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Abstract

We present a novel management methodology for restocking a declining population. The strategy

uses integral control, a concept ubiquitous in control theory which has not been applied to population

dynamics. Integral control is based on dynamic feedback– using measurements of the population

to inform management strategies and is robust to model uncertainty, an important consideration

for ecological models. We demonstrate from first principles why such an approach to population

management is suitable via theory and examples.
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1 Introduction

Regulation or management to a constant set–point is fundamental across the natural and man–made
world. Examples include the regulation of blood sugar by insulin (Saunders et al., 1998), bacterial
chemotaxis in living cells (Yi et al., 2000), calcium homeostasis (El-Samad et al., 2002), the regulation
of temperature in a central heating system (Haines and Hittle, 2003) or the navigation of a supertanker
across stormy seas (Källström et al., 1979; Åström, 1980). Such examples span a huge range of time and
length scales. In conservation management or pest control, population managers would aim to regulate
the population to a desired density. A key feature in all of these applications is that set–point regulation
must be robust to parametric uncertainty and observation errors. So how is such robust set–point
regulation achieved? Yi et al. (2000) argue that the robustness of many homeostatic mechanisms must
use integral control. Integral control is a simple yet powerful technique developed by control engineers,
and is one component of a family of so–called PID – P for proportional, I for integral and D for derivative
– controllers. PID controllers are used widely in industrial processes (Åström and Hägglund, 1995)
and have been described as one of the “Success Stories in Control” (Samad and Annaswamy, 2011, p.
103). One striking feature of integral controllers, and PID controllers in general, is that they can be
implemented on the basis of both minimal knowledge of the system to be managed or regulated, and in
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the presence of considerable system uncertainty. It is these two features that makes them appealing for
population management/conservation.

Conservation is crucial to maintaining biodiversity and species viability in environments facing a range
of pressures, such as those from habitat destruction, climate change, invasion and changing land use.
Likewise, pest control or management is key to controlling unwanted or invasive populations which
possibly have uncertain or unmodelled vital rates. However, that said, the first two sentences of the
abstract of Walker (1998) read “Too much of wildlife management is today still more of an art than
a science. Turning the art into a much needed predictive science requires including research in the
management process.” In response to Walker’s claim there have been many theoretical approaches to
population management in the ecological and conservation literature (see Section 2.1 for references).
So far as we can tell, integral control (and PID control more generally) has not been considered as a
technique for regulating a population by restocking or removing members. Here we present such an
approach to conservation; describing how integral control arises naturally and is suitable for the task. In
doing so we draw on a large body of existing theoretical work on integral control, which we adapt to a
context of population management. Our focus in this manuscript is conservation and so we concentrate
on supplementing populations. We comment, however, that managing a (possibly growing ambient)
unwanted population to lower population densities can also be achieved using a combined proportional
and integral (PI) control strategy.

The manuscript is organised as follows. Section 2 contains a nontechnical overview of integral control
and describes the key concepts. Integral control, indeed PID control in general, is an extensively studied
subject and it is clearly not possible, or indeed our purpose, to include a complete treatment here.
Similarly, there are many other theoretical approaches to population management in the ecological and
conservation literature, and in Section 2.1 we compare and contrast the methods proposed here to some
existing techniques, such as partially observable Markov decision processes. Section 3 describes the
mathematics of integral control and progressively adds additional features to the model necessitated
by the specific demands of population modelling. These additional features are described on p. 8
and addressed sequentially in Sections 3.1–3.5. Throughout the manuscript we illustrate theoretical
concepts with ecological examples. We seek to give a workable overview of integral control, the suitable
modifications geared towards conservation using ecological models and cite relevant sources for further
reading. We summarise our results and their potential applications in the discussion in Section 4.

2 Integral control for population conservation

Our objective is to present a method to restock a managed, but declining, population. We assume that
the population is modelled by an age– or stage–structured (P)opulation (P)rojection (M)odel (Cushing,
1998; Caswell, 2001). These are discrete–time models where the time–steps are assumed fixed: a week,
month, or breeding cycle for instance. First, we need to have access to an observation of the population.
In a typical application, we do not know, and cannot measure, the entire population distribution at any
given time; in fact, in practice there are stage–classes about which we have no knowledge. For instance,
we might be able to measure population density of only the reproductive adults, and so in this case it
is that stage only which is the observation. It is this part of the system which we seek to regulate. An
important specification in the problem statement, therefore, is that only information of the measured
stage–class (or classes) is available.

Second, we need to be able to replenish a stage (or combination of stages), that is, add new (or remove
existing) population members. In a context of conservation, say of an endangered plant, such an action
might be restocking by planting seedlings grown in a greenhouse. We describe a method for choosing
management actions that result in the densities of the measured stages reaching a chosen reference value.
Figure 2.1 contains a diagram of the setup described thus far.

The above problem fits naturally into a “classical” control theory setting, and we draw on techniques
developed in that field to present a solution. A precomputed or open–loop control is a choice of manage-
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Figure 2.1: Diagram of the restocking scheme: man-
agement acts by adding or removing members of the
population of certain stage–classes and a portion of
the population is observed. The goal is to choose a
management strategy so that the observed observa-
tions reach a chosen reference value.

Management ObservationPopulation

model

ment strategy that is determined entirely by the model parameters and the chosen reference value. It
is called open–loop because the corresponding block diagram, Figure 2.1, is an open loop – there is no
feedback loop. It is straightforward to show that under mild assumptions on the model a suitably chosen
constant management strategy, that is, a fixed number of new members of the population being added
at each time–step results, in the observations converging to the reference value.

As an illustrative example, a matrix population projection model for females of the declining population
of Wild Boar Sus scrofa, in poor environmental conditions, is given in Bieber and Ruf (2005). The matrix
has three stage–classes, structured according to age. Suppose that at each time–step the density of the
third stage–class, here denoting adult female boar, is measured. Similarly, assume that we have access to
the same stage–class, so that we can release female adults into the population. The model is described
in detail in Example 3.2 on p. 10. From each of three random initial population distributions our goal
is to raise the female adult density to 500 (and to maintain that density). Here the chosen reference
abundance is arbitrary but typical of wild boar density from Jedrzejewska et al. (1997, pp. 447–449).
Figure 2.2 (a) contains the results of applying a precomputed control; the observed abundances of female
adult boar of the unmanaged population are declining with time and the observed abundances of female
adult boar of the managed population are converging to the target reference of 500.
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Figure 2.2: Precomputed control applied to the declining wild boar matrix PPM considered in Section 2.
In both plots the solid lines and dashed lines denote observations with and without precomputed control
respectively. The dotted lines denote the target reference abundance r = 500. (a) Observed female adult
boar population. (b) Observed female adult boar with randomly perturbed model parameters.

Precomputed control provides a simple method for raising population density via restocking. It does
suffer from a major flaw, however. Precomputed control is not updated according to observations taken
and requires exact knowledge of the model parameters in order to be implemented as intended. Ecological
models are inherently noisy, often parameterised statistically from limited time–series data (Nichols et al.,
1992), (Caswell, 2001, Chapter 6) and consequently there is wide scope for uncertainty. Uncertainty
is a multi–faceted term in ecology (Williams, 2001; Regan et al., 2002) but here we specifically mean
uncertainty in modelled vital rates. The upshot is that, when applying precomputed control to a (possibly
highly) uncertain model, the management objective may not be achieved.
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To demonstrate the sensitivity of precomputed control to model parameters, Figure 2.2 (b) contains
projections of the wild boar projection model considered above, but with randomly perturbed model
parameters. The precomputed control is based on the nominal estimate of these parameters; those
given in Example 3.2. It is evident that the precomputed control does not achieve the desired outcome
of 500 female adult boar in the presence of uncertainty. Although there are perturbations where the
precomputed control does give rise to eventual observations larger than the reference r, there are also
cases where the observations are smaller than r. Furthermore, in general it is not possible to predict the
effect of arbitrary model uncertainty on the resulting observations of a precomputed control strategy,
greatly limiting the appeal of precomputed control in this situation.

The problem statement, therefore, is: design a method to restock a managed, but declining, population.
The method should be implemented with only access to specified observations of that population and in a
manner that is both independent of the initial population distribution and is robust to model uncertainty.

Similar problem statements arise in many engineering contexts (as discussed earlier). It is well–known
to engineers that the solution is to base the management strategy on a feedback law. In words, the
management action to be taken at each time–step is based on observations of the population. Such a
scheme is represented in Figure 2.3. Feedback control is often called closed–loop control because the loop
in Figure 2.3 is closed.

Figure 2.3: Feedback control for population manage-
ment: the management strategy is determined by
the observations of that population. The goal is to
design a management strategy so that the observed
observations reach a chosen reference value.

Management

strategy

Management

Observation

Population

model

Without yet going into the mathematical details; the choice of feedback control used depends on both the
model to be controlled and the desired goal. The choice of feedback control is guided by the internal model
principle (Francis and Wonham, 1976) which states that the controller, in this case the management
strategy, must be able to reproduce the dynamics of the reference signal. Hence, if we wish to use a
feedback control to regulate the population to a constant value, it will need to include an integrator and
hence will be an integral controller. Furthermore, there is inherent robustness in this type of control, as
we explain in Section 3.1.

In the remainder of the manuscript we demonstrate that integral control is a suitable feedback strategy
for population management via restocking. We proceed in Section 3 to give a mathematical presentation
of integral control. Figure 3.1 on p. 11 shows projections of the uncertain wild boar model subject to
an integral control management strategy. We see that the desired outcome of 500 female adult boar is
achieved.

Integral control, as presented in this manuscript, dates back to the 1970s and early contributions include
Davison (1975, 1976), Lunze (1985), Morari (1985) and Grosdidier et al. (1985), while the later results
we present draw on contemporary material derived by the present authors and their collaborators and
which we cite in the text. We conclude this section with a brief overview of other modelling approaches
to population management prevalent in the literature to which we compare and contrast integral control.

2.1 Comparison with existing approaches to population management

There are both deterministic and stochastic modelling approaches to population management in the
literature. For populations modelled by matrix PPMs one approach is to investigate the effects of
changing life history parameters on the dominant eigenvalue, which characterises the asymptotic growth
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rate of the population. A dominant eigenvalue greater than one gives rise to an asymptotically increasing
population (under a few technical, but reasonable, mathematical conditions) and can be achieved by
sufficient increase in the entries of the matrix specifying the PPM (Berman and Plemmons, 1994, p.27).
A sensitivity (Demetrius, 1969) or elasticity (de Kroon et al., 1986) analysis can be used to quantify how
small changes in particular vital rates affect the dominant eigenvalue; often guiding or even directing
conservation efforts. Examples include, but are by no means restricted to, Crooks et al. (1998); Hunt
(2001); Wilson (2003); Lubben et al. (2008) and Stott et al. (2012).

Biologically, the above procedure corresponds to improving the vital rates for a population, for example by
improving the quality or access to food or by removing or limiting predation or poaching. Mathematically,
the above procedure is a form of perturbation analysis and over recent years new tools have been added
by Hodgson and Townley (2004); Hodgson et al. (2006); Deines et al. (2007); Lubben et al. (2009) to
analytically describe the dependence of the dominant eigenvalue on the perturbation. These methods
largely draw on the stability radius for robust control developed by Hinrichsen and Pritchard (1986a,b).
The above framework is not directly comparable to integral control because (a) it is not a restocking or
reintroduction scheme and (b) perturbations to vital rates are generally not modelled dynamically– they
are considered as a static (that is, instant) intervention.

Stochastic models for population management are also prevalent in the literature. (M)arkov (D)ecision
(P)rocesses (see, for example, Puterman (1994)) are, roughly speaking, Markov chains where at each
time–step the state transition function depends on an action chosen by the modeller. Associated with
each action and state are rewards (and/or costs), which are combined to form a so–called value function.
As with feedback control, MDPs have been extended to the situation where, at each time–step, the
entire state is not available to the modeller and instead only an observation (which is a stochastic or
deterministic function of the state) is available. In this situation a (P)artially (O)bservable MDP is used
instead. Since their inception POMDPs have been used in a wide variety of fields and we refer the reader
to the surveys by Monahan (1982) or Dutech and Scherrer (2013) or the tutorial paper by Littman (2009)
for examples and a history of their development. Worked examples in the conservation literature include
Chadès et al. (2008, 2011) and POMDPs have also been applied for detecting and managing an ecological
invasion, for example, in Haight and Polasky (2010) and Regan et al. (2011) and the references therein.

