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Abstract—Prediction of the future location of vehicles and
other mobile targets is instrumental in intelligent transportation
system applications. In fact, networking schemes and protocols
based on machine learning can benefit from the results of
such accurate trajectory predictions. This is because routing
decisions always need to be made for the future scenario due
to the inevitable latency caused by processing and propagation
of the routing request and response. Thus, to predict the high-
precision trajectory beyond the state-of-the-art, we propose
a Generative Adversarial Network-based VEhicle trajEctory
Prediction method, GAN-VEEP, for urban roads. The proposed
method consists of three components, 1) vehicle coordinate trans-
formation for data set preparation, 2) neural network prediction
model trained by GAN, and 3) vehicle turning model to adjust the
prediction process. The vehicle coordinate transformation model
is introduced to deal with the complex spatial dependence in the
urban road topology. Then, the neural network prediction model
learns from the behavior of vehicle drivers. Finally, the vehicle
turning model can refine the driving path based on the driver’s
psychology. Compared with its counterparts, the experimental
results show that GAN-VEEP exhibits higher effectiveness in
terms of the Average Accuracy, Mean Absolute Error, and Root
Mean Squared Error.

Index Terms—Vehicle trajectory prediction, generative ad-
versarial network, behavior model of vehicle drivers, spatial
dependence.

I. INTRODUCTION

ITH the development of the intelligent transportation

systems (ITS), the demand for various applications that
are dependent on vehicle trajectory continues to expand, such
as travel planning, urban traffic congestion mitigation, and
urban traffic management. Vehicular Networking is the key
enabler for ITS applications that are on-board and which are
expected to be utilized to collect vehicular data in real-time.
Besides, a variety of services for passengers and drivers can be
made possible by on-board applications, such as vehicle road
safety and travel experience and efficiency. Although vehicular

Liang Zhao (Izhao@sau.edu.cn) and Yufei Liu (liuyufeil 119@163.com) are
with the School of Computer Science at Shenyang Aerospace University,
China.

Ahmed Al-Dubai (a.al-dubai@napier.ac.uk) is with the School of Computing
at Edinburgh Napier University, UK.

Albert Y. Zomaya (albert.zomaya@sydney.edu.au) is with the Faculty of
Engineering at University of Sydney, Australia.

Geyong Min (g.min@exeter.ac.uk) is with the Department of Computer
Science at University of Exeter, UK.

Ammar Hawbani (anmande @ustc.edu.cn) is with the School of Computer
Science and Technology at University of Science and Technology of China,
China.

networking has attracted a lot of attention from both academia
and industry, current forms of networking schemes still suffer
from the impassable ceiling of QoS parameters. This is partly
because the simulation and design of these schemes are mostly
based on historical data [1]. An extreme case is packet routing
for highly dynamic vehicles. The routing decision is made
to respond to an early-time request, while the route is for
guiding data messages in the future network. This does exist
in all types of mobile multi-hop networks. However, it can
cause the most serve problem in vehicular networks as it is of
vital importance for driving applications to exchange data with
minimum latency and data drops. On the other hand, when
it comes to discuss the next-generation vehicular networks,
learning new routing schemes is an inevitable ability. Although
Software-Defined Vehicular Network (SDVN) is a feasible
networking paradigm for learning, the existing data to feed
the machine is still historical where the road information are
collected at an earlier time due to the transmission delay [2].

As a solution, traffic prediction is a key component to
realize ITS and vehicular networks by expecting the foreseen
future on the road. The traffic prediction can be divided into
two categories, macroscopic traffic flow prediction [3], [4],
[5] and microscopic vehicle trajectory prediction [6], [7], [8].
The macroscopic traffic flow reflects the vehicle flow, speed,
and density of each road section. By predicting the traffic
flow, the traffic pattern and trend can be analyzed. On the
other hand, the microscopic vehicle trajectory prediction is to
study the data of the historical movement state and position
distribution of each vehicle and develop the future trajectory.
However, due to the rapid change of vehicle motion and the
complex spatial-temporal dependence of vehicle trajectories,
high-precision traffic prediction has always been a challenging
problem.

Existing traffic prediction models have applied a variety
of techniques including Hidden Markov model (HMM) [9],
Neural Network model [10], Bayesian inference model [11],
Kalman Filter model [12], and Autoregressive Integral Moving
Average (ARIMA) model [13], [14]. Most of these methods
are to predict the macroscopic traffic flow, where they ignore
the motions of individual vehicles. However, the traffic flow
prediction is not helpful to vehicular networking [15] as
networking is more about individuals instead of groups. In this
context, we should study the vehicle trajectory prediction to
target individual vehicles. Due to the diversity and complexity
of vehicle traffic events and the rapid change of vehicle
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itself, high-precision vehicle trajectory prediction is a chal-
lenging problem. Hence, this paper introduces a short-term and
high-precision vehicle trajectory prediction method, namely,
Generative Adversarial Network-based VEhicle trajEctory
Prediction method, GAN-VEEP, for urban environments. The
contributions of the paper are summarized as follows.

o Generative Adversarial Network (GAN) is employed to
train and learn the driver’s behavior from the historical
trajectory data. To the best of our knowledge, this paper
is the first work of its kinds that adopts GAN to produce
accurate vehicle trajectory. Different from other GAN
models, our discriminant network consists of two inde-
pendent networks, which are applied to receive the input
and output data of the generated network, respectively, to
achieve the better prediction precision.

o To better prepare the training data, we propose the co-
ordinate transformation model to pre-process the vehicle
trajectory data. This model can reduce the complexity
of trajectory prediction caused by spatial dependence of
the historical data and improve the accuracy of trajectory
prediction.

