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Abstract—In this paper, we present an empirical evaluation of
30 features used in touch-based continuous authentication. It is
essential to identify the most significant features for each user,
as behaviour is different amongst humans. Thus, a fixed feature
set cannot be applied to all models. We highlight this importance
by selecting features accordingly using our approach, seeking to
individually select and empirically test the discriminative power
of a range of features as well as feature interaction in the
context of individual users. We test five different feature selection
techniques: Mutual Information, Sequential Forward Selection,
Sequential Floating Forward Selection, Sequential Backwards
Selection, and Sequential Floating Backwards Selection. Our
results show that a unique set of features can be selected for
each user, while increasing or maintaining performance, i.e. up
to 27 out of 30 features were removed for one user without
affecting performance. We also show that distinctive features
should be evaluated on a user basis, as particular features may
be significant for some, while redundant for others. Moreover,
for each user, the same features are selected for horizontal
and vertical strokes while performance persists when using a
horizontal model to predict vertical behaviour and vice versa.

Index Terms—Behavioural Biometrics, Continuous Authenti-
cation, Feature-selection

I. INTRODUCTION

Smartphones typically provide a range of knowledge-based
and physiological biometric authentication methods to secure
access through lock-screens. The former includes PIN codes,
passwords, and drawing patterns, whereas the latter integrates
specific hardware, such as biometric fingerprint scanners or
facial recognition. However, such solutions are typically used
for one-off authentication, where the users authenticate once
before starting a new session, with secrets being keyed in or
by providing irrevocable fingerprint/facial images for more
user-friendly authentication. Knowledge-based authentication
methods are inherently vulnerable since secrets can be lost,
shared, or even stolen, whereas biometrics are vulnerable to
replay attacks [1], [2]. In these contexts, users must also
actively engage with the authenticator, where up to 9% of the
time is spent unlocking devices, taking away valuable time
and requiring conscious attention by the user [3].

Instead, Continuous Authentication (CA) aims to ease the
burden on users by binding their behaviour closer to a digital
profile, through passively collecting sensory input and measur-
ing signals against known behaviour. CA then compares if an
incoming stream of signals is within an acceptable confidence

level of an owner’s behaviour. Thus, CA attempts to address
the shortcoming of traditional authentication by removing
the demand for active user input, while also following the
user’s dynamic behavioural pattern making it more difficult
to capture and replay. The popularity of smartphones and
their inherent mobility also present an increased risk of theft
and a consequent loss of property compared to computers.
Smartphones may also carry an increasing amount of Personal
Private Information (PPI) data and allow financial transactions
where users have adopted mobile payment methods.

Consequently, by utilising high-quality models of observed
behaviour, CA could enable a paradigm shift from traditional
one-off authenticators toward continuous seamless and unob-
trusive user authentication over time. However, the challenge
of uniquely creating a high-quality model remains, since
users behave differently, and therefore one solution cannot be
applied across all users. Different smartphone sensors support
behavioural detection, such as accelerometer and gyroscopic
data that may be combined to detect hand movement, orien-
tation, and grasp [4], [5]. However, in this paper, we focus
purely on touch-based CA using information that can be
gathered exclusively from the touchscreen on smartphones.
Touch data includes (x, y) coordinates of finger touch-down
movement and when the finger is lifted together with aux-
iliary information including timestamps, device orientation,
pressure, the area covered by a finger, and application IDs.
Through the collection of raw touch data, researchers have
focused on advancing CA by the engineering of features,
selecting appropriate classifiers, and tuning hyperparameters
while training models using varying sample sizes. We extend
the body of work by exploring and empirically evaluating
features for individual users. We also highlight that, within
CA, a behaviour is expressed through features. Thus, the inclu-
sion or exclusion of specific features should either improve or
decrease model performance depending on how well a feature
aligns with a user’s unique behaviour.

A. Challenges and Motivation

CA is still in its infancy with a range of challenges [6]. We
highlight the major two challenges motivating this paper: (i)
human behaviour is unpredictable and subject to change over
time as users adapt to various environments; (ii) different users



may expose individual behaviour through distinct feature-sets.
Therefore, feature selection should be done at a user level.