Although POMDPs are used in the literature with the same population management objective as that
here (in some sense); we note that POMDPs are used in a slightly different fashion and consequently
have different advantages and disadvantages. In the examples given above, the aim is to choose actions
optimally, that is, to maximise the expected rewards obtained (and/or minimise the expected costs
incurred) through the value function. Integral control is an example of feedback control– it is not an
optimal control technique, and thus is a complimentary method. Two advantages of integral control are,
first, that the models are very straightforward to use. This is especially pertinent because finding optimal
policies for POMDPs is, in general, computationally very intensive (Cassandra, 1998), especially as the
size of the state–space grows. The same is also true for models for population management that use
(S)tochastic (D)ynamic (P)rogramming, such as Shea and Possingham (2000); McCarthy et al. (2001);
Westphal et al. (2003); Tenhumberg et al. (2004) and Meir et al. (2004). Second, integral control is
demonstrably robust to model uncertainty, a key consideration in ecological models. Optimal controls
(including those obtained from classical results such as the Pontryagin Maximum Principle) are not
always robust to model uncertainty (Doyle, 1978; Safonov and Fan, 1997); an increase in performance
is traded–off against a loss of robustness. We are not aware of theoretical work on the robustness to
model uncertainty or parameter uncertainty of the optimal solutions proposed by POMDPs in population
management.

We conclude this section by remarking on active adaptive management (Walker, 1998; Shea et al., 2002;
Williams, 2011). Precomputed control is an example of management that is not adaptive– the same
number of individuals are released every time–step and no monitoring of the resulting population takes
place. Conversely integral control, and feedback control more generally, is an example of active adaptive
management. After every management event (that is, at each time–step) observations are collected and
used to update the management action at the next step; this is the fundamental ingredient of feedback
control, as depicted in Figure 2.3.

5



3 Mathematical formulation of integral control

This section contains a mathematical presentation of integral control for population management. We
collect some notation; the symbols R

n and C
n denote real and complex n–dimensional Euclidean space

respectively with R
1 = R and C

1 = C as standard. We let R
n
+ denote the real nonnegative orthant and

for vectors a, b ∈ R
n, the inequality a ≥ b (equivalently b ≤ a) is understood componentwise, so that

a ≥ b means that a− b ∈ R
n
+.

We first consider matrix PPMs (a treatment of some other classes of population models is addressed in
Section 3.5). Suppose that the population can be described by n distinct age or stage–classes. If the
population density in each stage–class is xj , for j = 1, . . . , n, then we let x(t) = [x1(t), x2(t), . . . , xn(t)]T

denote the population vector which has dynamics described by the matrix PPM

x(t+ 1) = Ax(t), x(0) = x0, t = 0, 1, 2, . . . , (3.1)

where x0 denotes the initial population distribution. Throughout this manuscript we assume that the
(unmanaged) population modelled by (3.1) is in asymptotic decline for every initial population distribu-
tion x0, which means that the spectral radius of A is less than one. Recall that the spectral radius of a
matrix M , denoted ρ(M), is defined as

ρ(M) = lim
t→∞

‖M t‖
1

t , (3.2)

(where ‖·‖ denotes any matrix norm) which captures the asymptotic growth rate of the norm of M t. Since
we shall always consider matrices A that are componentwise nonnegative it follows from, for instance
Berman and Plemmons (1994, p.26), that the spectral radius of A equals the dominant eigenvalue (which
for such matrices is accordingly also named the asymptotic growth rate). In order to state our results
concisely we record our key assumptions. Based on the above discussion, the first assumption is

(A1) the real n× n matrix A is componentwise nonnegative with ρ(A) < 1.

Recall the enforced assumption that we (probably) do not know the entire population distribution x(t) in
(3.1) precisely because there are stage–classes about which we have no information. It is quite probable,
for instance, that the full initial population distribution x0 is unavailable. However, we assume that we
do have access to a measured variable, or observation, y(t) described by

y(t) = cTx(t), t = 0, 1, 2, . . . . (3.3)

The variable y(t) represents the total knowledge about x(t) available for management decisions, and
might take the form of the results of a census or survey. Here c in (3.3) is a column vector so that cT is a
row vector, called the observation vector. We let the superscript T denote matrix transposition. By way
of an example, suppose that we are considering a population with five stage–classes. If the abundance
of the penultimate stage is measured at each time–step, then

cT =
[
0 0 0 1 0

]
, with y(t) = cTx(t) = x4(t) .

The second facet of the model is to allow the population to be supplemented or depleted by the arrival
or removal of new members respectively. To describe this we include a control term bu(t) in (3.1), to
obtain the controlled population model

x(t+ 1) = Ax(t) + bu(t), x(0) = x0, t = 0, 1, 2, . . . . (3.4)

The term bu(t) describes the addition (bu(t) ≥ 0) or removal (bu(t) < 0) of population members dis-
tributed across population stages through the column vector b. The vector b is the choice of the modeller,
although probably subject to implementation constraints. The population model (3.4) together with the
observation (3.3) is combined to give

x(t+ 1) = Ax(t) + bu(t) , x(0) = x0 ,

y(t) = cTx(t) ,

}

t = 0, 1, 2, . . . . (3.5)
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In the context of Section 2, the time–dependent variable u(t) in (3.5) is the management strategy and
y(t) in (3.5) is the observation, both at time–step t.

Recalling that we do not know the population x(t) exactly, we are interested in what effect u(t) has on
y(t). Under assumption (A1), the linearity of (3.5) means that it is straightforward to demonstrate that
if

lim
t→∞

u(t) = ũ , then lim
t→∞

y(t) =: ỹ = cT (I −A)−1bũ , (3.6)

where I denotes the n× n identity matrix. The constant cT (I −A)−1b in (3.6) is called the steady state
gain as it is the multiplier (the gain) that when applied to a constant input signal gives the resulting
eventual observation. Using the fact that

cT (I −A)−1b =

∞∑

k=0

cTAkb = cT (I +A+A2 + . . . )b , (3.7)

another interpretation of the steady–state gain is that it is the measured cumulative contribution to the
observation over all time from a constant influx of ũ = 1 population members structured by b. When b
and c are nonnegative vectors then from (3.7) it follows that cT (I−A)−1b ≥ 0 as well. If cT (I−A)−1b > 1
then ũ is amplified after a long period of time and conversely if cT (I−A)−1b < 1 then ũ it is attenuated.

Assuming that cT (I−A)−1b > 0, we see from (3.6) that in order for the observations to eventually reach
a chosen value r, so that ỹ = r, then

u(t) = ũ :=
r

cT (I −A)−1b
, t = 0, 1, 2, . . . , (3.8)

and this precomputed control achieves y(t) tending to r for any initial population distribution x0. Our
second assumption rules out the (degenerate) case that the steady–state gain of A, b, cT is zero

(A2) the matrix A and vectors b and cT are such that cT (I −A)−1b > 0.

We remark that (A2) is always satisfied if A satisfies (A1), A is irreducible and b and cT are nonnegative
and nonzero. Irreducibility is a natural assumption for ecologically meaningful PPMs (Stott et al., 2010)
and hence assumption (A2) is not overly restrictive.

The integral control feedback scheme is the dynamic, time–dependent strategy

u(0) = u0, u(t) = u0 + g

t−1∑

j=0

(r − y(j)), t = 1, 2, . . . , (3.9)

where r is the chosen reference value, g > 0 is a design parameter (often called the “gain” parameter) and
the value of u0 is arbitrary. The strategy (3.9) is a “discrete time integrator” because at time–step t the
control signal u(t) is determined by summing (equivalently “integrating in discrete time”) the previous
deviations of the observation y(t) from the reference r. The combination of (3.5) and (3.9) leads to the
feedback system

x(t+ 1) = Ax(t) + bu(t) , x(0) = x0 ,

u(t+ 1) = u(t) + g(r − cTx(t)) , u(0) = u0 ,

}

t = 0, 1, 2, . . . . (3.10)

Before stating the first result we need some more notation. The transfer function G of the linear system
(3.5) is defined by

z 7→ G(z) := cT (zI −A)−1b , z ∈ C , (3.11)

which is certainly defined for every complex z that is not an eigenvalue of A. The transfer function is a
ubiquitous concept in control engineering with many uses, and has also been used in ecological modelling
(Hodgson and Townley, 2004). For our present purposes it is sufficient to note that under assumption
(A1) the steady–state gain is equal to G(1), the transfer function evaluated at one.
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Theorem 3.1. Assume that the linear system (3.5) satisfies assumptions (A1) and (A2). Then there
exists g∗ > 0 such that for all g ∈ (0, g∗), every r > 0 and all initial conditions (x0, u0) ∈ R

n
+ × R+, the

solution (x, u) of (3.10) has the following properties:

(1) lim
t→∞

u(t) =
r

G(1)
,

(2) lim
t→∞

x(t) = (I −A)−1b
r

G(1)
,

(3) lim
t→∞

y(t) = lim
t→∞

cTx(t) = r.

We refer the reader to Logemann and Townley (1997) for a proof of the above result. However, we
provide here an illustration of both how integral control works and the role of the gain parameter g.
First, note that if (x∗, u∗) is an equilibrium of the feedback system (3.10), then by definition

x∗ = Ax∗ + bu∗ ⇒ x∗ = (I −A)−1bu∗ ,

u∗ = u∗ + g(r − cTx∗) ⇒ cTx∗ = r ,
(3.12)

where for the second implication we have used that g > 0. The final equality in (3.12) shows that the
x∗ component of any equilibrium (x∗, u∗) of (3.10) gives rise to an output cTx∗ equal to the reference r.
Theorem 3.1 is proven, therefore, as soon as the existence of a global asymptotically stable equilibrium
of (3.10) is established. To that end a short calculation using (3.12) shows that the feedback system
(3.10) can be written as

[
x(t+ 1) − x∗

u(t+ 1) − u∗

]

=

[
A b

−gcT 1

]

︸ ︷︷ ︸

=:Ag

[
x(t) − x∗

u(t) − u∗

]

, t = 0, 1, 2, . . . . (3.13)

By inspection of (3.13) we see that Theorem 3.1 holds precisely for g > 0 such that ρ(Ag) < 1, where
recall that ρ(Ag) is the spectral radius of Ag. Under assumption (A1), when g = 0 the eigenvalues of
A0 are those of A and one and thus ρ(A0) = 1. However, for small but positive g it can be shown that
ρ(Ag) < 1. If g is too large then ρ(Ag) ≥ 1 and the theorem fails. As such, Theorem 3.1 is a so–called
“low–gain” result since it guarantees that, if the gain parameter g is small enough, then the control
objective is achieved. Consequently, in these circumstances integral control provides a solution to our
original problem of restoring population levels via restocking, in a manner that only requires knowledge
of the available observations y(t) and for any initial population distribution x0.

The conclusions (1)–(3) of Theorem 3.1 demonstrate that the integral controller (3.10) solves the replen-
ishment problem. The model (3.10) is reasonably general and is suited to a wide range of scientific and
engineering applications. In the context of population management, the following potential problems
need to be addressed:

(P1) What types of uncertainty can integral control tolerate? Ecological systems are inherently noisy,
with many forms of uncertainty that the model (3.10) does not yet address.

(P2) Can integral control be extended to incorporate additional feasibility constraints on the input u(t)?
The feedback strategy (3.9) can generate either very large or negative values of u(t). Large
input signals might be too large for practical implementation given limited resources. Negative
u(t) requires managers to remove members from the population, which seems illogical when our
ultimate goal is to boost or at least conserve population density. Negative control signals may
even result in the integral control system (3.10) predicting negative populations, which is clearly
absurd.

(P3) How small does the gain g in the feedback strategy (3.9) need to be? Theorem 3.1 requires that the
parameter g is small enough and although it is always possible to choose such a g, the theorem
gives no indication of what this is or how to find it.
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(P4) Can the rate of convergence of the observations to the reference be improved? Theorem 3.1 guar-
antees that the observations converge to the reference, but the integral control model (3.10) does
not yet include additional features that can alter the rate of convergence.

