A counter-example to
“Positive realness preserving model reduction
with H,, norm error bounds”

Chris Guiver and Mark R. Opmeer*

IEEE Trans. Circuits Syst. I. Regul. Pap.
Volume 58, Issue 6, pp 1410-1411 (2011)

Abstract

We provide a counter example to the Ho error bound for the dif-
ference of a positive real transfer function and its positive real balanced
truncation stated in “Positive realness preserving model reduction with
Hoo norm error bounds” IEEE Trans. Circuits Systems I Fund. Theory
Appl. 42 (1995), no. 1, 23-29. The proof of the error bound is based on a
lemma from an earlier paper “A tighter relative-error bound for balanced
stochastic truncation.” Systems Control Lett. 14 (1990), no. 4, 307-317,
which we also demonstrate is false by our counter example. The main
result of this paper was already known in the literature to be false. We
state a correct H°® error bound for the difference of a proper positive
real transfer function and its positive real balanced truncation and also
an error bound in the gap metric.

1 Counter-example

Consider the following continuous time, time invariant SISO linear system on
the state-space C* :
Mx(t) = Kx(t) + Lu(t),

y(t) = Hx(t) + Ju(t), 1)
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where
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The physical motivation for studying (1) comes from a finite element approxi-
mation of the heat equation

we(t, ) = Way(t, x),
w(0, z) = wo(z), t>0, z€[0,1], (3)
w(t,1) =0,

with input u and output y satisfying

u(t) = w,(t,0),

1) = —u(t,0) + T (1,0). W
By setting A := M 'K, G = ML, we can rewrite (1) as
x(t) = Ax(t) + Gu(t), 5)
y(t) = Hx(t) + Ju(t),
with transfer function
Z(s)=J+ H(sI — A)~'G. (6)

Observe that the system with transfer function Z — J is positive real as P =
M = P* >0, N =+—-2K and R = 0 satisfy the positive real linear matrix
equalities

A*P+ PA=—-N*N,

PG - H*=—-N*R, (7)
0= R"R.
Therefore for s € C with Re s > 0,
[(Z = D))" + (2 = J)(s) 2 0,
= [Z(s)]"+ Z(s) > 2J >0,

and so the system (5) is extended strictly positive real. Tt is easy to verify also
that (6) is a minimal, and hence controllable and observable, realisation of Z.
The positive real singular values of ¥ are

o1 = 0.6640, o2 = 0.2927, o3 = 0.0487, o4 = 0.0036. (8)



The first order positive real balanced truncation of ¥ is
. 0.01s +12.74
Z(s) = ————
T

and the approximation error ||Z — Z||3~ is 0.7648. However, the error bound
provided in [3, Theorem 2] is
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which is smaller than the error. Hence [3, Theorem 2] is false.

Remark 1. We remark that there is some confusion in the literature regarding
the nomenclature balanced stochastic truncation (the term that was used in
[3]). Originally balanced stochastic truncation of a positive real function Z
meant a reduced order triple Z,., V., W,. with V,. and W,. left and right spectral
factors of Z, + Z* respectively, which are obtained by balancing the minimal
nonnegative definite solutions of the (primal and dual) positive real equations
and truncating. Nowadays ([1, p. 229] or [4]) the term positive real balanced
truncation is used for obtaining only Z, in this way, and the term balanced
stochastic truncation is reserved for a generalization of obtaining V,. from a
function V' which can be seen as a left spectral factor of Z + Z*. The matlab
function bstmr (balanced stochastic truncation model reduction) for example
only does the latter. The article [3] however pertains to what is now called
positive real balanced truncation.

2 Explanation

The proof of [3, Theorem 2] fails because for our above example the bound (18)
in [3] is false. Using the notation of [3] (note here only one state is truncated
from ¥) it follows that
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Their proof of bound (18) uses [6, Lemma 5], which is only proven in [6] under
the assumptions (51) and (53) (using the numbering of [6]). However, the au-
thors state that [6, Lemma 5] also holds when (51) and (54) are satisfied. The
above example shows that this is false. Letting

S = Tl, P(S) = Q(S) = dlag (01702,03) = f-[,

then equations (51) and (54) from [6] hold with A, B and C' replaced by Ay, B
and C; (again, notation from [3]), but the conclusion fails as inequality (9)
shows. In this instance,

AT+ 114, 4+ CF ¢y # 0,



and so equation (53) of [6] does not hold.

Counter-examples to [6, Theorem 1], which also uses the flawed [6, Lemma
5] in its proof, can be found in Chen and Zhou [2] and Zhou et al. [7, p. 171].
It is not pointed out there, however, that the flaw to [6, Theorem 1] occurs in
[6, Lemma 5.

3 A new error bound

We prove the following error bounds in [5]. The gap metric error-bound was
proven independently by Timo Reis as well.

Theorem 2. Let G and G, denote the transfer functions of a minimal, asymp-
totically stable, positive real input-state-output system of McMillan degree m and
its positive real balanced truncation of McMillan degree k respectively. Then

5(Ga GT) < 2 Z i,
i=k+1

where § is the gap metric and

1G = Grllpe < 2min {(1+ G l3) (1 + 11 lpym):

L+ Gl ) (1 + G )} D e,
i=k+1

where o; are the positive real singular values.
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