B. Contributions

In this paper, we present a rigorous analysis of user-level
feature selection for CA applications. A One-vs-Rest (OvR)
approach is introduced to create a training set for each user
of interest, allowing for the analysis of feature-importance
in the context of unique and individual user-behaviour. OvR
has not been thoroughly explored in related work. Different
types of behaviour are expressed through 30 features, and
since humans may behave differently, the selection of the
most discriminative features is essential. Selecting minimal
but highly discriminative features could reduce noise in be-
havioural models and potentially improve performance. In
this work, features are empirically tested using KNN and
SVM classifiers while applying five different feature-selection
algorithms for each classifier. We evaluate our method using
a subset of the TouchAlytics dataset [7]. The experimental
results show that our approach improves the state-of-the-art by
identifying Sequential Forward Selection as the optimal feature
selection technique in combination with an SVM classifier for
the selected users.

The rest of the paper is structured as follows: Section II
reviews the related work. Section III describes the proposed
method. Section IV presents the feature selection techniques
and analysis, with SectionV extending through results and
discussion, before concluding the paper in Section VI.

II. RELATED WORK

TouchAlytics: The dataset presented in [7] includes touch-
based behavioural data as a viable sensory input for use
in Continuous Authentication (CA). They acquired data by
developing an Android application that presents a user with
Wikipedia articles to read or a “find five differences on
a picture” game. Reading articles was designed to collect
vertical strokes, while the game caused users to slide hori-
zontally between pictures. While using the app, touch data
was recorded and allowed the extraction of 32 features. The
Pearson correlation and Mutual Information (MI) were used to
rank such features. Three features were removed using expert
knowledge obtained by evaluating the two ranking methods.
K-Nearest Neighbour (KNN) and Support Vector Machine
(SVM) classifiers were applied, producing results to support
touch data as a viable sensory input for CA with Equal Error
Rates (EERs) around 2-9% when combining 10-13 strokes.

Which classifiers work?: Similar to [7], Serwadda et al. [8]
collected data from 190 subjects focusing on which versifiers
work while separating behaviour into four templates such that
horizontal and vertical behaviour is modelled individually for
portrait and landscape modes. They trained models using 80
samples from a target user while drawing 80 randomly chosen
strokes from imposters (i.e., the OvR approach). Each model
uses the same 28-dimensional feature set. When testing, ten
strokes were averaged using a sliding window to allow for
more stable authentication. Individual classifiers achieved a

mean EER between 10.5% and 42% using Logistic Regression
(LR) and Decision Tree (DT), best and worst, respectively.
Interestingly, horizontal models generally outperformed the
vertical ones in portrait mode, while there was limited change
in horizontal or vertical scores in the landscape mode. Fur-
thermore, SVM seemed to be the most stable classifier when
considering both mean EER and its variance across all models
while KNN scored second worst.

Horizontal vs Vertical behaviour: Fierres et al. [9] sup-
ported the evidence found by [8], whereby horizontal strokes
are more discriminative. Their system of classification works
by training a model using T randomly chosen samples from the
legitimate user, and T/10 samples from an imposter population.
Two classifiers were trained using two different feature sets.
The first model applied SVM with a 28-dimensional feature set
proposed by [8]. The second model implemented a Gaussian
Mixture Model (GMM) using another signature feature set
consisting of the five best features selected through Sequential
Floating Feature-Selection from a 61-dimensional feature set
[10]. They tested behavioural models by averaging ten strokes
using a sliding window and found that horizontal strokes were
faster than vertical strokes with EER around 10%, independent
of device orientation. Additionally, strokes performed in the
portrait mode were more stable than the landscape mode.