(P5) Can integral control be applied to other population models? Matrix PPMs model a single population
in discrete stage–classes and, for example, have no explicit spatial component.

Sections 3.1–3.5 sequentially address the above problems. Each subsection begins with a verbal outline
of the solution that proceeds the mathematical details. Section 3.6 describes how the solutions of these
problems combine.

3.1 What types of uncertainty can integral control tolerate?

Here we describe types of uncertainty likely to be present in integral control and qualify the extent to
which integral control can tolerate these uncertainties (P1).

Several authors have proposed frameworks for describing (and indeed reducing) uncertainty in ecological
modelling, and we shall appeal to the terminology of Williams (2001) (see also Williams (2011, Section
4)) and Regan et al. (2002). Since we are describing the modelling aspects of integral control, we are
focussing on epistemic uncertainty, in the language of Regan et al. (2002), as opposed to linguistic
uncertainty. Mathematically, we argue that there are three types of uncertainty present that integral
control needs to be able cope with: (i) model uncertainty, (ii) measurement errors, (iii) activation errors.
The connections between these descriptions and those already established in the literature are described
in Table 1 below.

Table 1: Connecting types of uncertainty to
which integral control is subject with existing
descriptions of uncertainty in the ecology lit-
erature.

Williams (2001) Regan et al. (2002)
(i) Environmental variation Natural variation

Structural uncertainty Inherent randomness
Model uncertainty

(ii) Partial observability Measurement error
Systematic error

(iii) Partial controllability

Robust control is an important and well–studied topic in control engineering with many textbooks
dedicated to the subject (for example, Doyle et al. (1992); Green and Limebeer (1995); Zhou et al.
(1996) and Zhou and Doyle (1998)). Quoting Doyle et al. (1992, p. 8), “Generally speaking, the notion
of robustness means that some characteristic of the feedback system holds for every plant in the set P .”
The term plant in control engineering denotes the model to be studied or controlled and comes historically
from power or chemical plants. We need to identify the set of plants and the desired characteristics. In
our context the set of plants P is all integral control models of the form (3.10) with the collection of
uncertainties (i)–(iii). The desired characteristics to hold are the conclusions of Theorem 3.1. Quoting
Green and Limebeer (1995, p. xi), “Systems that can tolerate plant variability and uncertainty are called
robust–. . . ” We now discuss the types of uncertainty in detail.

(i): Model uncertainty amounts to not knowing the model parameters A, b and cT in (3.1). Uncertainty
in A can arise quite naturally. Parameter values in A may be only estimates or statistical means of some
“true” value. Or, the structure of A may be uncertain. For instance, A could be age–structured or stage–
structured, which can model the same underlying process but have different mathematical realisations.
In some cases the input vector b will be known, for example, when b represents restocking into a well–
defined developmental stage–class in the model. However, b could be uncertain; say, when restocking
seedlings which recruit into an unknown distribution of size classes. Often the observation vector cT is
known, for the same reason as b– when cT captures counting abundance of a well–defined development
stage, such as female nesting adult turtles. However, cT could be uncertain; in a size based model, not
all of the stage–classes need to be specified in order to count the abundances of a given size. Such a
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situation leaves cT unknown. Finally, the dimension n of the model itself could be uncertain. Integral
control is robust to all of these model uncertainties for the following reasons.

The two crucial assumptions placed on the model parameters A, b and cT for integral control are (A1)
and (A2). Assumption (A1) does not require knowledge of A and holds for any population model of
the form (3.1) in asymptotic decline. Similarly, assumption (A2) does not require knowledge of A, b
and cT , or indeed the exact value of G(1) = cT (I − A)−1b, only that it is positive, which is true when
A is nonnegative and irreducible and b and cT are nonnegative and nonzero. As we have commented
earlier, irreducibility is a natural assumption for matrix PPMs (Stott et al., 2010). Knowledge of A, b
or cT is not needed for the implementation of integral control. In fact, assumptions (A1) and (A2) are
necessary for low–gain integral control and so we cannot allow greater uncertainty.

Example 3.2. The wild boar matrix PPM considered in Section 2 has matrix A, control vector b and
observation vector cT given by

A =





0.13 0.56 1.64
0.25 0 0

0 0.31 0.58



 , b =





0
0
1



 , cT =
[
0 0 1

]
. (3.14)

For the simulations in Figure 3.1 each of the non–zero entries of A is randomly perturbed by up to
20%. The same gain parameter of g = 0.12 is used for each simulation. We see that each simulated
observation converges to the reference r = 500. However, the total female population densities and the
number of new individuals added per time–step in Figures 3.1 (b) and 3.1 (c) respectively are converging
to different limits. This is because by Theorem 3.1 (1) and (2), the respective limits

lim
t→∞

‖x(t)‖1 = lim(x1(t) + x2(t) + x3(t)) =

∥
∥
∥
∥

(I −A)−1b
r

G(1)

∥
∥
∥
∥
1

and lim
t→∞

u(t) =
r

G(1)
,

both depend on A (noting that G(1) also depends on A), which is being perturbed in this example.

(ii): Observation errors. The integral control model (3.10) assumes that the observations y(t) taken at
each time–step are correct. In practice there are bound to be errors incurred in the counting or measuring
process. This is conceivably a problem because the integrator (3.9) feeds back the observation y(t) into
the control signal.

Here we describe how integral control responds in the presence of measurement errors. In what follows
y(t) denotes the measured observation, whilst the actual observation is cTx(t). As always we are assuming
that A, b and cT in (3.5) satisfy (A1) and (A2) and further that g > 0 in (3.9) is chosen sufficiently
small so that Theorem 3.1 holds for the integral control system (3.10). A general additive observation
error d(t) can be incorporated into (3.10) as

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

y(t) = cTx(t) + d(t),

u(t+ 1) = u(t) + g(r − y(t)), u(0) = u0,







t = 0, 1, 2, . . . . (3.15)

If d(t) equals a constant d̃ for each t (that is, a constant systematic observation error is made), or d(t)
converges to d̃, then it is elementary to demonstrate that the measured variable y(t) converges to r− d̃.
In words, there is offset in the tracking.

If d(t) is periodic (the observation error is seasonal for example), say d(t) = d̃ cos(θt) for some d̃ ∈ R and
θ > 0, then again it is elementary to demonstrate that the measured variable y(t) settles to the periodic
signal

r − d̃Aθ cos(θt+ φθ),

which oscillates around r with magnitude d̃Aθ and phase shift φθ, where

Aθ =

∣
∣
∣
∣
∣

gG(eiθ)

eiθ − 1

(

1 +
gG(eiθ)

eiθ − 1

)−1
∣
∣
∣
∣
∣

and φθ = arg

(

gG(eiθ)

eiθ − 1

(

1 +
gG(eiθ)

eiθ − 1

)−1
)

.
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Figure 3.1: Integral control (3.10) applied to the declining wild boar matrix PPM of Example 3.2 with
randomly perturbed model parameters. In each plot the solid, solid–crossed and dashed–dotted lines are
corresponding simulations subject to the integral control system (3.10). The dashed lines are projections
from the uncontrolled model (3.1). (a) Observations of female adult boar. The dotted lines are the
reference r = 500 and r± 10%. (b) Total female population density. (c) The number of new individuals
added at each time–step, determined by the integral control management strategy (3.9).

For complex z, the notation arg(z) denotes the argument of z. For arbitrary additive observation error
d(t) one can show that

lim sup
t→∞

|y(t) − r| ≤ µg lim sup
t→∞

|d(t)|, (3.16)

where the constant µg can be computed and is given in Appendix A.1. The significance of the bound in
(3.16) is that for large t the error between the measured observation and the reference is linear in the
magnitude of d(t).

It is important to note that assumptions (A1) and (A2) and the size of the gain parameter g are all
independent of measurement errors when these errors occur additively, as in (3.15).

Example 3.3. Simulations of the integral control system with additive output error (3.15) applied to the
wild boar model of Example 3.2 are plotted in Figure 3.2. For the same A, b, cT , x0, u0, r and g as in that
example, Figure 3.2 (a) contains three projected observations subject to the additive observation errors
plotted in Figure 3.2 (b). The specific d(t) considered are constant with value −50 (solid), convergent
to 125 (dashed) and periodic (dashed–dotted). The resulting observations are convergent to r − d =
500 − (−50) = 550, 500 − 125 = 375 and periodic respectively.

A potentially more plausible description of observation error is that it is proportional to the observation
taken, which we describe by

y(t) = (1 + ε(t))cTx(t), t = 0, 1, 2, . . . . (3.17)
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Figure 3.2: Integral control with additive observation errors (3.15) applied to the wild boar matrix PPM
of Example 3.2. See Example 3.3. (a) Observations. The dotted lines are the reference r = 500 and
r ± 10%. (b) Observation errors.

The term ε(t) is the error which is unknown and assumed to be close to zero. For example, ε(t) taking
the values −0.1, −0.12 and 0.05 in three consecutive time–steps corresponds to measuring 90%, 88% and
then 105% of the actual population respectively. The case ε(t) = 0 corresponds to the measured and
actual observations coinciding so that (3.3) is recovered. We assume that ε(t) > −1 for every t, so that
a positive observation is always taken. For applications, what is often important is knowing the “worst
case scenario”, which amounts to knowing the largest possible observation errors.

If we assume that the observation errors are random, that is, each ε(t) is a random variable, then each
observation y(t) is also a random variable. The main result of this section is Theorem 3.4 below which
states that if the errors are assumed (I)ndependent and (I)dentically (D)istributed then the expectation
of the observations y(t) converge to the reference r. If additionally the variance of the errors is not too
large then the variance of the observation y(t) converges to a finite computable quantity.

Let ⊗ denote the Kronecker product and 0m×p denote the m× p zero matrix.

Theorem 3.4. Assume that the linear system (3.5) satisfies assumptions (A1) and (A2) and that g > 0
is such that

ρ(Ag) < 1, where Ag =

[
A b

−gcT 1

]

.

Assume that (ε(t))∞t=0 is a sequence of IID random variables with zero mean and variance σ2 and let y(t)
denote the measured observations of the integral control system (3.10) with observation error (3.17). It
follows that

(1) y(t) converges in expectation to r, that is, lim
t→∞

E(y(t)) = r.

(2) If

σ2 <
1

g2max
|z|=1

|Ẽ(zI −Ag ⊗Ag)−1D̃|
, where

D̃ =
[
01×(n2+2n) 1

]T
,

Ẽ =
[
(cT 0) ⊗ (cT 0)

]
,

(3.18)

then
lim
t→∞

var y(t) = [ cT 0 ]C∞ [ c0 ] <∞.

Here the matrix C∞ = CT
∞ solves the symmetric linear matrix equation (Ran and Reurings, 2002)

C∞ −AgC∞A
T
g − g2σ2(DE)C∞(DE)T − g2r2σ2DDT = 0,

where
D =

[
01×n 1

]T
, and E =

[
cT 0

]
.
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A proof of the above theorem is given in Appendix A.2, where an algorithm is also provided for finding
C∞. The quantity on the right hand side of (3.18) can be readily computed numerically, and provides
an estimate for the largest permitted variance in observation error so that the resulting observation has
finite variance.

Example 3.5. Theorem 3.4 is applied to the wild boar model of Example 3.2. For the sameA, b, cT , x0, u0, r
and g as in that example the integral control system (3.10) with proportional observation error ε(t) as
in (3.17) is simulated. The errors ε(t) are normally distributed with zero mean and constant variance
σ2 = 0.09. Figure 3.3 (a) plots three observation simulations y(t) as well as the expected observation
E(y(t)). Figure 3.3 (b) contains the corresponding three sequences of input signals u(t), as well as the
expected input sequence. In this example the variance of y(t) converges to ∼ 7, 600, so that the standard
deviation of y(t) is ∼ 87, and the constant in (3.18) equals 3.04. Hence, in this example the variance of
y(t) will converge for any observation error with σ2 < 3.04.
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Figure 3.3: Integral control with proportional observation errors (3.10), (3.17) applied to the wild boar
matrix PPM of Example 3.2. See Example 3.5. (a) Observations plotted in dashed, dashed–circled and
dashed–crossed lines. The solid lines are the expected observation E(y(t)) and E(y(t))±

√

var y(t). The
dotted lines are the reference r = 500 and r ± 10%. (b) Inputs plotted in the matching line style as the
corresponding observations in (a).

