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Abstract

We show that a non-dissipative feedback that has been shown in

the literature to exponentially stabilize an Euler-Bernoulli beam makes

a Rayleigh beam and a Timoshenko beam unstable.

1 Introduction

Feedback control of beams is a much studied topic, in part due to its applications
to the control of robot arms. The feedback control strategies used are often of
the static output feedback kind and the input and output are usually chosen to
make the closed loop system dissipative. An intriguing non-dissipative control
strategy was however chosen in [4]. We refer to that article for the physical
interpretation of their choice of feedback. As an open-loop model they consider
an undamped Euler-Bernoulli beam. Dissipative static output feedback strate-
gies give rise to a closed loop system that has eigenvalues asymptotic to a line
Reλ = −c for some constant c > 0 (see e.g. [3]). The eigenvalues of the non-
dissipative closed-loop system were shown in [4] to be asymptotic to the parts
of the parabolas Imλ = ±c (Reλ)2 in the left-half plane (see figure 1(a)). This
indicates that high frequencies are much better damped by the non-dissipative
feedback than by dissipative feedbacks, a very attractive property.

Besides the above asymptotics, [4] also showed that -as in the dissipative
case- the eigenvalues of the closed loop system are all in the open left-half
plane. However, for partial differential equations certain pathologies may occur
that prevent the stability of a system to be determined from the location of its
eigenvalues. Due to this, [4] only managed to show the exponential stability
of the closed-loop system for smooth initial conditions in spite of the fact that
all its eigenvalues are in the open left half-plane and are bounded away from
the imaginary axis. Using estimates of the Green function [2] showed that
the closed-loop system is a Riesz spectral system and since for Riesz spectral
systems the location of the eigenvalues does determine the stability, exponential
stability followed (also for non-smooth initial data). Subsequently, [5] gave a
more direct proof that the closed-loop system is a Riesz spectral system and [1]
gave a proof of exponential stability based on microlocal analysis instead of on
the Riesz basis property.
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As mentioned, [4] chose an Euler-Bernoulli beam model (and the subsequent
articles mentioned followed suit). This neglects the fact that the beam has a
moment of inertia (and probably less importantly it neglects shear effects and
non-linear effects). The Rayleigh beam model does incorporate the fact that
a beam has a positive moment of inertia. The eigenvalues based on a finite
element approximation of the Rayleigh beam with a non-dissipative feedback
analogous to the one in [4] are given in figure 1(b). Surprisingly, the eigenvalues
are very different from those in the Euler-Bernoulli case. In particular, there are
many unstable eigenvalues. In this article we prove that indeed the Rayleigh
beam with non-dissipative feedback has infinitely many unstable eigenvalues.
We also prove that the addition of shear effects on top of a nonzero moment
of inertia (i.e. replacing the Rayleigh model by the Timoshenko model) gives
no qualitative difference: also in that case there are infinitely many eigenvalues
with a positive real part. We conclude that a static non-dissipative feedback
as considered [4] is a worse choice for stability than dissipative feedback for
Rayleigh and Timoshenko beam models.
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(a) Euler-Bernoulli beam
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(b) Rayleigh beam

Figure 1: Numerical approximations for eigenvalues of the Euler-Bernoulli and
Rayleigh beam models

2 Main results

2.1 Rayleigh beam case.

We consider first the following Rayleigh beam problem:

EIwξξξξ + ρwtt − Iρwξξtt = 0,

w = w(ξ, t), t ∈ R+, ξ ∈ [a, b] ⊂ R,
(1a)

where w(ξ, t) is the transverse displacement of the beam at position ξ and time
t. We use the notation wt = ∂w

∂t and wξ = ∂w
∂ξ . The constants EI, ρ and Iρ

are physical parameters associated with the beam, for details see [6], or most
elementary vibration textbooks. The choice of boundary feedbacks is analogous
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to the choice in [4], [2], [5] and [1] and are for t ≥ 0:

w(a, t) = 0,

wξ(a, t) = 0,

−k1wt(b, t) = wξξ(b, t),

−k2wξt(b, t) = (Iρwξtt − EIwξξξ)(b, t),

(1b)

where k1, k2 ≥ 0 are the feedback constants. The beam is clamped at the
left endpoint which is described by the first two equations in (1b). To help
understand the motivation for the third and fourth equations in (1b), recall
that the energy of the Rayleigh beam is given by:

E(t) =
1

2

∫ b

a

EI|wξξ|2 + ρ|wt|2 + Iρ|wtξ|2 dξ.

Differentiating with respect to t, substituting using (1a), integrating by parts
and then applying the boundary conditions at ξ = a gives:

Et(t) =

〈(

wt(b, t)
wξt(b, t)

)

,

(

Iρwξtt(b, t) − EIwξξξ(b, t)
EIwξξ(b, t)

)〉

=: 〈y(t), u(t)〉 , (2)

where 〈·, ·〉 denotes the inner product on R2 and u(t) is the input. From Lya-
punov theory, it is sensible to choose u such that Et(t) < 0 along solutions w.
Therefore, an obvious choice of u is

u(t) = Ky(t), (3)

with K negative definite, which is the so-called dissipative boundary feedback.
Inserting (3) into (2) gives:

Et(t) = 〈y(t),Ky(t)〉 < 0.

The canonical negative definite matrix is

K =

(

−k1 0
0 −k2

)

, k1, k2 > 0.

The choice of boundary conditions in [2] for the Euler-Bernoulli case (i.e. (1a)
and (1b) with Iρ = 0) is to instead take

K =

(

0 −k2

−k1 0

)

, (4)

which is an indefinite matrix (and leads to non-dissipative boundary feedback).
Exponential stability is proven when k1 = 0 and k2 > 0. The same result also
holds in the alternate case with k1 > 0, k2 = 0 which follows by a duality
argument.