Dot-to-dot CA: In 2016 a hybrid authenticator called TM-
Guard was introduced by Manulis et al. [11] which combines
Android’s dot-to-dot unlock-patterns with touch-based CA. As
such, this method is not fully transparent since users must draw
patterns to unlock. The research surveyed 75 participants and
demonstrated that individuals might expose stable but unique
behaviour when interacting with the dot-to-dot unlock-pattern.
Similar to others, TMGuard evaluates strokes separately by
grouping up, down, left, and right. Contrary to earlier work,
this work defines unique behaviour only using two features:
the Speed of Touch Movement (STM) and the Angle of
Touch Movement (ATM). Behaviour is then evaluated using a
statistic-based profile matching approach over several strokes
which distance the work from those applying machine learning
methods. Regardless, the work finds similarities by concluding
that users may expose consistent behaviour when performing
the same strokes, although this varies across users.

Users and their device: Zahid et al. [12] investigated the
effect of user-posture, the difference in screen size across
different smartphones and tablets, and provided insights to
inter-session variation. They extracted 18 features from their
raw data and discarded four features using MI similar to [7].
Their result shows that the EER exponentially improves when
increasing training sample size from 10, 20 - 30% with a
flat performance at 40% and gradually decays using further
training data. After training, user-authentication is performed
by combining five strokes providing a mean EER between 3.8-
8.8%, min and max rates, respectively. Models from tablets
perform better than smartphones with smaller screen sizes and
transferring user profiles between devices appears to degrade
authentication performance.



One-class classifier approach: In [13], the authors present
an evaluation of 45 participants using WeChat over two
weeks. This work differs by approaching CA using one-class
SVM classification and by categorising behaviour into four
significant groups including vertical, horizontal, oblique, and
clicks. Up to 16 features were extracted from each category
and selected using fisher scores [14]. Models were also trained
with varying sample sizes and hyperparameters with the best
performance found by combining nine strokes and using 80
samples for training. Results are presented using F-scores with
oblique strokes outperforming others while clicks are inferior.

Summary: CA has greatly improved, due to the engineering
of behavioural features which has been tested against several
classification approaches. KNN and SVM are commonly used
and provides a good foundation for comparability amongst
papers using EER as a performance metric. At the same
time, other classifiers may also prove suitable such as GMM,
LR, DT, and Neural Networks [8]. In this paper, we limit
our investigation to KNN and SVM classifiers as the focus
remains of identifying the distinctive features in the context
of individual users. While feature selection was mentioned in
the related works, the application is limited and not rigorously
explored, especially in the context of modelling individual
users. In work applying feature selection, statistical ranking
techniques such as MI are often used to estimate significant
features before manual removal using expert knowledge; thus,
the correlation between features and applied classifiers remain
unknown. Furthermore, applying feature selection in combi-
nation with OvR distances this work by uncovering features
that may be important to most as well as those only important
to some and potentially improving EER score.

For most of the related works, EER is reported to describe
model performance, which defines the decision threshold
where False Acceptance and Rejection Rates are equal. For
comparability, our results are presented using the average EER
score for all feature selection techniques. However, several
related works [7], [8], [9], [15] consider multiple strokes for
authentication, which prohibits exact performance comparison
between papers. Our work will take a pragmatic stance by
reporting EER and authenticating users using singular strokes.
Consequently, all EER scores may be improved by considering
multiple strokes but is currently beyond the scope of identify-
ing the most significant features for individual users.

III. PROPOSED METHODS

In this section, we present the methods used to select users
of interest, clean the selected data and ensure class balancing
for model fairness, as well as the methods used for model
selection and hyper-parameter tuning.

A. Data Set and Users of Interest

The data used for this research is extracted from a public
set collected by Frank et al. [7], containing touch inputs from
41 subjects interacting with seven different documents over
two weeks. However, not all users participated in the entire
experiment. Thus, we only select users that had provided

data for the whole duration of the experiment (2 weeks),
because of the interest towards assessing model stability over
time. Consequently, the data set is reduced to 14 users and
separated into inter-session (week one) and inter-week (week
two). Amongst the 14 users, a further two users were removed
(namely, user ID 5 and 35), as they exhibited inconsistent
behaviour. All users carried out two general tasks involving
reading Wikipedia articles and playing an image comparison
game. The activities are referred to as document IDs. Docu-
ments 1, 2, 3, and 6 are Wikipedia articles, whereas 4, 5, and
7 are Gaming (comparing pictures).