(iii): Activation errors. The integral control model (3.10) assumes that the input signals are exact, that
is, the number of individuals specified by the integral control strategy (3.9) is equal to the number of
individuals released (or planted and so on) at each time–step. In the context of restocking schemes we
expect that activation errors are (generally) less prevalent than measurement errors, and so only give a
brief treatment. Accommodating an additive activation error d(t), (3.10) becomes

x(t+ 1) = Ax(t) + b(u(t) + d(t)), x(0) = x0,

y(t) = cTx(t),

u(t+ 1) = u(t) + g(r − y(t)), u(0) = u0,







t = 0, 1, 2, . . . , (3.19)

where g is small enough so that the conclusions of Theorem 3.1 apply to the integral control system (3.10).
One advantage of integral control is it rejects constant, or convergent activation errors. Specifically, if
d(t) equals a constant d̃ for each t (that is, a constant systematic activation error is made), or d(t)
converges to d̃, then the observations y(t) still converge to r.

The effects of periodic or general additive activation errors on the observations mirror those in the
observation errors case. Specifically, if d(t) = d̂ cos(ωt) for some d̂ ∈ R and ω > 0, then again it is
elementary to demonstrate that the measured variable y(t) settles to the periodic signal

r + d̂Mω cos(ωt+ ψω),
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which oscillates around r with magnitude d̂Mω and phase shift ψω, where

Mω =

∣
∣
∣
∣

(eiω − 1)G(eiω)

eiω − 1 + gG(eiω)

∣
∣
∣
∣

and ψω = arg

(
(eiω − 1)G(eiω)

eiω − 1 + gG(eiω)

)

.

For arbitrary additive activation errors d(t) one can show that

lim sup
t→∞

|y(t) − r| ≤ νg lim sup
t→∞

|d(t)|, (3.20)

where the constant νg is given in Appendix A.1. As with the estimate (3.16), the bound (3.20) depends
linearly on the magnitude of the activation error. As with observation errors, we note that assumptions
(A1) and (A2) and the size of the gain parameter g are all independent of the activation errors considered
in (3.19).

3.2 Can integral control be extended to incorporate additional feasibility constraints on

the input u(t)?

If we require that the input u(t) satisfies 0 ≤ u(t) ≤ U , where U is a chosen per time–step upper bound,
and if the reference r is such that 0 < r < G(1)U then a (modified) integral control model still achieves
the desired control objective (P2). Furthermore, if r ≥ G(1)U then the control objective cannot be
solved by replenishment alone. The main result of this section which establishes the above claims is
Theorem 3.6, and is a special case of Coughlan and Logemann (2009, Theorem 3.2).

We bound the input in the integral control system (3.10) by applying a filter to the input. To that end
we introduce the saturation nonlinearity φ, which replaces negative control signals by zero and includes
the upper bound U chosen by the modeller for the maximum control signal:

φ : R → R, φ(v) :=







0, v < 0

v, 0 ≤v ≤ U .

U, U <v

(3.21)

The feedback system (3.10) is replaced by

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

w(t+ 1) = w(t) + g(r − cTx(t)), w(0) = w0,

u(t) = φ(w(t)),







t = 0, 1, 2, . . . . (3.22)

The inclusion of φ in (3.22) ensures that a nonnegative population is always predicted. The scalar w(t)
is the integrator state, and is generated by the integrator (3.9). The control u(t) is the filtered integrator
state φ(w(t)). Figure 3.4 contains a diagram of this arrangement.

Figure 3.4: Block diagram of the feedback sys-
tem (3.22). The control signal u(t) applied to
the population equals the filtered integrator
state φ(w(t)), where w(t) is generated by the
integrator (3.9).

Integral

controller

u(t)

w(t)

y(t)

r − y(t)

− +

Population

x(t)

φ

r

In addition to tackling (P2), Theorem 3.6 also provides the upper bound 1/|γ| for the integrator gain
g, where the constant γ is given by

γ := sup
q≥0

{

inf
θ∈[0,2π)

Re

[(
q

eiθ
+

1

eiθ − 1

)

G(eiθ)

]}

∈ R , (3.23)

and G is the transfer function from (3.11).
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Theorem 3.6. Assume that the linear system (3.5) satisfies assumptions (A1) and (A2) and let γ be
as in (3.23). Then, for every U > 0, every r ∈ (0, G(1)U), every g ∈ (0, 1/|γ|) and all initial conditions
(x0, w0) ∈ R

n
+ ×R+, the solution (x, u) of (3.22) has properties (1)–(3) of Theorem 3.1 and furthermore

the integrator state w(t) converges to r/G(1) as t→ ∞.

We provide some comments on Theorem 3.6, which is proven in Coughlan and Logemann (2009, Theorem
3.2) (see also Coughlan (2007)).

Remark 3.7. (i) Although the conclusions (1)–(3) of Theorem 3.6 are the same as those in Theorem
3.1, there is a crucial difference in the hypotheses of these theorems. Specifically, in Theorem 3.6
the desired reference value r is not completely free: it is constrained by the steady–state gain G(1)
and input bound U by the requirement that r < G(1)U . This is not unreasonable; in the presence
of no control, population density is declining. If the upper limit on the number of new arrivals U is
too low, or alternatively, the chosen reference r is too high, then the observations of the population
cannot reach r by restocking alone. We comment further that, mathematically, this limitation
is not unique to integral control. A consequence of the model under consideration (in particular
equation (3.6)) is that if u(t) is bounded from above by U then any restocking scheme cannot lead
to the eventual observations ever being larger than G(1)U . If r > G(1)U then the observations
cannot asymptotically reach r by restocking alone.

(ii) As with Theorem 3.1, Theorem 3.6 is a low–gain result and provides the upper bound 1/|γ| for the

gain g that will ensure convergence. It is shown in Coughlan (2007) that −∞ < γ ≤ −G(1)
2 . The

parameter γ can be estimated numerically from its definition (3.23) although this may not always
be straightforward. If (A1) and (A2) hold and if b and cT are nonnegative then

κ :=
2

G(1) + 2|G′(1)|
≤

1

|γ|
, (3.24)

where G′ denotes the derivative of G. The constant κ is much easier to compute than γ and a
derivation of (3.24) is given in Appendix A.1. Consequently, under the assumptions (A1) and
(A2), every gain g ∈ (0, κ) is a “regulating gain” in the sense that conclusions (1)–(3) of Theorem
3.1 hold for (3.22).

Example 3.8. Consider a planting programme to raise levels of the savannah grass Setaria incrassata
in the presence of heavy grazing. O’Connor (1993) contains matrix PPMs of Setaria incrassata where
the population is partitioned into five stage–classes according to tuft circumference in cm. The specific
divisions are given in (O’Connor, 1993, Table 2). The matrix we use is the average over four years
(O’Connor, 1993, p.125, Table 3, first row). We control the second stage–class, plants of tuft diameter
11–20cm, and observe the total density of the all plants with tuft diameter greater than 11cm, that is,
stages two to five. The matrix A, control vector b and observation vector cT are thus given by

A =









0.5925 0.5900 0.5825 0.8100 4.5650
0.2075 0.3775 0.2475 0.4675 0.1675
0.0050 0.1250 0.4225 0.1850 0.2625

0 0 0.0850 0.2750 0.1225
0 0 0 0.0325 0.6600









, b =









0
1
0
0
0









, cT =
[
0 1 1 1 1

]
. (3.25)

Figure 3.5 (a) demonstrates the results of the filtered integral control system (3.22) for different U and
also the original integral control system (3.10). Here U denotes the maximum number of individuals
that can be planted each year. From a random initial population distribution with total density 200 the
goal is to raise the total measured population density to 800. In this example, G(1) = 8.1081 and so for
fixed r = 800 the condition r < G(1)U necessitates that U satisfies

r

G(1)
= 98.6673 < U,

for the conclusions of Theorem 3.6 to hold. As expected, therefore, for U = 50 the observation does not
reach the reference. As A, b and cT are nonnegative we can use the constant κ in (3.24) as an upper
bound for a regulating gain g which gives

κ =
2

G(1) + 2|G′(1)|
=

2

8.10 + 2 × 126.42
= 0.0077.
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We thus take g = 0.0076 < κ. Figure 3.5 (b) contains the resulting filtered input signals φ(w(t)) for each
U and the unfiltered signal u(t) given by (3.9). We see that the linear feedback system (3.10) exhibits
a large transient amplification, but also that the tracking takes longer and there is larger subsequent
undershoot. Observe that here each filtered signal is truncated at U and that as U gets larger both the
input and the observed population density behave more like the linear case as the filter effect is reduced.
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Figure 3.5: Integral control with filtered input (3.22) applied to the savannah grass matrix PPM of
Example 3.8 with different U values. (a) Observations in solid lines, labelled with the corresponding U
value. The dashed line is the observation subject to the unfiltered integral control system (3.10). The
dotted lines are the reference r = 800 and r± 10%. (b) Filtered input signal u(t) = φ(w(t)) in solid lines
labelled with corresponding U value. The dashed line is the unfiltered input generated by (3.9).

Remark 3.9. We comment that Theorem 3.6 can be extended to the feedback system (3.22) with the
nonlinear filter φ replaced by other nonlinearities. Details are contained in Appendix A.3. For example,
if φ is replaced by a function that grows sublinearly then there are increasingly diminishing returns from
larger input signals. In the context of a plant population, if the control term bu(t) denotes sowing seeds,
then at high densities the proportion of seeds that become plantlings may not depend linearly on the
number of seeds sown owing to density–dependence effects. Such an effect can be modelled by a suitable
choice of φ in (3.22).

3.3 How small does the gain g in the feedback strategy (3.9) need to be?

Here we discuss the design parameter g in more detail . We seek to explain its role and how suitable
g can be chosen or estimated. Finally, we include another feature in the integral control model which
computes g adaptively, circumventing the need to choose it altogether (P3).

The choice of g affects the performance of integral control. As a tuning parameter; a larger g usually
corresponds to a faster response, which is sometimes desirable. As the next precautionary example
demonstrates, however, choosing g too large may result in failure of the control objective.

Example 3.10. We revisit the wild boar matrix PPM considered in Example 3.2. For fixed A, b, cT , x0, u0

and r as in that example we project the filtered integral control system (3.22) with U = 200 for increasing
gains g = 0.05, 0.3, 0.6 and have plotted the results in Figure 3.6. We see that the observations oscillate
around r with greater magnitude as g increases, and fails to converge to the reference for g = 0.6. Note
that the filtered input u(t) is truncated at both zero and U .

Recall the characterisation from (3.13) of which gains g result in convergence of the observations– those
such that ρ(Ag) < 1. Describing the dependence of ρ(Ag) on g analytically is, in general, intractable.
It is of course true that for each candidate g > 0, ρ(Ag) can be computed numerically, but this does
not provide a systematic method of finding how large g can be, or the qualitative behaviour of the
resulting dynamics. Notwithstanding the above, the root locus method developed by Evans (1948, 1950)

16



0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

0.6

t, years
(a)

F
em

a
le

a
d
u
lt
b
o
a
r,
y
(t
)

0.3

0.05

0 20 40 60 80 100
−50

0

50

100

150

200

0.6

t, years
(b)

In
p
u
t,
u
(t
)

0.3

0.05

Figure 3.6: Integral control with filtered input (3.22) applied to the wild boar matrix PPM of Example 3.2
with different gain parameters. See Example 3.10. Each line is labelled with its gain g. (a) Observations.
The dotted lines are the reference r = 500 and r ± 10%. (b) Filtered input signals with U = 200. The
dotted line is r/G(1).

is a graphical method of describing how the eigenvalues of Ag in this instance (more precisely, the
poles of the closed–loop system (3.13)) change with the parameter g. This powerful technique can be
used to choose g in such a manner that both of the conclusions of Theorem 3.1 apply and qualitative
and quantitative properties of the resulting dynamics are specified. Many textbooks provide a modern
treatment of the root locus method and we refer the reader to Franklin et al. (1994, Chapter 4) for more
information.