The choice of feedback matrix (4) in the Rayleigh case gives the third and
fourth equations in (1b).

Denote by (1) the partial differential equation (1a) and the boundary con-
ditions (1b). In this article we prove that not only is the Rayleigh system (1)
not exponentially stable, but further that the system is in fact unstable.
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To that end, we make the ansatz that a non-trivial solution to (1) has the
form:

w(ξ, t) = esteλ(ξ−a), s, λ ∈ C. (5)

Throughout this paper we will assume that s '= 0. In order for such an ansatz
(5) to be a solution λ, s must satisfy an algebraic condition given by the PDE
(1a) and a characteristic equation given by the boundary conditions (1b). The
algebraic condition is:

λ4 −
s2Iρ
EI

λ2 +
s2ρ

EI
= 0, (6)

giving

λ1 =

√
√
√
√

s2Iρ

EI +
√

s4I2
ρ

EI2 − 4 s2ρ
EI

2
, λ2 =

√
√
√
√

s2Iρ

EI −
√

s4I2
ρ

EI2 − 4 s2ρ
EI

2
,

λ3 = −λ1, λ4 = −λ2.

(7)

It follows that a non-trivial solution to (1a) is given by

w(ξ, t) = est
4
∑

i=1

cie
λi(s)(ξ−a), s ∈ C, ci ∈ R not all zero. (8)

The boundary conditions (1b) applied to (8) yields the second condition for
λ, s in the form of a linear system for the ci, given below:

Pc :=







1 1 1 1
λ1 λ2 −λ1 −λ2

ε1eλ1∆ ε2eλ2∆ ε1e−λ1∆ ε2e−λ2∆

λ1η1eλ1∆ λ2η2eλ2∆ −λ1η1e−λ1∆ −λ2η2e−λ2∆













c1

c2

c3

c4







= 0, (9)

where ∆ := b − a, εi = λ2
i + k1s and ηi = (−k2s − s2Iρ + EIλ2

i ). Equation (9)
has a non-trivial solution c if and only if detP = 0. Computing detP = 0 and
dividing through by s5 results in the following characteristic equation:

0 = λ1λ2

[

I2
ρ

EIs
+

k2Iρ
EIs2

+
k1Iρ
s2

+ 2
k1k2 − ρ

s3

]

cosh(λ1∆) cosh(λ2∆)

−
[
ρIρ
EIs

+
k1k2Iρ
EIs

+
2k2ρ

EIs2
+

2k1ρ

s2

]

sinh(λ1∆) sinh(λ2∆)

− λ1λ2

[
k2Iρ
EIs2

+
k1Iρ
s2

+ 2
ρ+ k1k2

s2

]

. (10)

We prove the instability of the system (1) by investigating the sign of Re s,
for s a zero of (10) and ultimately proving (10) has zeros with positive real
part. In this case we have a solution of (1) in the form (8) with Re s > 0,
and instability follows. We mention again that in [2] only one of the feedback
parameters is required to be non-zero in order to achieve exponential stability.
To give full generality we consider all three possible cases. These are where
exactly one of k1 and k2 is zero, and also where both k1, k2 are positive. Our
main results are now stated beneath:

4



Theorem 2.1. For all k1, k2 ≥ 0 with k1 + k2 > 0 the equation (10) has zeros
sn ∈ C, n ∈ N which satisfy

∣
∣
∣
∣
∣
sn −

(πn + π
2 )i

b − a

√

EI

Iρ

∣
∣
∣
∣
∣
→ 0 as n → ∞.

Further, Re sn > 0 for infinitely many n ∈ N.

We then deduce the following corollary.

Corollary 2.2. For all k1, k2 ≥ 0 with k1 + k2 > 0 the system (1) is unstable.

2.2 Timoshenko beam case.

We consider next the Timoshenko beam equation:

w = w(ξ, t), t ∈ R+, ξ ∈ [a, b] ⊂ R,

EIwξξξξ + ρwtt − (Iρ +
EIρ

K
)wξξtt +

Iρρ

K
wtttt = 0,

(11)

where K is an additional physical parameter, the shear modulus. It is also
convenient to write (11) as the coupled wave equations

ρwtt = Kwξξ − Kφξ,

Iρφtt = EIφξξ − Kφ+ Kwξ,
(12a)

where φ is the angular displacement. Note that as the parameter K tends to
infinity the equation (11) collapses to (1a), the PDE for the Rayleigh beam,
which represents the beam becoming rigid to shear. The non-dissipative bound-
ary feedbacks for the Timoshenko beam are:

wt(a, t) = φt(a, t) = 0,

wξ(b, t) − φ(b, t) = −k1Iρφt(b, t),

φξ(b, t) = −k2ρwt(b, t),

(12b)

where k1, k2 ≥ 0 are the feedback constants.
There is an elegant formulation of the Timoshenko beam problem using state

variables x1, x2, x3, x4 where

x1 = wξ − φ,

x2 = ρwt,

x3 = φξ,

x4 = Iρφt.

In these variables the energy of the Timoshenko beam is

E(t) =
1

2

∫ b

a

K|x1|2 +
1

ρ
|x2|2 + EI|x3|2 +

1

Iρ
|x4|2 dξ.