B. Data Cleaning and Filtering

Filtering taps and long or idle strokes: Fig.1 presents
the raw data collected from a single stroke performed by a
user playing the picture comparison game described in [7]. A
single stroke consists of points of (x, y) coordinates, which
collectively compose a trajectory. Since this work focus on
sliding strokes, the number of points included in a stroke must
exceed that of a tap. Fig.2 presents the distribution of points
generated in strokes across the selected subset of data. In this
work, each stroke must contain a minimum of five points,
while lengthy strokes are defined as the top 0.1% (roughly
550 points) highest points. We also remove strokes with inter-
stroke time exceeding 1000ms. These filters allow the removal
of brief and lengthy strokes such as tap, sticky fingers and
strokes far between each other.

Missing values: Features with no value may arise in strokes
with few points, such as when calculating 20% pairwise
velocity or median acceleration over the first five points over
strokes with less than 10 points. Missing values also occur
for the last stroke performed by users, as intra-stroke times
are unavailable due to being the last interaction. Strokes with
incomplete values are discarded in its entirety as they provide
no value and constitute an insignificant number of strokes.

Finger orientation: In contrast to the original feature set
proposed by [7], we remove the change of finger orienta-
tion feature, as the variable is consistent across all samples
and therefore provide no distinctive behavioural information.
However, all other features are kept for the feature selection

(a) Raw stroke with 29 points (b) Directional pairwise vectors

Fig. 1: Example stroke from 1 vertical touch-screen interac-
tion.



Fig. 2: Distribution of points within strokes across all users.

TABLE I: Features included in feature selection step.

# Description # Description

1 inter-stroke time 16 80 perc. pairwise acceleration
2 stroke duration 17 median velocity at last 3pts
3 start x 18 largest dev. end-to-end line
4 start y 19 20 perc. dev. end-to-end line
5 stop x 20 50 perc. dev. end-to-end line
6 stop y 21 80 perc. dev. end-to-end line
7 direct end-to-end distance 22 average direction
8 mean resultant length 23 length of stroke
9 up/down/left/right flag 24 ratio F7:F23

10 direction of end-to-end line 25 average velocity
11 20 perc. pairwise velocity 26 median acceleration first 5 pts.
12 50 perc. pairwise velocity 27 mid-stroke pressure
13 80 perc. pairwise velocity 28 mid-stroke area covered
14 20 perc. pairwise acceleration 29 mid-stroke finger orientation
15 50 perc. pairwise acceleration 30 phone orientation

technique to analyse, which is contrary to the original work
by Frank et al. who removed average velocity, length of tra-
jectory, and orientation of end-to-end line. Section V further
highlights why these features should be included since they
may present important biometric properties for some users.

Stroke direction: Similar to [7], each stroke is categorised
as up, down, left, or right by evaluating directional data. An
example is shown in Fig. 1b, highlighting the spread over
pairwise vectors from a horizontal stroke. Each pairwise vector
reveals minutiae behavioural detail within a stroke. As such, it
is essential to extract the right features based on raw data, as
well as selecting the most discriminative features identifying
an individual user. Overall, we evaluate 30 features, as shown
in Table I, of which a subset of them is selected for each user
individually (details described in Section IV).

C. Class Balancing and Model Fairness

Since the classification task remains to tell the device owner
apart from a non-owner, the multi-class challenge can be
transformed into a two-class classification consisting of n
subsets with binary class labels. Binarizing multi-class with
this approach is also known as One-vs-Rest (OvR), signifying
a single user as the positive class while grouping remaining
users into another negative rest class. However, transforming
a multi-class problem into OvR causes class imbalance, as
the negative samples are more than positive ones, which may
cause classification bias. We overcome class imbalance by
relabelling to OvR and down-sampling the majority class, as
shown in Fig. 3. However, each user contributes a different

number of samples and balancing should be fair amongst
models to ensure the approach is stable and comparable
between users. As such, the user contributing the lowest
maximum strokes will define an upper limit of allowed strokes
in the models per class. Thus, for each training set, the positive
class is limited to include only the 30 first strokes from a target
class and roughly three samples from each remaining user in
the negative class. Remaining strokes are discarded, allowing
model fairness and comparability between users despite some
contributing more strokes than others. Furthermore, the feature
selection technique is quicker to evaluate when applying
smaller sample sizes. At the same time, related work indicates
adequate performance with small sample sizes [12], [15].