Regarding model uncertainty, we comment that the choice of g is robust to model uncertainty in the
following sense. If g∗ > 0 is such that ρ(Ag∗) < 1 then there exists ε > 0 such that ρ(Ãg∗) < 1 for all

Ãg∗ with ‖Ag∗ − Ãg∗‖ < ε. In words, if g∗ is a regulating gain for a given Ag then g∗ is a regulating gain

for all Ãg∗ “close enough” to Ag∗ . Recalling that Ag depends on A, b, cT and g, this amounts to model
uncertainty in A, b and cT that is “small enough”. The terms “close enough” and “small enough” can
be precisely quantified by appealing to stability radius arguments (Hinrichsen and Pritchard, 1986a,b).

The presence of the nonlinear filter φ in the integral control system (3.22) prevents the root locus method
from being applied here and the proof of Theorem 3.6 is more subtle. Here it is very difficult in general
to find an exact expression for the largest gain that results in convergence, and so in order to apply
Theorem 3.6 a positive lower bound for 1/|γ| is required. The constant κ in (3.24) is such a bound
in the (usual) case where A, b and cT are nonnegative. However, the same problem arises as with the
precomputed control (3.8) because the formula for κ depends on the model data A, b and cT . Although
γ and κ are robust to model uncertainty in a similar sense to g as described above (that is, “small”
perturbations to A, b and cT can be tolerated), in the presence of severe uncertainty in A, b and cT ,
using (3.24) may not give a correct lower bound for the “true” 1/|γ|.

A different approach, therefore, may be desirable for choosing g. The next method we present is an
example of adaptive control (Landau, 1979; Sragovich, 2006; Astolfi et al., 2008), where in this instance
the parameter g is determined via a suitable adaptation rule. That is, we allow the gain parameter g
also to change with time, determined by a dynamical system included in the feedback loop. Specifically,
we set

g(t) =
1

h(t)
, h(t+ 1) = h(t) + |r − y(t)|, t = 0, 1, 2, . . . ,
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which yields the adaptive integral control system

x(t+ 1) = Ax(t) + bu(t) , x(0) = x0 ,

w(t+ 1) = w(t) + (h(t))−1(r − cTx(t)) , w(0) = w0 ,

h(t+ 1) = h(t) + |r − y(t)| , h(0) = h0 ,

u(t) = φ(w(t)) .







t = 0, 1, 2, . . . . (3.26)

Figure 3.7 contains a diagram of the arrangement in (3.26). The main result of this section is Theorem
3.11 below, which is a special case of a result in Logemann and Ryan (2000), and is an adaptive version
of Theorem 3.6 which obviates the need to choose a gain parameter g.

Figure 3.7: Block diagram of the adaptive
feedback system (3.26). The constant gain
parameter g is replaced by a dynamic signal
h(t) which itself is determined by the differ-
ence r − y(t).

Integral

controller

u(t)

w(t)

y(t)

+−

Population

x(t)

φ

r

h

r − y(t)

h(t)

Theorem 3.11. Assume that the linear system (3.5) satisfies assumptions (A1) and (A2). Then, for
every U > 0, every r ∈ (0, G(1)U) and all initial conditions (x0, w0, h0) ∈ R

n
+×R+× (0,∞), the solution

(x, u, h) of (3.26) has properties (1)–(3) of Theorem 3.1, the integrator state w(t) converges to r/G(1)
as t→ ∞ and additionally

(4) the non–increasing gain g(t) = 1/h(t) converges to a positive limit depending on (x0, w0, h0) as
t→ ∞.

Remark 3.12. (i) Theorem 3.11 is remarkable because it ensures that the integral control system (3.26)
achieves the desired control objective in the presence of very little information. The reference r,
observations y(t) and assurance that r < G(1)U are required, but knowledge of A, b, cT , x0 and
crucially a suitable gain g > 0 is not!

(ii) As with Theorem 3.6, the version of Theorem 3.11 presented is a special case of a more general
result, where the filter φ can be replaced by other functions. More details are contained in Appendix
A.3.

Example 3.13. Theorem 3.11 is applied to the wild boar model of Example 3.2. For the same A, b, cT as
in that example, but with r = 200, the adaptive integral control system (3.22) for gains g determined
adaptively via (3.26) is projected for three different (x0, w0, h0) triples. The results are plotted in Figure
3.8. Here the convergence of the observations to the reference ensured by Theorem 3.11 is slow, note the
log x–axes in the figure. This is because in the adaptive control scheme (3.26) the gain g(t) = 1/h(t)
always decreases and can become small very quickly resulting in sluggish performance. Recall, however,
that the control scheme has no knowledge of A, b or cT , only that ρ(A) < 1, G(1) > 0 and that r < G(1)U .

3.4 Can the rate of convergence of the observations to the reference be improved?

By adding a (P)roportional part to the (I)ntegral control feedback strategy (3.9) the resulting rate of
convergence of the observations to the reference can be increased (P4).

So far we have been using integral control to move the equilibrium of a declining model to a chosen
non–zero equilibrium. As mentioned in the introduction, integral control is just one part of PID–control.
Loosely speaking, the observations resulting from a PI control strategy converge faster to the reference.

18



10
0

10
2

10
4

50

100

150

200

250

t, years
(a)

F
em

a
le

a
d
u
lt
b
o
a
r,
y
(t
)

10
0

10
2

10
4

45

50

55

60

65

t, years
(b)

In
p
u
t,
u
(t
)

10
0

10
2

10
4

0

0.005

0.01

0.015

0.02

t, years
(c)

G
a
in

p
a
ra
m
et
er
,

1
h
(t
)

Figure 3.8: Adaptive integral control (3.26) applied to the wild boar matrix PPM of Example 3.2 with
different initial triples (x0, w0, h0). See Example 3.13. In each plot the solid, dashed and dashed–dotted
lines are corresponding simulations. (a) Observations. The dotted lines are the reference r = 200 and
r±10%. (b) Filtered input signals and limiting input r/G(1) in dotted line. (c) Adaptive gain parameters
g(t) = 1

h(t) .

We proceed to give the details. In the first instance, we replace the integral control system (3.10) by

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

w(t+ 1) = w(t) + g(r − cTx(t)), w(0) = w0,

u(t) = w(t) + g(r − cTx(t)),







t = 0, 1, 2, . . . . (3.27)

In (3.27), w is the integrator state and u is the control, now given by

u(t) = w0 + g
t∑

j=0

(r − y(j)), t = 0, 1, 2, . . . . (3.28)

The difference between (3.9) and (3.28) is that in the latter, at each time–step t, u(t) depends on the
current observation error r− y(t) and not just the previous errors. In our original system (3.10) we had
u(t) = w(t), that is, the control was simply an integrator– I control. We now compute u by adding to
w the current error r − y(t). The motivation for using such a control strategy is that the current error
r − y(t) acts as a (P)proportional part which increases the rate of convergence.

As we are considering population models, where x(t) needs to be nonnegative, for the model (3.27) to be
meaningful we require the constraint that A − gbcT is componentwise nonnegative, which we note may
not always be satisfied. However, whenever this is the case, the conclusions of Theorem 3.1 and Theorem
3.11 hold for the integral control system (3.27) with small enough gain g and suitably modified adaptive
case respectively. The conclusions of Theorem 3.6 also hold (see Coughlan (2007)), but with γ in (3.23)
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replaced by

γ0 := sup
q≥0

{

inf
θ∈[0,2π)

Re

[(

q +
eiθ

eiθ − 1

)

G(eiθ)

]}

.

Again, we demonstrate in Appendix A.1 that under assumptions (A1) and (A2) and if b and cT are
nonnegative then

κ0 :=
2

G(1) + 2|G(1) +G′(1)|
≤

1

|γ0|
, (3.29)

so that the conclusions of the theorem hold for the system (3.27) for every gain g such that g ∈ (0, κ0).
Furthermore, we show that κ < κ0, so that certainly the range of regulating gains for (3.27) is not smaller
than that for (3.10).

The rate of convergence of the observations to the reference can be tuned even further in the linear
integral control case by making the following alteration. We consider now the feedback scheme

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

w(t+ 1) = w(t) + g(r − cTx(t)), w(0) = w0,

u(t) = w(t) + k(r − cTx(t)),







t = 0, 1, 2, . . . . (3.30)

The term k(r − cTx(t)) is a proportional feedback and the parameter k > 0 is called the proportional
feedback gain. We note that the integral control system (3.27) is a special case of (3.30) where k = g,
but in general they need not be the same. Although the parameter k introduces another choice that has
to be made by the modeller, its inclusion often results in faster convergence of the observations to the
reference as Example 3.15 demonstrates. Our main result for PI control is Theorem 3.14 below which is
proven in Appendix A.4.

Theorem 3.14. Assume that the linear system (3.5) satisfies assumptions (A1) and (A2) and assume
that k > 0 is such that A−kbcT is nonnegative with b and cT also assumed nonnegative. Then there exists
g∗ > 0, which depends on k, such that for all g ∈ (0, g∗), every r > 0 and all initial conditions (x0, w0) ∈
R

n
+ × R+, the solution (x, u) of (3.30) satisfies properties (1)–(3) of Theorem 3.1 and additionally the

integrator state w(t) converges to r/G(1) as t→ ∞.

Example 3.15. We compare the rates of convergence of the observations to the reference of the integral
control systems (3.10), (3.27) and (3.30) when applied to the wild boar model of Example 3.2. The
results are plotted in Figure 3.9. The systems (3.10) and (3.27) both have the same gain parameter
g = 0.12, as in Example 3.2. We see that the observations of (3.27) converges faster and in a less
oscillatory manner than those of (3.10). For the PI system (3.30) we take increasing proportional gain
parameter k = 0.2, 0.3 and k = 0.4 and note the progressively faster convergence of the observations to
the reference.

3.5 Can integral control be applied to other population models?

Here we demonstrate that integral control can be applied to (I)ntegral (P)rojection (M)odels and that
the results on integral control for matrix PPMs from Sections 3.2 and 3.3 extend to IPMs. We also
comment on how certain spatially structured models fit into an integral control framework (P5).

IPMs are a relatively recent approach to population modelling, introduced in Easterling et al. (2000).
Since their inception several models have been published in, for example Ellner and Rees (2006); Childs
et al. (2003); Rees and Ellner (2009) and Ozgul et al. (2010). We refer the reader to Easterling et al.
(2000), or the tutorial paper Briggs et al. (2010), for full details and only give a brief overview here.
Typically an IPM takes the form

n(ξ, t+ 1) =

∫

s∈Ω

k(s, ξ)n(s, t) ds, n(ξ, 0) = n0(ξ), ξ ∈ Ω, t = 0, 1, 2, . . . . (3.31)
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Figure 3.9: Integral control (3.10), integral control with proportional feedback (3.27) and PI system
(3.30) applied to the wild boar matrix PPM of Example 3.2. See Example 3.15. (a) Observations. The
dotted lines are the reference r = 500 and r ± 10%. (b) Inputs. In both (a) and (b): the dashed–dotted
line is the original system (3.10) with g = 0.12, the dashed line is the system (3.27) with g = 0.12 and
the solid, solid–circled and solid–crossed are the PI system (3.30) with increasing k = 0.2, 0.3 and 0.4
respectively.

Here n(ξ, t) denotes the population at stage ξ ∈ Ω and time–step t, where Ω is the range of size or
stage–classes and is usually an interval of real numbers (although more general sets are permitted, see
Ellner and Rees (2006)). For each fixed t, n(ξ, t) is a function of ξ. The function k is called a projection
kernel and describes the life history parameters of survival, growth and fecundity of the population.

The model (3.31) can be written in the form (3.1), where A now denotes the operator

A : L1(Ω) → L1(Ω), (Av)(ξ) =

∫

s∈Ω

k(s, ξ)v(s) ds, (3.32)

where L1(Ω) is the space of Lebesgue measurable functions (see, for example, Evans (2010, p. 647)) with
finite L1 norm

L1(Ω) =

{

f : Ω → R : f Lebesgue measurable and

∫

x∈Ω

|f(x)| dx <∞

}

.

In order to convert the IPM (3.1) (where A is now given by (3.32)) into a controlled and observed system
(3.5) we need to introduce appropriate control vector b and observation vector c (the superscript T is
omitted as we are no longer considering matrix transposition).