Arguing as in the Rayleigh case it is not difficult to see that (12b) are indeed
the analogous choice of non-dissipative boundary conditions for this problem.
For more information on the state variable approach to the Timoshenko beam
we refer the reader to Villegas’ thesis [7].
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Let (12) denote the PDE (12a) and boundary conditions (12b). We proceed
as in the Rayleigh case and make the ansatz for a solution of (12)

w(ξ, t) = est
4
∑

i=1

cie
λi(s)(ξ−a),

φ(ξ, t) = est
4
∑

i=1

cie
λi(s)(ξ−a)

(

λi −
ρs2

Kλi

)

,

(13)

for ci ∈ R not all zero. The λ, s satisfy algebraic conditions from the PDE (12a)
and the boundary conditions (12b). For each s ∈ C, the λi are the four roots of

EIλ4 −
(

Iρ +
EIρ

K

)

s2λ2 +

(

ρs2 + s4 ρIρ
K

)

= 0. (14)

The second condition, the corresponding linear system for the ci, is given by:

Q(s)c :=







1 1 1 1
ε1 ε2 −ε1 −ε2

η1eλ1∆ η2eλ2∆ −η1e−λ1∆ −η2e−λ2∆

χ1eλ1∆ χ2eλ2∆ χ1e−λ1∆ χ2e−λ2∆













c1

c2

c3

c4







= 0, (15)

where ∆ := b − a and for i ∈ {1, 2}

εi = λi −
ρs2

Kλi
, ηi = k1Iρλi +

ρs

Kλi
−

k1Iρρs
2

Kλi
, χi = λ2

i −
ρs2

K
+ k2ρs. (16)

Again, we seek s such that detQ = 0. The resulting characteristic equation is:

0 = R(s, λ1, λ2) cosh(λ1∆) cosh(λ2∆)

+ P (s, λ1, λ2) sinh(λ1∆) sinh(λ2∆) + T (s, λ1, λ2) (17)

where P,R and T are polynomials in several variables and are given in more
detail in Section 4.

As before, zeros of the characteristic equation (17) will give a solution to the
Timoshenko beam system (12) in the form of our ansatz (13). We prove (12) is
not exponentially stable by proving (17) has zeros with positive real part.

Theorem 2.3. For all positive ρ,EI, Iρ and K with
Iρ

EI '= ρ
K and all non-

negative k1, k2 with k1 +k2 > 0 and k1k2 '= 1
KIρ

, the equation (17) has infinitely

many zeros, sn ∈ C, with Re sn > 0.
If

Iρ

EI = ρ
K and k1k2 > 0, k1k2 '= 1

KIρ
then the above result holds. If

Iρ

EI = ρ
K and k1k2 = 0 then the above result holds provided that additionally

cos

(

(b−a)
2

√
ρ
Iρ

)

'= 0.

We deduce the following corollary.

Corollary 2.4. Assuming the hypotheses of Theorem 2.3, the system (12) is
unstable.
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3 Proofs for the Rayleigh beam.

The work that follows is an analysis of the characteristic equation (10) which
eventually allows us to deduce Theorem 2.1. The main ingredient in the proof
is Rouché’s theorem, which we first apply to the equation (10) on circles centred
on the imaginary axis. We work with the identity:

0 = cosh(λ1∆) cosh(λ2∆) +
2
∑

i=1

ai

si
cosh(λ1∆) cosh(λ2∆)

+
2
∑

i=1

bi

si
sinh(λ1∆) sinh(λ2∆) +

2
∑

i=1

ci

si
, (18)

where the numbers ai, bi, ci are constants. We observe that since λ1λ2 =
√

s2 ρ
EI

the characteristic equation (10) is an example of (18) with a particular choice
of constants. We seek to eliminate the λi terms from (18) and to do this we will
make use of their Taylor expansions, however first we make a remark to ease
the following notation.

Remark 3.1. For complex numbers z and indices n we use the notation O(zn)
in place of O(|z|n).

The Taylor expansions of C * z +→ λ1(z), λ2(z) at infinity are given respec-
tively by:

λ1(z) = z

√

Iρ
EI

+ O(z−1), (19)

and λ2(z) =
√

ρ

Iρ
+ O(z−2). (20)

Remark 3.2. In what follows we will only be considering complex s with
bounded real part and large modulus. For such s it follows that

cosh(µs), sinh(µs) = O(1), ∀ µ ∈ R.

Let d1 := ∆
√

Iρ

EI , d2 := −∆ ρ
√

EI

2Iρ

√
Iρ

and d3 := ∆
√

ρ
Iρ

. Using the Maclaurin

series

cosh x = 1 +
x2

2
+ O(x4), (21)

sinhx = x +
x3

6
+ O(x5), (22)

the Taylor expansions (19) and (20), the hyperbolic addition formulae and Re-
mark 3.2 we obtain

cosh(∆λ1) = cosh(d1s) +

(
d2

s
+ O(s−2)

)

sinh(d1s) + O(s−2) cosh(d1s)

= cosh(d1s) +
d2

s
sinh(d1s) + O(s−2), (23)

cosh(∆λ2) = cosh d3 + O(s−2). (24)
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Similarly

sinh(∆λ1) = sinh(d1s) +
d2

s
cosh(d1s) + O(s−2), (25)

sinh(∆λ2) = sinh(d3) + O(s−2). (26)

Substituting (23)-(26) into equation (18) gives

0 = cosh(d1s) cosh d3 +
1

s
[d2 cosh d3 sinh(d1s) + a1 cosh(d1s) cosh d3

+b1 sinh(d1s) sinh d3 + c1] + O(s−2). (27)

Define:

f(s) := cosh d1s, (28)

g(s) :=
1

s cosh d3
[d2 cosh d3 sinh(d1s) + a1 cosh(d1s) cosh d3

+ b1 sinh(d1s) sinh d3 + c1] + O(s−2) (29)

so that equations (10) and (27) are equivalent to f + g = 0. In order to apply
Rouché’s theorem to f +g we will need an upper bound for g and a lower bound
for f on appropriately chosen contours in the complex plane.

Definition 3.3. The arguments that follow will make use of the points tni ∈ C

which are given by:

tni :=
(πn + π

2 )i

∆

√

EI

Iρ
=

(πn + π
2 )i

d1
, n ∈ Z. (30)

By construction the points tni are the zeros of f .

Our next task is to bound g from above.