« Extensive experiments have been conducted by our simu-
lation tool, which is available online (See Section IV for
the link). We apply the vehicle trajectory data set gener-
ated by SUMO [16] to evaluate the proposed trajectory
prediction method. The results prove the superiority of
GAN-VEEP in vehicle trajectory prediction.

The rest of the paper is organized as follows. Section II
presents related work. Section III formulates the problem.
In Section IV, we prepare the data set. We present the
trajectory prediction method further in Section V. In Section
VI, we evaluated the performance of GAN-VEEP. Section VII
concludes the paper.

II. RELATED WORK

Existing traffic prediction research can be divided into two
categories, macroscopic traffic flow prediction and micro-
scopic vehicle trajectory prediction. Here, traffic flow predic-
tion is mainly the specific analysis of traffic volume, speed
and density in urban road traffic. On the other hand, vehicle
trajectory prediction mainly studies the specific performance
of each vehicle in traffic.

A. Traffic Flow Prediction

With the continuous advancement of research on traffic pre-
diction, various traffic flow prediction models have emerged,
which can be divided into two categories, parametric and non-
parametric model. The parametric model determines the pa-
rameters by processing the original data, and then realizes the
traffic forecast based on the regression function. The Kalman
filter model and the Autoregressive Integrate Moving Average
Model (ARIMA) are common methods. Alghamdi et al. [13]
leverages ARIMA-based modeling to study some factors that
significantly affect the rate of traffic congestion. A proposed
short-term time series model for non-Gaussian traffic data to
predict the abnormal state of traffic, which can help traffic co-
ordinators to better manage the congestion. Seasonal ARIMA

(SARIMA) has been proposed and compared with Support
Vector Regression (SVR) model [17], in which SARIMA
performs better in predicting traffic congestion. However, the
drawback of SARIMA is, when there is a large amount of
data or non-linear relationship between time and traffic flow
during prediction, it always produces a doubtful prediction.
In short-term traffic flow forecasting, Kalman filter model has
been applied to predict the future traffic information according
to the traffic state of the previous time and the current time.
[12] proposed a hybrid dual Kalman filter to predict accurate
and timely short-term traffic flow. However, this model relies
on the assumption that all parameter of the system are static. It
cannot reflect the nonlinearity and uncertainty of traffic data,
and cannot overcome the interference of other random events
such as traffic accidents.

The non-parametric model can solve these problems and
learn statistical rules from traffic data automatically, but only
there is enough historical data. Markov model, K Nearest
Neighbor (KNN), SVR, Bayesian network model, and neu-
ral network model are commonly non-parametric models. In
[11], Bayesian inference method is adopted to estimate the
parameters of the model. Then, a Markov chain Monte Carlo
(MCMC) simulation is used to obtain the optimal model.
The model has higher prediction accuracy and stronger inter-
pretability, which is of great significance for traffic managers
to judge the future traffic status and traffic trend. In traffic
flow prediction, Markov model is usually used to describe the
statistical relationship between vehicle movement and traffic
flow. [3] considers that the Markov model has a high degree
of consistency with the vehicle motion mode, which is in
line of the actual vehicle motion scenario and can improve
the accuracy of prediction. The minimum order of Markov
model is determined by calculating the cumulative distribution
function of vehicle motion entropy. Finally, the author uses
the established motion model to predict the traffic flow in
different periods of the holiday. Zhao et al. [9] applies the
sliding window model to extract real-time traffic data flow,
and combines with HMM to predict short-term (i.e., relatively
real-time) traffic flow state of road sections.

In recent years, with the rapid development of machine
learning, neural network model can capture the dynamic
characteristics of traffic data and achieve the best effect at
present. Oh et al. [4] combines artificial neural network (ANN)
with Gaussian mixture model, proposed a method of urban
traffic flow prediction based on multi-factor pattern recognition
model. This method can combine road environmental factors
and dynamic traffic flow attributes from intelligent transporta-
tion system (ITS) to predict traffic flow. Bartlett et al. [5]
compare the short-term traffic flow prediction effects of three
machine learning models (K Nearest Neighbor (KNN), SVR
and ANN) on the urban arterial road between Manchester and
Liverpool. They found that ANN is more suitable for short-
term traffic prediction of urban trunk roads and performs well
for heterogeneous traffic flows. In addition, Recurrent Neural
Network (RNN) is widely used in time series data because of
its good performance in processing time series information.
As a variant of RNN, Long Short-Term Memory (LSTM)
network solves the long-term dependence problem of RNN.