Example 3.16. Suppose that for an IPM, Ω = [α, β], the interval from the minimal size α to the maximal
size β. In such a framework the control action is a mapping R → L1(Ω) and a suitable choice for b is a
function in L1(Ω) so that the control term bu(t) in (3.5) is b multiplied by the scalar u(t). To model the
distribution of new individuals arriving uniformly between stage–classes ξ1 and ξ2 with α ≤ ξ1 < ξ2 ≤ β
we define b by

b(s) =







1

ξ2 − ξ1
, s ∈ [ξ1, ξ2],

0, otherwise.

(3.33)

The function b distributes new arrivals uniformly between ξ1 and ξ2. In some applications, it may be
more realistic that the distribution of new arrivals is not uniform, and perhaps centered around some
point between ξ1 and ξ2. Such a control vector represents a ‘smoother’ version of b in (3.33). There are
many such functions with this property. The quartic function

b′(s) =







30

(ξ2 − ξ1)5
(s− ξ1)2(s− ξ2)2, s ∈ [ξ1, ξ2],

0, otherwise,

(3.34)
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is one example. The scaling of b′ is chosen so that b′ integrates to one. For matrix PPMs the observation
vectors we consider are row vectors. The equivalent of a row vector in the IPM context is a linear
mapping L1(Ω) → R. For example, the mapping

v 7→ cv :=

∫ ξ2

ξ1

v(s) ds, (3.35)

models the measurement of the population density of v between stage–classes ξ1 and ξ2. When Ω = [α, β]
and ξ1 = α, ξ2 = β then c in (3.35) measures the entire population density.

Mathematically, PPMs and IPMs are very similar, although the latter involve some extra technicalities.
Theorem 3.17 is the main result of this section and demonstrates that our main results for matrix
PPMs carry over to IPMs. Theorem 3.17 is a combination of special cases of results originally proven in
Coughlan and Logemann (2009); Coughlan (2007) and Logemann and Ryan (2000).

The two key assumptions (A1) and (A2) in the matrix PPM case captured the properties that the
uncontrolled population is in asymptotic decline and that the control, model and observation are chosen
so that the steady–state gain is non–zero respectively. The same assumptions are required for IPMs
although the formulation is slightly more technical: specifically, let X denote a Banach space,

(A1′) the bounded linear operator A : X → X has ρ(A) < 1,

(A2′) the operators A : X → X, b : R → X and c : X → R are all bounded and such that c(I−A)−1b > 0.

We comment that assumption (A1′) can be checked numerically and assumption (A2′) generally holds
for the IPMs presented here. In more detail, for Ω = [α, β] the space L1(Ω) is a Banach space and
for “reasonable” kernels k, (for instance, if k is square integrable) the operator A in (3.32) is compact.
Compact operators can be uniformly approximated by finite dimensional operators, so the spectral radius
of A can be estimated by computing the spectral radii of a sequence of finite dimensional approximations
of A. More precisely, if (An)∞n=1 is a matrix sequence that approximates A uniformly, then by, for
example, Degla (2008, Theorem 2.1), the spectral radii ρ(An) converge to ρ(A).

Assumption (A2′) means that a constant positive input signal eventually gives rise to a positive observa-
tion. Alternatively, suppose that the controlled and observed IPM is given by A (for reasonable kernels
k), input b and observation c as in (3.32), (3.33) and (3.35) respectively. If A, b and c are uniformly
approximated by An, bn and cn then

Gn(1) := cn(I −An)−1bn → c(I −A)−1b = G(1), as n→ ∞ ,

and so the computable steady–state gain of An,bn and cn converges to that of A, b and c.

Theorem 3.17. Given the controlled and observed projection system (3.10) in the IPM case, then under
assumptions (A1′) and (A2′) the conclusions of Theorem 3.1 hold. If additionally the input bound U > 0
and reference r > 0 are such that r ∈ (0, G(1)U) then the conclusions of Theorems 3.6 and 3.11 apply to
the IPM versions of (3.22) and (3.26) respectively.

For a proof of the above result we refer the reader to Coughlan and Logemann (2009); Coughlan (2007)
for the first two claims and Logemann and Ryan (2000) for the third.

Example 3.18. We consider an IPM for platte thistle (Cirsium canescens) based on that from Rose et al.
(2005), discussed also in Briggs et al. (2010). Here the stages are structured according to stem diameter;
a continuous variable assumed to take values between ∼ 0.6mm and ∼ 33mm. The distribution of plants
of stage ξ at time t is denoted by n(ξ, t). We have altered some of the parameters in the model from
those in Rose et al. (2005) so that the ambient population is in asymptotic decline.

To supplement this population we suppose that individuals of stem diameter centered around 2.5mm are
planted at each step, distributed by b′ from (3.34) with ξ1 = 2.5 − e0.5mm and ξ2 = 2.5 + e0.5mm. The
distribution of new plants is plotted in Figure 3.10.
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Figure 3.10: Graph of function b′ de-
scribing distribution of new plants at
each time–step of IPM Example 3.18.
Here ξ1 = 2.5− e0.5 and ξ2 = 2.5 + e0.5.
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The observation y(t) of the population at each time–step is the total density of all plants with diameter
between 22mm and 30mm, described by

y(t) = (cn)(t) =

∫ 30

22

n(s, t) ds.

From a random initial population of total density 10 we seek to raise the total density of thistles with
diameter in the range 22mm–30mm to r = 40. In order to simulate the model we discretise the IPM;
which we do so via a finite element (FE) method, a standard technique in numerical analysis. Such a
scheme produces a matrix equation that approximates the controlled and observed IPM, but is different
from one obtained by parameterising a PPM model. The details of the approximations are contained in
Appendix A.5. We assume that the the input filter φ is present, with input bound U = 15, and since
G(1) = 3.3196, in order for the results of Theorem 3.17 to apply we require

r < G(1)U = 49.7 .

The results of the simulations are plotted in Figure 3.11. We see that, as expected, each control scheme
achieves the desired control objective.

We conclude this section with two remarks on other directions in which integral control can be developed.

Remark 3.19. Integral control can be developed for population models that contain a spatial component.
The theoretical results we have drawn upon and derived here are predicated on the underlying population
model being density–independent (that is, linear) and provided that linearity is preserved in the presence
of spatial dynamics, then integral control is still applicable. It is beyond the scope of the present
contribution to give comprehensive details for such situations but we do consider two examples. The
first is a controlled and observed matrix metapopulation model (for example Pulliam (1988) or more
recently Roy et al. (2005)), so that a population changes over time and across N discrete patches, for
integer N . The stage–structured population in the ith patch at time–step t is denoted xi(t) and has
dynamics described by

xi(t+ 1) = Aixi(t) +

N∑

j=1

Dijxj(t) + biu(t), xi(0) = x0i , t = 0, 1, 2, . . . , (3.36)

for i ∈ {1, 2, . . . , N}. Here Ai describes the survival and recruitment of the ith patch, Dij are dispersal
matrices, describing the movements of individuals to patch i from patch j and bi is the control vector
of the ith patch. Spatial inhomogeneity is incorporated when the vital rates and dispersal rates vary
across patches. The model (3.36) can be reformulated in the form (3.5) by concatenating the population
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Figure 3.11: Integral control applied to the (discretisation of the) platte thistle IPM of Example 3.18.
(a) Observations. (b) Total population densities. (c) Inputs. (d) Adaptive gains. In (a)–(c) the solid
lines denote the original integral control system (3.10), the solid–circled lines are the filtered integral
control system (3.22) and the solid–crossed lines are the adaptive integral control system (3.26). The
dashed–dotted line is the precomputed control and the dotted lines denote the reference r = 40 and
r ± 10%. The dashed lines in (a)–(b) denote projections from the uncontrolled model. Each projection
is from the same random initial population distribution. Here r = 40, U = 15 and g = 0.25.
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vectors and patch matrices as

x(t) :=








x1(t)
x2(t)

...
xN (t)







, A :=









(A1 +D11) D12 . . . D1N

D21
. . .

...
...

. . .
. . . DN−1N

DN1 . . . DNN−1 (AN +DNN )









, b :=








b1
b2
...
bN







, (3.37)

and by defining an observation y(t) as some linear combination of the states y(t) = cTx(t) as usual. It is
important to note that the Dij may not be componentwise nonnegative, as they describe both movement
in to and out of a given patch and so therefore A in (3.37) may have negative components. However,
the nonnegativity assumed in (A1) is not required for integral control, only that ρ(A) < 1. Assumption
(A2) is unchanged, and when these assumptions hold for the above A, b and cT then integral control is
applicable and the results we have presented carry over. As mentioned in Section 3.1, full knowledge of
Ai, Dij is not required for these assumptions to hold.

The second example is a linear, integro–difference model (for examples in ecology, see Kot (1992) or
Kot et al. (1996) and the references therein). A single stage–structured population over a (possibly
inhomogeneous) spatial domain Ω at time–step t and position ξ ∈ Ω is denoted by n(ξ, t) and has
dynamics given by

n(ξ, t+ 1) =

∫

s∈Ω

k(ξ, s)Rn(s, t) ds+ b(ξ)u(t) , n(ξ, 0) = n0(ξ),

y(t) =

∫

Ω1

[
1 1 . . . 1

]
n(s, t) ds ,







t = 0, 1, 2, . . . , (3.38)

In (3.38), R is a matrix that models survival and recruitment of the population, n0 denotes the initial
population distribution, k = k(ξ, s) is a dispersal kernel which is a probability distribution describing the
probability that an individual from position s disperses to position ξ at each time–step and the function
b = b(ξ) describes the distribution of new individuals at position ξ. The observation y(t) has been chosen
as the number of individuals in the region Ω1 ⊆ Ω, although of course other observations are permitted.
Similarly to the IPM (3.31), (3.38) can be reformulated as (3.5), although we do not give the details
here.

Remark 3.20. Further developments of integral control allow regulation of more than one observation and
with access to more than one management action at each time–step. For example, suppose that we seek
to regulate both the total population abundance and the abundance of a given single stage–class, and we
can replenish more than one stage–class (or combination of stage–classes) independently. This leads to
a framework called multi–input, multi–observation in control engineering and conceptually the extension
from the single–input, single–observation case is usually straightforward, although mathematically there
are often additional difficulties to overcome. That said, integral control feedback systems have been
designed where at each time–step t, m control actions are made and p observations are recorded for
positive integers m and p; for example by Ke et al. (2009). The reference is now a vector of chosen values
r ∈ R

p. However, existing results do not address integral control where additionally componentwise
nonnegativity has to be preserved; clearly a requirement for meaningful population models. Combining
these twos ideas is seemingly not straightforward. One immediate issue is that not every nonnegative
reference vector can be a target for management. In our example considered above, obviously the former
observation (total population abundance) shall always be larger than the latter (abundance of a single
stage–class). Such a constraint must therefore also be present in the choice of reference. We comment that
integral control that preserves nonnegativity in the multi–input, multi–observation case is the subject of
ongoing research.

3.6 How the solutions to (P1)–(P5) interact

The solutions proposed to problems (P1)–(P5) interact as follows. Robustness to model uncertainty
(P1) (i) is encapsulated in assumptions (A1) and (A2), which are necessary and sufficient conditions
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for low–gain integral control and are hence assumed throughout. The same is true of the infinite–
dimensional versions of these assumptions (A1′) and (A2′). Thus the solutions to (P2)–(P5) include
this same robustness to model uncertainty. The material presented in addressing (P2), (P3) and (P5) is
cumulative, so our solution to (P3) (adaptive gain selection) incorporated the solution to (P2) (filtering
the input signal). We addressed problem (P4), namely that of increasing the rate of convergence
of the observations to the reference, by including a (P)roportional controller to augment the (I)ntegral
controller. For simplicity our main result of Section 3.4, Theorem 3.14, only considered the linear integral
control system (3.10). However, Theorems 3.6, 3.11 and 3.17 can all be extended to the PI feedback
system (3.27) (where the proportional k and integral gains g are equal). It is possible to extend versions
of all the theorems presented to incorporate additive observation errors and additive activation errors
((P1) (ii) and (iii) respectively). The proportional observation errors (3.17) are trickier to incorporate
into the solutions to (P2)–(P5), and a treatment of such is beyond the scope of this contribution.
However, appealing to techniques such as λ–tracking (Ilchmann, 1991; Ilchmann and Ryan, 1994) and
funnel control (Ilchmann et al., 2002) would provide insight in this direction.