Each user interacted with the document IDs in a different
order. Therefore, we construct each training set by including
document ID in the order of target user and their interaction
with the Android data collection app. We supply the first two
of three IDs when training Wikipedia models while less data
is available for games models. Only a single document ID out
of two IDs are applied to Game models. For example, user #2
interacted with document IDs in the order of [1, 3, 2, 4, 5, 6,
7], including ID 1 and 3 in the behavioural Wikipedia model
and using ID 2 as inter-session test and 7 as inter-week testing
data using the sampling strategy illustrated in Fig. 3.

D. Model Selection and Parameter Tuning

As part of the original experiment developed by Frank et
al. [7], each user is tasked to read Wikipedia articles and play
picture comparison games. Each task was designed to provoke
specific interactions such as vertical strokes with Wikipedia
and horizontal strokes with games. As such, it is possible to
model each interaction separately, and we define reading as
Wiki and comparing pictures as Game. Since we are interested
in model stability over time, it is necessary to test the selected
features and trained model on data over time. For the first
week, the last document ID from week one is held out from
training and used to calculate inter-session performance. For
the second week, the trained model from week one is tested
using document IDs from week two, constituting inter-week
results. Thus, results can be evaluated over time by comparing
the performance of inter-session versus inter-week scores.

Fig. 3: One-vs-Rest sub-sampling approach for each of the 12
users selected.



Fig. 4: Modelling approach for each user using OvR data.

Fig. 4 illustrates the training pipeline used to select features
and tune hyperparameters. The proposed approach applies to
both Wiki and Game models, wherein models are trained on
the first session(s) of data for the individual user as previously
demonstrated in Fig. 3. Since we are learning from relatively
small sets of training data, ten times repeating 5-fold cross-
validation is used to minimise bias between each feature and
parameter test. Within each test, training data is standardised
to have one standard deviation with zero mean and scaled to a
min-max range in [0, 1], as in [8], [9]. Pre-processing adjusts
the data for feature selection and hyperparameter tuning.
Features are then included or excluded based on performance
rank together with hyperparameter tuning of the classifier
using the selected features in each test.

In this work, we adopted two classifiers: KNN and SVM
similar to the work of others [7], [8], [9], [12]. We evaluate
KNN setting k = 3, 5, 7, 9 with neighbour weight estimated by
the inverse of their Euclidean distance or uniformly distributed.
For SVM, a Radial Basis Function is used as a kernel and all
combinations of γ and C values of 0.0001, 0.001, 0.01, 1, 10,
100, 1000. For all cases, models are selected and optimised
to maximise the Area Under Curve (AUC) since this score is
threshold independent while also allowing identification of the
best error trade-off between both classes [16].

IV. FEATURE SELECTION AND ANALYSIS

In this section, we present several feature selection methods
together with our results for each while analysing the different
outcomes amongst the approaches. Feature selection is a type
of dimensionality reduction that aims to determine the smallest
feature set required to predict a target class. It not only allows
faster computation but also reduces model complexity. When
modelling user behaviour, it may be necessary to consider
the feature importance concerning the target user dynamically.
In the case of CA, the positive class usually consists of
the data produced by the owner of a device. In contrast,
other users are collectively considered as the negative class.
In these experiments, the selected features returned by all

selection techniques for both Wikipedia and Game interaction
are always identical. We report only one feature set for brevity.