Lemma 3.4. There is a positive constant C1 such that for complex z with
Re z ≤ 1 and |z| sufficiently large the following bound holds:

|g(z)| ≤
C1

|z|
.

Moreover, there is another positive constant C2 such that for all complex δ
with |δ| ≤ 1 and sufficiently large positive integers, n, we have

|g(tni + δ)| ≤
C2

n
. (31)

Proof. The first bound follows easily from the definition of g, see equation (29),
the triangle inequality and Remark 3.2. The second inequality follows quickly
from the first.

Lemma 3.5. For sufficiently large positive integers, n, and for all δn ∈ C with
|δn| = 2C2

d1

√
n

the following bound holds

|f(tni + δn)| ≥
C2√

n
. (32)
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Proof. For δ ∈ C the Taylor expansion of f about tni is

f(tni + δ) = f(tni)
︸ ︷︷ ︸

=0

+δf ′(tni) + δ2f ′′(tni)
︸ ︷︷ ︸

=0

+
∞
∑

j=3

δjf (j)(tni)

j!

= δd1i(−1)n + δ3
∞
∑

j=0

δjf (j+3)(tni)

(j + 3)!
,

so that |f(tni + δ)| ≥ d1|δ| − |δ|3.

∣
∣
∣
∣
∣
∣

∞
∑

j=0

δjf (j+3)(tni)

(j + 3)!

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

≤D, constant

≥ |δ|(d1 − D|δ|2).

If δn ∈ C with |δn| = 2C2

d1

√
n

for n sufficiently large so that 1 − 4C2
2D

d3
1n

≥ 1
2 then

|f(tni + δn)| ≥
C2√

n
,

as required.

Corollary 3.6. For sufficiently large positive integers, n, the functions f and
f + g have precisely one zero, tni and sn respectively, in the discs centered at
tni with radius 2C2

d1

√
n
. By construction Re sn → 0 as n → ∞.

Proof. Take δn ∈ C with |δn| = 2C2

d1

√
n
. Choosing n sufficiently large so that

Lemmata 3.4 and 3.5 hold we compare equations (31) and (32) which gives

|f(tni + δn)| ≥
C2√

n
>

C2

n
≥ |g(tni + δn)|. (33)

Invoking Rouché’s theorem we deduce the corollary.

The statement of Corollary 3.6 is the first part of Theorem 2.1. We now
prove there are infinitely many zeros sn with positive real part.

For n ∈ N, write sn = tni + εn =
(nπ+ π

2
)i

d1
+ εn. By Corollary 3.6, we know

εn → 0 as n → ∞.
To make the following arguments slightly clearer, we consider the identity

sn(f + g)(sn) ≡ 0. Taking the Taylor expansion of f at sn about tni gives

0 =(tni + εn)



f(tni)
︸ ︷︷ ︸

=0

+εnf ′(tni) +
ε2n
2

f ′′(tni)
︸ ︷︷ ︸

=0

+O(ε3n)



+ sng(sn)

= d1i
2(−1)ntnεn cosh d3 + tniO(ε3n) + O(ε2n) + d2 cosh d3 sinh(d1sn)

+ a1 cosh(d1sn) cosh d3 + b1 sinh(d1sn) sinh d3 + c1 + O(s−2
n ). (34)

We note that using the Maclaurin series (21) and (22) yields

cosh(d1sn) = i(−1)n sinh(d1εn) = i(−1)nd1εn + O(ε3n),

sinh(d1sn) = i(−1)n cosh(d1εn) = i(−1)n + O(ε2n).

Thus equation (34) becomes

0 = − d1(−1)ntnεn cosh d3 + d2 cosh d3i(−1)n + a1d1 cosh d3i(−1)nεn

+ b1 sinh d3i(−1)n + c1 + O(s−2
n ) + tniO(ε3n) + O(ε2n). (35)
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We would like to split equation (35) into two parts so that we can find an
expression for Re εn and ultimately apply Rouché’s theorem again. As such
write (35) as

0 =ψ1,n(εn) + ψ2,n(εn)

where

ψ1,n(z) = − d1(−1)ntnz cosh d3 + d2i(−1)n cosh d3 (36)

+ b1 sinh d3i(−1)n + c1,

ψ2,n(z) =(tni + z)(f + g)(tni + z) − ψ1,n(z). (37)

It follows immediately that ψ1,n has zeros ε̃n with

Re ε̃n =
c1(−1)n

(nπ + π
2 ) cosh d3

, n ∈ N.

Moreover, by (36) the following bound for |ε̃n| holds

|ε̃n| ≤
|c1| + |d2| cosh d3 + |b1| sinh d3

d1tn cosh d3
≤

D

n
, D constant. (38)

We deduce that Re ε̃n takes both positive and negative sign for infinitely
many n, so long as c1 is not zero. By considering the original characteristic
equation (10), we see that provided k1 + k2 > 0, c1 is always non-zero.

Take n sufficiently large (so that Corollary 3.6 holds) and such that Re ε̃n is
positive. Let νn := Re ε̃n

2 eiθ for θ ∈ [0, 2π). Then

|ψ1,n(ε̃n + νn)| = d1|νntn| cosh d3 =
c1

2
> 0, independently of n and θ. (39)

Equations (37) and (38) yield another constant D′ such that

|ψ2,n(ε̃n + νn)| ≤
D′

n
, (40)

whence |ψ1,n(ε̃n + νn)| > |ψ2,n(ε̃n + νn)|, for n sufficiently large.

Since θ was arbitrary we can invoke Rouché’s theorem to conclude that the
functions ψ1,n and ψ1,n +ψ2,n both have one zero in the discs {z ∈ C : |z− ε̃n| ≤
Re ε̃n

2 }, ε̃n and εn respectively. Further, by construction Resn = Reεn and thus

Re sn ≥ Re ε̃n

2 > 0, which concludes the proof of Theorem 2.1.

