verified that the estimate (23) holds with
L = 1, K = I , and Γ = G(0), for all R̃1 , R̃2 within 10% of the values
in (36b), ensuring that Theorem 4 holds. Note that in fact no knowledge
of Ca , L1 , or L2 is required, and the imposed bounds on the parameter
variation in R1 and R2 is sufficient to implement (7), meaning that
exact knowledge of G̃(0) is not required. �
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