A. Expert Knowledge

During feature engineering, features such as the change of
finger orientation may logically provide valuable information.
However, none of the included users changed their finger
orientation. Thus, the feature does not add any further infor-
mation and is removed. Similarly, phone orientation merely
identifies a few users orienting their phone differently from
others. However, removing this feature is not recommended as
such behaviour may be highly discriminate for specific users.
Therefore, this feature is included and empirically tested as
part of the implemented feature-selection techniques. In this
work, all features except the change of finger orientation re-
main included for empirical testing by the selection algorithms.
For all users, features for Wikipedia and Game models are
always the same. Thus, we present feature maps that are valid
for both models.

B. Univariate Feature Selection

Filtering techniques, also known as univariate selection,
work by ranking each feature by applying a scoring function.
In the related work, MI is often applied as the scoring function
[7], which returns a statistical measure of information gained
between an individual feature and the class label. MI [17]
is fast to compute since it does not apply a classification
algorithm, but at the same time is also unable to describe
how features interact with a classifier. Therefore, features are
tested using the modelling approach in Fig. 4 by iterating and
including k highest-ranked features for hyperparameter tuning
in the range of k between 1 and 30. Our results are shown
in Fig.5, which presents the selected features by applying MI
for both KNN and SVM classification where included features

(a) KNN MI.

(b) SVM MI.

Fig. 5: Selected features using Mutual Information (MI).



(a) KNN SFS. (b) SVM SFS.

(c) KNN SFFS. (d) SVM SFFS.

Fig. 6: Selected features using Forward Selection methods

are marked with a black square. Overall, in Fig.5a, it can be
observed that KNN has selected fewer features than SVM as
shown in Fig. 5b.

C. Sequential Feature Selection

To overcome the drawbacks of univariate selection such
as the inability to measure feature-interaction, applying Se-
quential Feature Selection provides insight into such interac-
tion both between features and classification algorithm while
testing different subsets. Two modes are available, allow-
ing for inclusion or exclusion of features, namely forward
and backwards, respectively. For each mode, a binary float
option controls whether the sequence is allowed to reverse
between inclusion/exclusion for as long as the decision func-
tion improves or maintains performance. This section presents
four sequential selection techniques, including Sequential For-
ward Selection (SFS), Sequential Floating Forward Selection
(SFFS), Sequential Backwards Selection (SBS) and Sequential
Floating Backwards Selection (SFBS) [18].

Forward Selection: Using SFS, the feature selection tech-
nique begins with an empty feature set and iteratively tests the
performance of each feature for inclusion in the forward selec-
tion step. If performance persists or increases, then the feature
remains; Otherwise, the feature is marked as insignificant
and excluded in the final user model. As such, this approach
attempts to find the smallest feature set possible. Figs.6a and
6b present the selected features in search of the optimal AUC
score for each user. Similar to the SFS approach, Figs.6c and
6d present the impact of allowing the forward selector to float
backwards. As such, the number of selected features increases
only if previously excluded feature positively interacts with
selected features. Selected features remain intact for eight

out of 12 users. In contrast, the remaining four users are
significantly affected, such as seen with user #32, reducing
the selected features from 22 to four when comparing SFS
with SFFS, respectively.

Backwards Selection: Contrary to the forward selection,
SBS begins with a full feature set while iteratively testing and
excluding insignificant features. As such, this approach aims
to reduce a feature set by identifying noise. Fig.7 presents the
selected features using backwards selection techniques, which,
in comparison with forward selection such as seen in Fig. 6,
a significant increase in included features can be observed.
Similar to SFS, SBS allows for floating operations, which
allow previously excluded features to be included in each step;
thus, the exclusion list is considered as part of the floating
stage until the decision function decays.

Both SFFS and SFBS are computationally more expensive
since the methods reintroduce features previously excluded.
However, the techniques also provide better coverage in terms
of feature interaction and generally produce smaller feature
sets. Therefore, touch behaviour of different user can be
described with distinct sets of features which confirm research
question (ii) Different users may expose individual behaviour
through distinct feature-sets.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the average results of all user
models concerning the selected features using the selection
techniques presented in Section IV. To allow for comparison
with related work, Figs.8a and 8b present the average EER
scores across all individual users, while Figs.9a and 9b present
the average AUC scores. The results are separated into inter-
session and inter-week to show model stability over time.