4 Discussion

We have introduced integral control as a potential tool for population management. A brief overview
of the method has been given, which seeks to motivate both the necessity of integral control for robust
population management via restocking and indeed further how integral control is suitable for such a task.
Sections 2 and 3 contain a verbal and mathematical “road map” respectively of how integral control is
applied. Although well–established in control engineering and, as mentioned in the introduction, now
starting to appear in the biological literature; PI control has not been applied to population management,
to which we feel it is well suited. It has been suggested elsewhere in the literature that there is ample
scope for using control theory in ecology (Gouzé et al., 2000; Blackwood et al., 2010) but often it
seems that the focus is on optimal control (Lenhart and Workman, 2007). As mentioned in Section
2.1, the trade–off between performance and robustness has produced an unfortunate discord between
theory and practice, so much so that Safonov and Fan (1997) write (of optimal control) “By 1975, the
much lamented gap between academic theory and engineering practice in the control field had grown to
prodigious proportions.”

Integral control is a particular instance of feedback control, which is known to control engineers to be
incredibly robust to model uncertainty. Moreover, appealing in part to recent mathematical results by
the authors, the basic integral control model can be extended to meet several challenges that arise in
population ecology.

Furthermore, integral control is straightforward to implement (at least theoretically) once a PPM or IPM
is available. It does not suffer the so–called “curse of dimensionality” present in SDP which necessitates
low–dimensional models to be realised practically. Of course population management models that use
POMDPs and SDP (such as those cited in Section 2.1) treat an issue that we have omitted; namely that
of managing optimally. The reason for this omission is, in part, because it is not the aim of the present
manuscript. We have sought to describe a robust approach to population management via restocking.
With the material presented, however, and given costs of reintroduction and observation one could easily
investigate by simulation which choices of b, cT and g (reintroductions, measurements, and gain) give
rise to lowest costs or fastest responses. Such costs could also be traded off against set rewards of having
certain abundances of populations.

Another important consideration is that we, to use a medical analogy, have presented a treatment of
symptoms rather than a cure of the underlying condition, as managing via integral control requires that
populations are restocked indefinitely to secure persistence. Such a policy is clearly infeasible in practice,
at least in many cases. Although conservation biologists often rely on captive rearing, translocations and
species reintroductions (Sarrazin and Barbault, 1996); methods that fit our mathematical framework,
such conservation programmes are expensive, laborious and risk the welfare of endangered species. A
possibly more practical approach would be to combine integral control in the short term to raise pop-
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ulation abundances with additional conservation efforts to ensuring future population persistence, for
example by improving environmental conditions. The aim might be to restock to sufficient population
densities that ensure population viability; that is, the population persists unaided. In closing, it is our
hope that the methods described here shall join the suite of modelling tools available to population
managers.
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A Appendix

A.1 The constants γ, κ, µg and νg

• We first prove the inequality (3.24). In the proceeding arguments, for a sequence v we use the notation
v̂ to denote the Z–transform of v given by

v̂(z) =
∞∑

j=0

v(j)z−j ,

defined for all complex z where the summation converges absolutely. The step response of the linear
system (3.5) is the output of (3.5) subject to zero initial state (x0 = 0) and constant input ũ = 1 and is
given by

s(0) = 0, s(t) =

t−1∑

j=0

cTAjb, t = 1, 2, . . . .

Assumption (A1) ensures that s(t) → G(1) as t → ∞. Furthermore, a calculation shows that s has
Z–transform

ŝ(z) =
zG(z)

z − 1
, z ∈ C, |z| > 1 .

Under the assumptions that A, b, cT ≥ 0 and (A2) it follows that s(t) ≥ 0 and is non–decreasing. We
define the step response error

e(t) = s(t) −G(1), t = 0, 1, 2, . . . ,

which is consequently non–positive, non–decreasing and converges to 0. Furthermore, the Z–transform
of e satisfies

ê(z)

z
=
G(z) −G(1)

z − 1
, (A.1)

for every complex z with modulus greater than one. Since G is differentiable at z = 1 we note that

lim
z→1

ê(z) = lim
z→1

ê(z)

z
= lim

z→1

G(z) −G(1)

z − 1
= G′(1) . (A.2)

As z 7→ ê(z)
z

is continuous outside of the unit disc the above shows that we can extend z 7→ ê(z)
z

continuously to z = 1 with

ê(1) =
ê(1)

1
= G′(1) . (A.3)

We now use (A.3) and the property that e(t) ≤ 0 for every t to show that for any complex z with modulus
one,

−G′(1) = −ê(1) = −

∞∑

k=0

e(k) =

∞∑

k=0

|e(k)| · |z−(k+1)| ≥

∣
∣
∣
∣

ê(z)

z

∣
∣
∣
∣
≥ Re

(
−ê(z)

z

)

= Re

[
G(1) −G(z)

z − 1

]

= −
G(1)

2
− Re

[
G(z)

z − 1

]

. (A.4)
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Rearranging (A.4) gives

Re

[
G(z)

z − 1

]

≥ G′(1) −
G(1)

2
, for all complex z with modulus one,

which implies that

inf
|z|=1

Re

[
G(z)

z − 1

]

= inf
θ∈[0,2π)

Re

[
G(eiθ)

eiθ − 1

]

≥ G′(1) −
G(1)

2
. (A.5)

From Coughlan and Logemann (2009) we have that γ satisfies −∞ < γ ≤ −G(1)
2 < 0 as G(1) > 0, and so

0 > γ ≥ inf
θ∈[0,2π)

Re

[
G(eiθ)

eiθ − 1

]

≥ G′(1) −
G(1)

2
, (A.6)

where we have used the estimate (A.5). It is clear from γ ≤ −G(1)
2 and (A.6) that G′(1) < 0 and

consequently inequality (A.6) is equivalent to

0 < −γ = |γ| ≤ −G′(1) +
G(1)

2
= |G′(1)| +

G(1)

2
=:

1

κ
,

which implies (3.24).

• The constants µg and νg in (3.16) and (3.20) are given by

µg :=
∞∑

j=0

∣
∣
∣
∣
∣

[
cT 0

]
[

A b
−gcT 1

]j [
0
g

]
∣
∣
∣
∣
∣

and νg :=
∞∑

j=0

∣
∣
∣
∣
∣

[
cT 0

]
[

A b
−gcT 1

]j [
b
0

]
∣
∣
∣
∣
∣
,

respectively, which are both finite since by assumption g > 0 is such that Ag =
[

A b
−gcT 1

]

has ρ(Ag) < 1.

• We now derive the inequality (3.29). For complex z with modulus greater than or equal to one the
transfer function G given by (3.11) of the linear system (3.5) can be written as

G(z) =
∞∑

j=0

gjz
−j , where gj =

{

0, j = 0,

cTAj−1b, j ≥ 1 .

We define z 7→ G̃(z) := zG(z) and introduce the constant

γ̃ := sup
q≥0

{

inf
θ∈[0,2π)

Re

[(
q

eiθ
+

1

eiθ − 1

)

G̃(eiθ)

]}

.

We know that −∞ < γ̃ ≤ − G̃(1)
2 = −G(1)

2 . By inspection of the definition of G̃, the constant γ̃, and γ0
in (3.29) we see that

γ̃ = γ0, (A.7)

G̃′(z) = G(z) + zG′(z) and so G̃′(1) = G(1) +G′(1) . (A.8)

We note from (A.8) that

G̃′(1) = G(1) +G′(1) =

∞∑

j=1

gjz
−j −

∞∑

j=1

jgjz
−j =

∞∑

j=1

(1 − j)gjz
−j ≤ 0 , (A.9)

and consequently we can apply the estimate (3.24) to G̃ to yield that

2

G̃(1) + 2|G̃′(1)|
≤

1

|γ̃|
. (A.10)
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In light of (A.7), (A.8) and the following definition of κ0, (A.10) implies that

κ0 :=
2

G(1) + 2|G(1) +G′(1)|
=

2

G̃(1) + 2|G̃′(1)|
≤

1

|γ̃|
=

1

|γ0|
,

as required. Finally, as G(1) > 0, it is clear from (A.9) that G′(1) ≤ G̃′(1) ≤ 0 and thus

|G(1) +G′(1)| = |G̃′(1)| < |G′(1)| . (A.11)

From inequality (A.11) we deduce that

κ =
2

G(1) + 2|G′(1)|
<

2

G(1) + 2|G(1) +G′(1)|
= κ0 .

A.2 Proof of Theorem 3.4

Let (x, u) denote the solution of

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

u(t+ 1) = u(t) + g(r − (1 + ε(t))cTx(t)), u(0) = u0,

}

t = 0, 1, 2, . . . , (A.12)

the integral control system (3.10) with proportional observation errors ε(t). When ε is a sequence of
random variable then so are x and u. We let

x∗ = (I −A)−1b
r

G(1)
, u∗ =

r

G(1)
,

which are equilibria of (3.10) as in (3.12). For notational convenience we define the random variable

z(t) :=

[
x(t) − x∗
u(t) − u∗

]

, t = 0, 1, 2, . . . , (A.13)

a vector with n+ 1 components. A short calculation using (3.12) and (A.12) demonstrates that z(t) has
dynamics given by

z(t+ 1) =

[[
A b

−gcT 1

]

−

[
0
1

]

gε(t)
[
cT 0

]
]

z(t) −

[
0
1

]

grε(t), t = 0, 1, 2, . . . . (A.14)

We introduce the notation

Ag :=

[
A b

−gcT 1

]

, D :=

[
0n×1

1

]

, E :=
[
cT 0

]
,

where recall that 0n×1 is a column vector of n zeros. With this notation (A.14) can be more concisely
expressed as

z(t+ 1) = [Ag − gε(t)DE] z(t) −Dgrε(t), t = 0, 1, 2, . . . . (A.15)

Letting z(t) = E(z(t)) denote the expectation of z(t), we take expectations in (A.15) to yield that

z(t+ 1) = Agz(t), t = 0, 1, 2, . . . , (A.16)

where we have used the facts that expectation is linear, ε(t) = 0 and that ε(t) and z(t) are independent.
We are assuming that the gain parameter g > 0 is such that ρ(Ag) < 1, and hence from (A.16) we
conclude that

lim
t→∞

z(t) = 0, and thus lim
t→∞

y(t) = lim
t→∞

[
cT 0

]
z(t) + r = r,

establishing claim (1). We now consider the covariance

cov (z(t), z(t)) = E

(

(z(t) − z(t))(z(t) − z(t))T
)

= E(z(t)zT (t)) − z(t) · zT (t)

=: C(t) − z(t) · zT (t), t = 0, 1, 2, . . . , (A.17)
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where zT (t) = (z(t))T . We focus on the quantity C(t), which (appealing to (A.15)) has dynamics

C(t+ 1) = E(z(t+ 1)zT (t+ 1))

= E

(

[[Ag − gε(t)DE]z(t) −Dgrε(t)] [[Ag − gε(t)DE]z(t) −Dgrε(t)]
T
)

= E(Agz(t)(Agz(t))T ) + E(Agz(t)zT (t)(−gε(t))(DE)T ) + E((Agz(t)zT (t)(−gε(t))(DE)T )T )
︸ ︷︷ ︸

=0

+ E(Agz(t)ε(t)DT gr) + E((Agz(t)ε(t)DT gr)T )
︸ ︷︷ ︸

=0

+g2σ2
E(DEz(t)zT (t)(DE)T )

+ g2r2σ2DDT + E(D(−gε(t))Ez(t)ε(t)(−DT gr)) + E((D(−gε(t))Ez(t)ε(t)(−DT gr))T ),
(A.18)

for t = 0, 1, 2, . . . . Equation (A.18) simplifies to

C(t+ 1) = AgC(t)AT
g + g2σ2(DE)C(t)(DE)T + g2σ2r2DDT + rg2σ2DEz(t)DT

+ rg2σ2(DE)TDzT (t), t = 0, 1, 2, . . . . (A.19)

Define A1 := Ag, A2 := gσDE and write

c(t) := vec C(t), p(t) := vec
(

g2σ2r2DDT + rg2σ2DEz(t)DT + rg2σ2(DE)TDzT (t)
)

, (A.20)

where if xi are the columns of the n× n matrix X = [x1, x2, . . . , xn] then

vecX :=
[
xT1 xT2 . . . xTn

]T
∈ R

n2

.