4 Proofs for the Timoshenko beam.

We now turn our attention to the Timoshenko beam. Our starting point is the
equation detQ = 0, where Q is given in (15). A short calculation gives

0 = −det Q = −

∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 1
ε1 ε2 −ε1 −ε2

η1eλ1∆ η2eλ2∆ −η1e−λ1∆ −η2e−λ2∆

χ1eλ1∆ χ2eλ2∆ χ1e−λ1∆ χ2e−λ2∆

∣
∣
∣
∣
∣
∣
∣
∣

= (ε1χ1η2 + ε2χ2η1) cosh(∆λ1) cosh(∆λ2)

− (ε2χ1η2 + ε1χ2η1) sinh(∆λ1) sinh(∆λ2) − (ε2χ1η1 + ε1χ2η2),
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where εi, ηi and χi are stated in (16). Expanding these terms is a laborious but
elementary process which uses the relations

λ2
1 + λ2

2 =

(
Iρ
EI

+
ρ

K

)

s2 and λ2
1λ

2
2 =

ρ

EI
s2 +

ρIρ
EIK

s4.

After multiplying through by (λ1λ2)
2

ρs3 we eventually infer (17) with

R(s, λ1, λ2) =λ1λ2

{
θ2

K
s2 + θϕs +

2ρIρ
EI

(

k1k2 −
1

KIρ

)}

,

P (s, λ1, λ2) = −
{
ρIρθ

2

K
k1k2s

4 +
ρθϕ

K
s3 +

[
ρ

EIK

(
Iρ
EI

+
ρ

K

)

+
Iρρ

EI

(
Iρ
EI

−
3ρ

K

)

k1k2

]

s2 + 2
ρϕ

EI
s

}

T (s, λ1, λ2) = − λ1λ2

{

θϕs + 2
ρIρ
EI

(

k1k2 +
1

KIρ

)}

,

where

θ :=
Iρ
EI

−
ρ

K
, and ϕ :=

Iρ
EI

k1 +
ρ

K
k2. (41)

We consider the following equation

0 = λ1λ2[a1s
2 + a2s + a3] cosh(∆λ1) cosh(∆λ2)

+ [b1s
4 + b2s

3 + b3s
2 + b4s] sinh(∆λ1) sinh(∆λ2) + λ1λ2[c1s + c2], (42)

where ai, bi and ci are constants. We comment that by choosing the constants
ai, bi, ci appropriately, we recover from (42) the characteristic equation (17).

For the time being we assume Iρ

EI > ρ
K and so θ > 0, though the arguments

that follow can be altered if θ < 0. The arguments change if θ = 0, which will
be considered at the very end. We need the Taylor expansions

λ1(s) =

√

Iρ
EI

s −
ρ

2(Iρ − EIρ
K )s

√

EI

Iρ
+ O(s−3) =: d1s +

d2

s
+ O(s−3)

and λ2(s) =

√

ρ

K
s +

ρ

2(Iρ − EIρ
K )s

√

K

ρ
+ O(s−3) =: e1s +

e2

s
+ O(s−3).

Note that by assumption d1 > e1. It follows that

λ1λ2 =

√

ρIρ

EIK
s2 +

√

ρK

4IρEI
+ O(s−2) =: α1s

2 + α2 + O(s−2). (43)

Substituting (43) into (42), expanding the hyperbolic terms, and dividing through
by α1a1s

4 yields

0 = cosh(∆d1s) cosh(∆e1s) − L sinh(∆d1s) sinh(∆e1s)

+
ã2

s
cosh(∆d1s) cosh(∆e1s) +

b̃2

s
sinh(∆d1s) sinh(∆e1s)

+
c̃1

s
+

∆(d2 − Le2)

s
cosh(∆e1s) sinh(∆d1s)

+
∆(e2 − Ld2)

s
cosh(∆d1s) sinh(∆e1s) + O(s−2). (44)
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The constants ã2, b̃2, c̃2 and L are important. They are a2

a1
, b2
α1a1

, c1

a1
respectively

and
L :=

√

EIKρIρ k1k2 ≥ 0. (45)

We set

f(s) := cosh(∆d1s) cosh(∆e1s) − L sinh(∆d1s) sinh(∆e1s), (46)

g(s) :=
ã2

s
cosh(∆d1s) cosh(∆e1s) +

b̃2

s
sinh(∆d1s) sinh(∆e1s) +

c̃1

s

+
∆(d2 − Le2)

s
cosh(∆e1s) sinh(∆d1s)

+
∆(e2 − Ld2)

s
cosh(∆d1s) sinh(∆e1s) + O(s−2), (47)

so that (44) can be written f(s) + g(s) = 0.
We first prove that the zeros of f + g converge to the imaginary axis. For

this we will need the following bound on g.

Lemma 4.1. There is a positive constant C1 such that for complex s with
sufficiently large modulus and bounded real part

|g(s)| ≤
C1

|s|
.

In particular there is another positive constant C2 such that for all complex δ
with small modulus we have

|g(tni + δ)| ≤
C2

n
. (48)

Proof. The arguments are identical to that for the Rayleigh beam, see Lemma
3.5.

We now describe the zeros of the function f , defined by (46). The constant
L defined by (45) plays a crucial role.

Lemma 4.2. If L = 0 then f has zeros

tn,0i :=
(nπ + π

2 )

∆d1
i, n ∈ Z.

If L = 1 then f has zeros

tn,1i :=
(nπ + π

2 )

∆(d1 − e1)
i, n ∈ Z.

Otherwise for every integer n the function f has at least one zero, denoted tn,Li,

on the imaginary axis with modulus in the interval [ nπ
∆(d1−e1)

, (n+1)π
∆(d1−e1)

]. Further

if ′(ti) ∈ R, if ′(t2n,Li) ≤ 0 and if ′(t2n+1,Li) ≥ 0.