(a) KNN SBS. (b) SVM SBS.

(c) KNN SFBS. (d) SVM SFBS.

Fig. 7: Selected features using Backwards Selection methods

(a) Inter-session models.

(b) Inter-week models.

Fig. 8: Mean EER scores for each feature selection technique
with 95% confidence interval

All figures include error bars signifying the 95% confidence
interval. We find that Sequential Forward Selection maintains
or outperforms all other selection methods when applied in an
SVM classifier.

Personalised Behaviour: As shown in Section IV, differ-
ent features are selected for different users when applying
our modelling approach as previously illustrated in Fig. 4.
Our approach highlights that users express behaviour through
different features, and it is possible to reduce model com-
plexity without affecting model performance. Interestingly, we
observe in Figs. 9a and 9b that SFS generally outperforms

all other feature-selection techniques either by maintaining or
improving model performance, even over time. Thus, some
features can be removed as they likely introduce noise as
users may not conform with specified behaviour calculated by
some features. Furthermore, floating options (SFFS and SFBS)
do not improve model performance despite consuming more
computational resources. As such, it is not advisable to use
floating options when applying sequential feature selection on
the selected users.

Cross-model Performance: We support the general hypoth-
esis [9], [8] that horizontal strokes are more discriminate.
However, we extend the work by observing that all feature-
selection techniques identify the same feature-sets when mea-
suring horizontal and vertical strokes independently. As such,
we compared model performance by testing predictive Game
behaviour against a trained Wiki model and confirm that Game
models can predict Wiki behaviour and vice versa. Thus, in
this case it may not be important to train two models as they
could be interchangeable.

Stability over Time: The selection of features for each
user may affect model stability over time. Figs. 9a and
9b compare the AUC score over time, with an expectation
of reduced performance because human behaviour tends to
change over time and the proposed method is limited to one-
off training. Despite the expectation, the majority of applied
feature selection techniques sustain performance over time
with a limited reduction.

Shared Feature Importance: Fig. 10 presents an overview
of selected features across all 60 models, 12 for each selection
technique. The lowest occurrence of a single feature is 15
times across all models, whereas the most a feature was
included is 50 times. Interestingly, features 10, 23, 25 were



removed by Frank et al. in their work [7]; however, the em-
pirical evaluation shows that these features may be significant
to specific users. Feature 25, average velocity, appears to be
a robust generic feature across all the selected users. Besides
being robust, certain unique features such as those selected
infrequently might help identify specific people. Therefore,
models should be trained on a mixture of robust and unique
features while selected using an empirical technique. i.e. SFS.

(a) Inter-session models.

(b) Inter-week models.

Fig. 9: Mean AUC scores for each feature selection technique
with 95% confidence interval

Fig. 10: Frequency of feature across total of 60 models trained.

VI. CONCLUSION

This research work carried out an empirical evaluation of
standard features computed and used in touch-based contin-
uous authentication. Applying the proposed method confirms
that features should be considered individually for each user
while feature selection techniques both reduce complexity
and often improve performance. On average, the best fea-
ture selection technique is Sequential Forward Selection in
combination with an SVM classifier, especially over time.
The final approach results in a horizontal (Game) average
EER score of 15% and 22% for inter-session and inter-week,
respectively, while vertical (Wiki) EER reached 37% for both
inter-session and inter-week. The EER scores are higher than
related work since each stroke is evaluated independently. As
such, combining strokes as seen in related work suggests that
the error rates are conservative results.

The most common features amongst the selection tech-
niques are mid-stroke pressure and mid-stroke area covered
appearing in 81% and 73% out of 60 models tested, respec-
tively. On the other hand, inter-stroke time was rarely included
but not necessarily insignificant. In the future, it would be
interesting to include a more extensive selection of features as
well as excluding those that are screen-size dependant.
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