Arguing now as in Ran and Reurings (2002), the matrix difference equation (A.19) can be written as the
(n+ 1)2 × (n+ 1)2 linear system

c(t+ 1) =

(
2∑

i=1

Ai ⊗Ai

)

c(t) + p(t), t = 0, 1, 2, . . . , (A.21)

where ⊗ denotes the Kronecker product. Using the fact that z(t) → 0 as t → ∞ it follows from (A.20)
that

lim
t→∞

p(t) = vec (g2σ2r2DDT ) =: p∞.

Consequently, if

ρ

(
2∑

i=1

Ai ⊗Ai

)

= ρ(A1 ⊗A1 +A2 ⊗A2) < 1, (A.22)

then for any initial condition c(0) the solution c of (A.21) converges to a finite limit c∞ satisfying

c∞ =

(
2∑

i=1

Ai ⊗Ai

)

c∞ + p∞. (A.23)

Assuming that (A.22) holds, defining C∞ as the matrix such that

c∞ = vecC∞,

we have from (A.23) that C∞ must satisfy

C∞ = AgC∞A
T
g + g2σ2(DE)C∞(DE)T + g2σ2r2DDT .

Furthermore, as C(t) converges to C∞ the iterative scheme (A.19) provides a method for approximating
C∞.

30



It remains to find a characterisation of the stability condition (A.22). Recalling that for square matrices
X,Y

σ(X ⊗ Y ) = {λµ : λ ∈ σ(X), µ ∈ σ(Y )} ,

we have that
ρ(A1 ⊗A1) = ρ(Ag ⊗Ag) = ρ(Ag)2 < 1,

and thus we can view A1 ⊗ A1 + A2 ⊗ A2 as a structured perturbation of A1 ⊗ A1. Therefore we can
characterise the condition (A.22) by appealing to stability radius arguments (Hinrichsen and Pritchard,
1986a,b). A calculation shows that A2 ⊗A2 is a rank one perturbation, namely

A2 ⊗A2 = g2σ2

[
0 0
cT 0

]

⊗

[
0 0
cT 0

]

= g2σ2

[
0(n2+2n)×1

1

]
[
(cT 0) ⊗ (cT 0)

]
=: g2σ2D̃Ẽ.

Therefore, condition (A.22) is satisfied if and only if

σ2g2 <
1

max
|z|=1

|Ẽ(zI −Ag ⊗Ag)−1D̃|
,

which is equivalent to the condition (3.18). We can now take the limit as t→ ∞ in (A.17) and use that
z(t) converges to zero to deduce that

lim
t→∞

cov (z(t), z(t)) = lim
t→∞

C(t) = C∞. (A.24)

The variance of the output satisfies

var y(t) = var (y(t) − r) = var
([
cT 0

]
z(t)

)
= cov

([
cT 0

]
z(t),

[
cT 0

]
z(t)

)

=
[
cT 0

]
cov (z(t), z(t))

[
c
0

]

, t = 0, 1, 2, . . . . (A.25)

Therefore taking limits in (A.25) and invoking (A.24) we have that

lim
t→∞

var y(t) =
[
cT 0

]
C∞

[
c
0

]

<∞,

proving claim (2).

A.3 More general input nonlinearities

We comment further on Remarks 3.9 and 3.12. Theorem 3.6 applies when φ in (3.21) is replaced by any
function φ : R → R that satisfies a so–called Lipschitz condition, namely

(A3) there exists l > 0 such that 0 ≤ φ(v) − φ(w) ≤ l(v − w) for all v ≥ w.

The constant l in assumption (A3) is called the Lipschitz constant of φ and, for example, the function
φ in (3.21) satisfies (A3) with l = 1.

For a function φ : R → R and a set X ⊆ R we let im φ and φ−1(X) denote the image of φ and preimage
of X of under the function φ respectively. In this more general setting, Theorem 3.6 can be restated
as: Assume that (3.22) satisfies (A1)–(A3). Then, for every r ∈ R such that r/G(1) ∈ imφ, every
g ∈ (0, 1/|γl|) and all initial conditions (x0, u0) ∈ R

n × R, statements (1), (2) and (3) hold. Moreover,
if additionally φ−1(r/G(1)) is a singleton then (xr, ur) is a globally asymptotically stable equilibrium of
(3.22).

The adaptive integral control result, Theorem 3.11, can be restated as: Assume that (3.26) satisfies
assumptions (A1)–(A3). Then, for every r ∈ R such that r/G(1) ∈ imφ, and all initial conditions
(x0, u0, h0) ∈ R

n × R× (0,∞),
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(1) lim
t→∞

u(t) =
r

G(1)
,

(2) lim
t→∞

x(t) = xr := (I −A)−1b
r

G(1)
,

(3) lim
t→∞

y(t) = lim
t→∞

cTx(t) = r.

Moreover, if φ−1(r/G(1)) is a singleton, then

(4) the non-increasing gain k(t) = 1/h(t) converges to a positive limit as t→ ∞,

(5) lim
t→∞

w(t) = wr, where φ(wr) =
r

G(1)
.

A.4 Proof of Theorem 3.14

By assumption k > 0 is chosen so that A − kbcT is componentwise nonnegative. Since A, b and cT

are also componentwise nonnegative we clearly have that A ≥ A − kbcT (the inequality is understood
componentwise) and so Berman and Plemmons (1994, p. 27) implies that

0 ≤ ρ(A− kbcT ) ≤ ρ(A) < 1.

We deduce that assumption (A1) holds for A−kbcT . Moreover, one can show that the transfer function
of (A− kbcT , b, cT ) is

z 7→ Gk(z) =
G(z)

1 + kG(z)
, so that Gk(1) =

G(1)

1 + kG(1)
> 0,

implying that assumption (A2) applies to (A− kbcT , b, cT ). Therefore Theorem 3.1 now applies to the
feedback system (3.30), that is the original integral control system (3.10) with A replaced by A− kbcT .
It is straightforward to demonstrate that the equilibria (x∗, u∗) of (3.30) are the same as those of (3.10).

A.5 IPM example

Following Briggs et al. (2010) we take Ω = [e−0.5, e3.5], so that α = e−0.5 ∼ 0.6 and β = e3.5 ∼ 33. The
kernel k is divided into

k(y, x) = p(y, x) + f(y, x),

where p denotes the survival component and f denotes the reproductive component. These have respec-
tive decompositions

p(y, x) = s(x)(1 − fp(x))g(y, x), and f(y, x) = PeJ(y)s(x)fp(x)S(x).

The functions s, fp, g, J, S and constant Pe are as in (Briggs et al., 2010, Table 1), where a biological
interpretation is also provided. For our simulations we have altered s, S and Pe to

s(x) = 0.7
e0.85x−0.62

1 + e0.85x−0.62
, S(x) = e1.85x+0.37, Pe = 0.05.

We have made these alterations so that the population is declining, and we can apply our results.

Finite element approximations are one method of reducing the infinite–dimensional IPM to a finite–
dimensional difference equation by discretising the spatial domain. That is, the function space L1(Ω)
is approximated by an indexed sequence of finite–dimensional subspaces which get ‘closer’ to L1(Ω) as
the index N increases. In what follows we give a very brief description of how finite elements is used to
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derive an approximation of the IPM and refer the reader to the texts by Johnson (1987) or Brenner and
Scott (1994) for a thorough treatment.

For an integer N , the interval [α, β] is partitioned into N subintervals with N+1 equally spaced endpoints
si defined by

si = α+
(i− 1)(β − α)

N
, 1 ≤ i ≤ N + 1.

In particular s1 = α and sN+1 = β. The N + 1 ‘hat’ or ‘tent’ functions δi are defined by

δi(s) =







s− si−1

si − si−1
s ∈ [si−1, si],

si+1 − s

si+1 − si
s ∈ [si, si+1],

0 otherwise,

1 ≤ i ≤ N + 1, (A.26)

where s0 = s1 = α and sN+2 = sN+1 = β. The hat functions are more readily understood visually, and
some examples are plotted in Figure A.1.

Figure A.1: Three sample hat functions de-
fined by (A.26) with α = 0, β = 1 and N = 10.
The functions δ1, δ5 and δ11 are plotted in
solid, dashed and dashed–dotted lines respec-
tively.
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Loosely speaking, the finite element method assumes that functions in L1(Ω) are well approximated by
a linear combination of finitely many of the δi functions. And so, supposing that n is a solution of the
IPM (3.5), using (3.32), (3.34) and (3.35), with input u and output y then for any continuous function
v the following equation is satisfied

∫

ξ∈Ω

v(ξ) [n(ξ, t+ 1) − (An)(ξ, t) − b(ξ)u(t)] dξ = 0, t = 0, 1, 2, . . . . (A.27)

We assume that v and n can be written as a linear combination of the δi, that is, as

v(t, ξ) =

N+1∑

i=1

vi(t)δi(ξ), n(t, ξ) =

N+1∑

j=1

nj(t)δj(ξ), (A.28)

for some coefficients vi and nj . Substituting (A.28) into (A.27) and simplifying gives the following matrix
equation

Mn(t+ 1) = Dn(t) + Ju(t), t = 0, 1, 2, . . . , (A.29)

where n(t) =
[
n1(t) . . . nN+1(t)

]T
and the matrices M,D and vector J have components given by

Mij =

∫

ξ∈Ω

δi(ξ)δj(ξ) dξ, Dij =

∫

ξ∈Ω

δi(ξ)

∫

s∈Ω

k(ξ, s)δj(s) dsdξ,

Ji =
[
J1 . . . JN+1

]T
, Ji =

∫

ξ∈Ω

δi(ξ)b(ξ) dξ,







1 ≤ i, j ≤ N + 1.
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It is straightforward to see that the matrix M is invertible; if q ∈ C
N+1 has ith component qi then we

see that

qTMq =

N+1∑

i,j=1

qiMijqj =

∫

ξ∈Ω

∥
∥
∥
∥
∥

N+1∑

i=1

qiδi(ξ)

∥
∥
∥
∥
∥

2

dξ ≥ 0 . (A.30)

Furthermore, if qTMq = 0 then as ξ 7→
∑N+1

i=1 qiδi(ξ) is continuous it follows from (A.30) that

N+1∑

i=1

qiδi(ξ) = 0, ∀ ξ ∈ Ω ⇒ qi = 0, ∀ i ∈ {1, 2, . . . , N + 1} ,

and thus q = 0, proving that M is invertible.

When the output is of the form

y(t) =

∫ ξ2

ξ1

n(s, t) ds, t = 0, 1, 2, . . . , (A.31)

where ξ1 < ξ2 denote the range of stage–classes observed, then substituting (A.28) into equation (A.31)
gives y(t) = Fn(t), where the row vector F =

[
F1 . . . FN+1

]
has components

Fi =

∫ ξ2

ξ1

δi(s) ds, 1 ≤ i ≤ N + 1.

Therefore, we have the following system with N + 1 states

n(t+ 1) = M−1Dn(t) +M−1Ju(t),

y(t) = Fn(t),

}

t = 0, 1, 2, . . . , (A.32)

which is an approximation of the IPM (3.5) and can be readily implemented. The matrix M and vector
F can be found analytically, whilst D and J generally need to be computed numerically. This can be
achieved using quadrature, or for example the Matlab functions integral and integral2. In principle,
larger N gives rise to a closer approximation, but clearly adds complexity to simulations. We denote by
GN the transfer function of (A.32) so that the steady–state gain of (A.32) is

GN (1) = F (I −M−1D)−1M−1J,

(whenever ρ(M−1D) < 1). For our example we worked on the log of the interval [α, β], as this gave
better results. As such the above goes through with s1 = −0.5, sN+1 = 3.5. Figure A.2 plots both the
spectral radius of M−1D and the steady state gain GN (1) for increasing N . The figure suggests that
both converge for N ≥ 10 and thus we choose N = 12 for the simulations in Figure 3.11. Furthermore,
this suggests that the model in Example 3.18 satisfies both assumptions (A1′) and (A2′).

Figure A.2: Spectral radius in solid–crossed
and steady–state gain in solid–circled of the
finite element approximations (A.32) of the
IPM model of platte thistle of Example 3.18.
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