Proof. The first two parts are trivial, noting for example that when L = 0

f(s) = cosh(∆d1s) cosh(∆e1s).

For the last part let s = it for real t. Then

f(s) = cos(∆d1t) cos(∆e1t) + L sin(∆d1t) sin(∆e1t)

=
(1 + L)

2
cos∆(d1 − e1)t +

(1 − L)

2
cos∆(d1 + e1)t

=: fR(t).

12



The function fR is a real valued, smooth function. Since L > 0 we have 1+L
2 >

1−L
2 and so by the intermediate value theorem fR has a zero in every interval

[ nπ
∆(d1−e1)

, (n+1)π
∆(d1−e1)

], for n ∈ N. Secondly, because the function fR decreases

(increases) between 2nπ
∆(d1−e1)

and (2n+1)π
∆(d1−e1)

(
(2n+1)π
∆(d1−e1)

and 2(n+1)π
∆(d1−e1)

)

, though

not necessarily monotonically, for every integer n we conclude there must be a
zero with f ′

R
(t2n,L) ≤ 0 (f ′

R
(t2n+1,L) ≥ 0). Finally by the chain rule f ′

R
(t) =

if ′(ti).

We now seek a lower bound for f which will require a subsequence when
L = 0.

Lemma 4.3. There is an infinite subsequence of zeros
(

tnj ,0i
)

j∈N
with the fol-

lowing two properties:

∀j ∈ N : | cos
(

e1∆tnj ,0

)

| ≥ B0 > 0, independently of j. (49)

There are infinitely many j such that nj+1 − nj = 1 and for these j

∃k ∈ N : (k +
1

2
)π < e1∆tnj ,0 < e1∆tnj+1,0 < (k + 1 +

1

2
)π. (50)

Proof. Recall first that tn,0 =
(nπ+ π

2
)

d1∆
and so successive terms e1∆tn+1,0 and

e1∆tn,0 are separated by e1π
d1

< π. The lower bound holds because cosx is zero
if and only if x = mπ+ π

2 for integer m. As the iterates e1∆tn,0 = e1

d1
(nπ+ π

2 ) are
either periodic mod π or dense in [−π

2 , π
2 ) mod π we can choose a subsequence

avoiding −π
2 and π

2 (both mod π) by some finite distance, hence the bound. To
prove the second property we assume first that the iterates (e1∆tn,0) are dense in

[−π
2 , π

2 ) mod π. Then there is some integer n with −π
2 < e1∆tn,0 <

(
π
2 − e1π

d1

)

.

Given such an n, e1∆tn+1,0 satisfies −π
2 < e1∆tn,0 < e1∆tn+1,0 < π

2 mod π.
The case when the iterates are periodic is similar.

Remark 4.4. We use the notation tni to denote a zero of f when the value
of L is unimportant, otherwise we use the double subscript tn,L. For reasons
apparent below, if L = 0 we will need to restrict ourselves to the subsequence
of zeros tnj ,0i defined in Lemma 4.3. For ease of presentation we drop the
subsequence notation from now on.

Lemma 4.5. For integers n with sufficiently large modulus and all complex δn

with |δn| = 2C2

B1

√
n

the bound

|f(tni + δn)| ≥
C2√

n
(51)

holds, where B1 is a positive constant given below.

Proof. As in the proof of Lemma 3.5, the Taylor expansion of f about tni yields

|f(tni + δ)| ≥ |f ′(tni)||δ| − |δ|2
∣
∣
∣
∣
∣

∞
∑

k=0

f (k+2)(tni)δk

(k + 2)!

∣
∣
∣
∣
∣
. (52)

We consider L = 0 first. We have

f ′(tn,0i) = ∆d1i(−1)n cosh (e1∆tn,0i) ⇒ |f ′(tn,0i)| = ∆d1| cos(e1∆tn,0)|.

13



The subsequence (tn,0) has been chosen in such a way that these terms are
bounded from below, see Lemma 4.3. Thus there is a positive constant B1 such
that

|f ′(tn,0)| ≥ B1. (53)

Secondly, when L = 1:

f ′(tn,1i) = ∆(d1 − e1) sinh(∆d1tn,1i) = ∆(d1 − e1)(−1)ni

∴ |f ′(tn,1i)| = ∆(d1 − e1) =: B1 > 0 (54)

Finally, when L '∈ {0, 1}, set r1 := d1−e1, r2 := d1+e1, θ1 = 1+L
2 , θ2 = 1−L

2 .
Then fR as defined in the proof of Lemma 4.2 can be written

fR(t) =θ1 cos(∆r1t) + θ2 cos(∆r2t),

which when we differentiate yields

f ′
R(tn,L) = −∆(θ1r1 sin r1tn,L + θ2r2 sin r2tn,L).

Now observe that since fR(tn,L) = 0

|f ′(tn,Li)|2 = |f ′
R(tn,L)|2 = ∆2(r2

1 + r2
2)|fR(tn,L)|2 + |f ′

R(tn,L)|2.

Expanding and collecting gives

= ∆2[r2
1θ

2
1 + r2

2θ
2
2 + r2

2θ
2
1 cos2 r1tn,L + r2

1θ
2
2 cos2 r2tn,L

+ 2θ1θ2 (r2
1 + r2

2)
︸ ︷︷ ︸

≥r1r2

cos r1tn,L cos r2tn,L + 2θ1θ2r1r2 sin r1tn,L sin r2tn,L
︸ ︷︷ ︸

≥−1

]

≥∆2(r1θ1 − r2θ2)
2 + ∆2(r2θ1 cos r1tn,L + r1θ2 cos r2tn,L)2

≥∆2(r1θ1 − r2θ2)
2 =

∆2ρIρ
2

(
1

KIρ
− k1k2)

2

:=B2
1 > 0, (55)

where we have used the assumption k1k2 '= 1
KIρ

. Note that (55) is the same

bound as (53) and (54).
Moving on, it is easy to see that there is a positive constant B2 such that

|
∞
∑

k=0

f (k+2)(tni)δk

(k + 2)!
| ≤ B2. (56)

Inserting the bound (56) and the applicable bound from (53)-(54) (which de-
pends on L ≥ 0) into inequality (52) yields

|f(tni + δ)| ≥ B1|δ| − B2|δ|2. (57)

Take complex δn with |δn| = 2C2

B1

√
n

and n large enough so that 1 − 2B2C2

B2
1

√
n

≥ 1
2 .

By (57) it now follows that

|f(tni + δn)| ≥ |δn|B1

(

1 −
B2|δn|

B1

)

=
2C2√

n

(

1 −
2B2C2

B2
1

√
n

)

≥
C2√

n
.
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Corollary 4.6. The zeros tni of f are simple. Moreover, for n ∈ N and L >
0, if ′(t2n,Li) < 0 and if ′(t2n+1,Li) > 0.

Proof. The bounds (53), (54) and (55) show that f ′(tni) '= 0. When L = 1:

if ′(tn,1i) = −∆d1(−1)n

{

< 0 n even

> 0 n odd.

For L > 0, L '= 1 combining f ′(tni) '= 0 with the statement of Lemma 4.2 we
obtain the desired strict inequalities.

Corollary 4.7. For integers n with sufficiently large modulus, the functions f
and f + g have the same number of zeros, i.e. at least one, in the discs centered
at tni with radius δn = 2C2

B1

√
n
. We call one of these zeros sn. By construction

Re sn → 0 as n → ∞.

Proof. This is an application of Rouché’s theorem on inequalities (48) and (51).

We next prove there are infinitely many sn with positive real part. Writing
sn =: tni + εn a zero of f + g, we note that

0 = (tni + εn)(f + g)(sn) = (tni + εn)(f + g)(tni + εn)

= (tni + εn)



f(tni)
︸ ︷︷ ︸

=0

+f ′(tni)εn + O(ε2n)



+ (tni + εn)g(tni + εn). (58)

Firstly consider the related problem, namely finding Re ε̃n,L for the equation

−f ′(tni)tniε̃n,L = ã2 cosh(∆d1tni) cosh(∆e1tni)

+ b̃2 sinh(∆d1tni) sinh(∆e1tni) + c̃1

+∆(e2 − Ld2) cosh(∆d1tni) sinh(∆e1tni)

+ ∆(d2 − Le2) cosh(∆e1tni) sinh(∆d1tni). (59)

Note the equation (59) contains all the asymptotically largest terms from equa-
tion (58). The L dependence of ε̃n has also been highlighted with a subscript.
Using the relations

cosh(xi) = cos x

sinh(xi) = i sinx

}

∀ x ∈ R,

we obtain

Re ε̃n,L =
ã2 cos(∆d1tn,L) cos(∆e1tn,L) − b̃2 sin(∆d1tn,L) sin(∆e1tn,L) + c̃1

−tn,Lif ′(tn,Li)
,

=
−ϕK

θtn,Lif ′(tn,Li)
[cos(∆d1tn,L) cos(∆e1tn,L)

+
e1

d1
sin(∆d1tn,L) sin(∆e1tn,L) − 1]

=:
−ϕK

θtn,Lif ′(tn,Li)
h(tn,L) (60)

which is well defined by Corollary 4.6 (and the term if ′(tn,Li) is real).
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Lemma 4.8. For all L ≥ 0 the terms of the sequences (h(tn,L))n∈N do not
change sign and are not zero.

Proof. Let n ∈ N. We look at the three cases L = 0, L = 1 and L ∈ (0,∞)\{0, 1}
separately. Firstly

h(tn,0) =
e1

d1
︸︷︷︸

<1

(−1)n sin(
e1

d1
(nπ +

π

2
)) − 1 < 0.

Secondly, when L = 1 it follows from f(tn,1) = 0 that

sin(∆d1tn,1) sin(∆e1tn,1) = − cos(∆d1tn,1) cos(∆e1tn,1)

and so h(tn,1) = (1 −
e1

d1
) cos(∆d1tn,1) cos(∆e1tn,1) − 1 < 0.

Thirdly, for general L '∈ {0, 1} and r1 := d1 − e1, r2 := d1 + e1

h(tn,L) =
1 + e1

d1

2
cos(∆r1tn,L) +

1 − e1

d1

2
cos(∆r2tn,L) − 1.

Observe that both of the coefficients of the cosines in the above expression are
positive and less than one and recall tn,L satisfies

0 = (1 + L) cos(∆r1tn,L) + (1 − L) cos(∆r2tn,L).

Suppose first that 1−L is positive. If cos(∆r1tn,L) is positive then cos(∆r2tn,L)
must be negative and so h(tn,L) is negative. Conversely, if cos(∆r1tn,L) is
negative then cos(∆r2tn,L) is positive and again h(tn,L) is negative. A similar
argument in the case when 1 − L is negative proves h(tn,L) is negative, and so
we infer the result.

Lemma 4.9. The ratio Re ε̃n,L = −ϕK
θtn,Lif ′(tn,Li)h(tn,L) takes both signs infinitely

often for all non-negative L.

Proof. By Lemma 4.8 we know that the numerator −ϕKh(tn,L) is not zero
and does not change sign. By assumption θ > 0 and additionally, tn is real
and positive for positive integers n. So we need to consider the denominator
if ′(tn,Li). When L = 0:

if ′(tn,0i) = −∆d1(−1)n cos (e1∆tn,0) (61)

By our choice of original subsequence, namely property (50), we know there are
pairs of consecutive integers, n, where cos does not change sign. Examining
(61) we see that if ′(tn+1,0i) and if ′(tn,0i) are different signs, hence Re ε̃n+1,0

and Re ε̃n,0 are different signs. Again, by construction of our subsequence, this
process repeats infinitely often. For L > 0 we invoke the result of Corollary 4.6,
which completes the proof.

We are now ready to prove that Re ε̃n,L is the asymptotically largest part of
Re sn. Define:

ψ1,n,L(z) =f ′(tni)tniε̃n,L +∆(e2 − Ld2) cosh(∆d1tni) sinh(∆e1tni)

+ b̃2 sinh(∆d1tni) sinh(∆e1tni) + ∆(d2 − Le2) cosh(∆e1tni) sinh(∆d1tni)

+ ã2 cosh(∆d1tni) cosh(∆e1tni) + c̃1. (62)
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which has zero ε̃n, (see equation (59)). Similarly, define

ψ2,n,L(z) =(tni + z)(f + g)(tni + z) − ψ1,n,L(z). (63)

For n ∈ N with sufficiently large modulus and such that Re ε̃n > 0, let νn :=
Re ε̃n

2 eiβ for β ∈ [0, 2π). Then as in the Rayleigh case there are constants D and
D′ such that

|ψ1,n,L(ε̃n + νn)| = |f ′(tni)tnνn| ≥ D > 0,

|ψ2,n,L(ε̃n + νn)| ≤
D′

n
,






independently of n and β.

Hence

|ψ1,n,L(ε̃n + νn)| > |ψ2,n,L(ε̃n + νn)|, for n sufficiently large.

See inequalities (39) and (40) for the details (the arguments here are virtually
identical). Since β was arbitrary we can invoke Rouché’s theorem to conclude
that the functions ψ1,n,L and ψ1,n,L + ψ2,n,L both have at least one zero in
the discs {z ∈ C : |z − ε̃n| ≤ Re ε̃n

2 }, ε̃n and εn respectively. Further, by

construction Re sn = Re εn and thus Re sn ≥ Re ε̃n

2 > 0, which concludes the
proof of Theorem 2.3.

Finally we consider the situation where ρ
K = Iρ

EI , i.e. θ = 0. From (14) it
follows that

λ1(s) =

√

Iρ
EI

s +
1

2

√
ρ

Iρ
i +

ρ

8Iρs

√

EI

Iρ
+ O(s−2) =: d1s + d2 +

d3

s
+ O(s−2),

λ2(s) =

√

Iρ
EI

s −
1

2

√
ρ

Iρ
i +

ρ

8Iρs

√

EI

Iρ
+ O(s−2) =: d1s − d2 +

d3

s
+ O(s−2).

Further the coefficients R,S and T from the beginning of Section 4 simplify
considerably so that the characteristic equation (17) reduces to

0 = cosh2(∆d1s) + sinh2(∆d1s) + c0 + O(s−1), (64)

where c0 is given by

c0 := −
(k1k2 + 1

KIρ
)

(k1k2 − 1
KIρ

)
. (65)

Note that c0 is well defined by the assumptions of Theorem 2.3. We define f
and g respectively as

f(s) := cosh2(∆d1s) + sinh2(∆d1s) + c0,

g(s) := O(s−1).

We consider the cases k1k2 > 0 and k1k2 = 0 separately.
Case 1: k1k2 > 0.
From (65), c0 has modulus greater than 1. As such, f has zeros tn := t0+

2nπi
∆d1

for integers n. Moreover Re t0 is non-zero, and since f is an even function, we
can assume without loss of generality that Re t0 > 0.
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Arguing as in the proofs of the earlier Lemmata 3.4 and 3.5 it follows that
there is a positive constant C such that for sufficiently large positive integers,
n, and complex δn with |δn| = C√

n
the inequality

|f(tn + δn)| > |g(tn + δn)| (66)

holds.
The immediate consequence of inequality (66) is that for integers n with

sufficiently large modulus the functions f and f + g have precisely one zero,
denoted by tn and sn respectively, in the discs centered at tn with radius δn =
C√
n
. By construction Re sn → Re t0 > 0 as n → ∞.

Case 2: k1k2 = 0.
From (65), c0 = 1 and so f becomes

f(s) = 2 cosh2(∆d1s), (67)

which has zeros tni =
(nπ+ π

2
)i

∆d1
, n ∈ Z. Now f ′(tni) = 0 and

f ′′(tni) = 4d2
1∆

2(i(−1)n)2, ∴ |f ′′(tni)| = 4d2
1∆

2 > 0.

The Taylor expansion of f then is

f(tni + δ) = f(tni)
︸ ︷︷ ︸

=0

+ δf ′(tni)
︸ ︷︷ ︸

=0

+δ2 f ′′(tni)

2
+ O(δ3).

When we take complex δn with |δn| = C
4
√

n
for some constant C, which may alter

from line to line, we obtain

|f(tni + δn)| ≥
C√
n

>
C

n
≥ |g(tni + δn)|,

for sufficiently large positive integers n. We deduce that f + g has at least one
zero, sn, in the circles centred at tni with radius C

4
√

n
. Hence sn → tni as n → ∞.

Arguing as before, we write sn = tni + εn and by splitting sn(f + g)(sn) = 0
according to the order of its terms it follows that Re sn = Re εn ≥ Re ε̃n

2 where

ε̃2n =

ρEI2(k1 + k2) cos2
(

∆
2

√
ρ
Iρ

)

i

2I2
ρ∆

2tn
.

The above argument is very similar to that outlined in equations (58), (59),
(62) and (63). Hence there are zeros sn of f + g with positive real part for
every n ∈ N. Observe that we have required our assumption from Theorem 2.3,

namely that cos

(

∆
2

√
ρ
Iρ

)

'= 0.
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