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2020

In the online learning mode, LSTM has superior predictive
performance in short-term traffic flow prediction, and can
adapt to the dynamic changes of traffic flow distribution [10].

B. Vehicle Trajectory Prediction

Currently, the study of Microscopic vehicle trajectory pre-
diction mainly focuses on automatic driving vehicle control
[18], collision detection [19], traffic data mining [8] [20] [21],
and vehicle network dynamic planning [22]. Vehicle trajectory
prediction methods can be roughly divided into two categories,
physical/maneuver-based models and interaction awareness-
based models.

The physical-based method can only predict the vehicle
trajectory in a short time (less than 1 second) with high
prediction accuracy. These methods assume that the vehicle
has a constant speed and direction. Thus, they have the
lowest abstraction in trajectory prediction [6]. In contrast,
the maneuver-based prediction method needs to identify the
vehicle operation first, and then uses the identified operation
to predict the future trajectory of the vehicle. [8] proposes a
vehicle turning trajectory tracking control algorithm based on
vehicle dynamics constraints, which can make the trajectory
tracking of intelligent vehicles meet the requirements of urban
road level accuracy. Schreier et al. [23] apply the Bayesian
inference network to estimate the current driving action of
each vehicle. It combines with the current physical information
of the vehicle to predict the future trajectory. [7] believes
that the trajectory tracking control strategy should be human
centered. This strategy combines the driver behavior prediction
with the transient process of cut-in scene, which can make the
automatic driving vehicle obtain a smooth transition process.

The interaction awareness-based models mainly consider the
influence of interaction between vehicle and vehicle, between
vehicle and road environment on vehicle trajectory predic-
tion. These methods can provide long-term prediction results.
Jeong et al. [21] use vehicle speed, acceleration, yaw rate,
steering, and road curvature as inputs for training the neural
network model, which can produce more accurate trajectory
information of vehicles in the next few seconds. In [20], the
Traj-clusiVAT algorithm is used to cluster a large number of
overlapping tracks in dense road network, in which the results
are used to train Markov model. This algorithm achieves
good performance in both short-term and long-term trajectory
prediction.

Since the interactive model can track and predict the vehicle
trajectory in real-time, it is widely used in the trajectory
prediction of autonomous driving (i.e., collision prediction).
Collision prediction is one of the key technologies of autopilot
system and other driver assistance systems. [19] introduces a
collision prediction algorithm, which can accurately predict
Time-to-Collision (TTC) in a longer time horizon according
to the future trajectory of surrounding vehicles. Chen et al. [18]
present an input-output HMM to predict the speed of leading
vehicles. Then, a lane change strategy for autonomous vehi-
cles is developed, which integrates speed prediction, motion
planning and trajectory tracking control. The major drawback
of most trajectory prediction methods mentioned above is that
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Fig. 1. Systematic overview of GAN-VEEP

they can only predict the future trajectory of vehicles in a short
time (several seconds).

IIT. PROBLEM FORMULATION

Vehicle trajectory is the deliverable of the complex inter-
action between vehicle and road. Due to the dynamicity of
vehicles and the diversity of driving behavior, it is difficult
to foresee the exact movements of vehicles. The goal of this
work is to predict the future trajectory according to the current
driving condition of the vehicle. The driving condition data of
the vehicle at time ¢ is defined as V; = {Vis|J Vio}, where
V,s represents the state set of the vehicle. Here we have
Vis = {z,y,s,des}, where = and y represent the position
coordinate of a vehicles; s denotes the instantaneous speed
of vehicles at time ¢, and des represents the destination of
vehicles at this time. Also, V;, represents the set of information
of the road environment, where Vi, = {fn, fa, fs, iasti}- fn
represents whether there are other vehicles driving in front
of the vehicle at time t; f; is the distance from the vehicle
ahead; fs denotes the speed of the vehicle ahead; iy4 is the
distance between the vehicle and the next intersection; ¢;
represents the status of the traffic light at the intersection is
a boolean variable. If there is no vehicle running in front
of the vehicle, f, f4, and f; will be set to 0. As shown
in Figure 1, to improve the prediction accuracy of vehicle
trajectory, we first preprocess the vehicle data. This operation
is achieved by the vehicle coordinate transformation model,
which deals with the complex spatial dependence among urban
lanes. The vehicle coordinate transformation model transforms
the original vehicle information into the state set of the vehicle
Vs, in which this module will be introduced in Section IV.

The neural network is usually used to deal with the complex
mapping between input and output. Thus, we use the neural
network model to learn the driver’s behavior model to predict
the future vehicle trajectory. The prediction of vehicle trajec-
tory using the neural network is defined as Vs = G (Vi—1).
Here, V;_1 represents the driving condition data of the vehicle
at the ¢ — 1 moment. V;, denotes the state set of the vehicle at
t moment. G is the mapping function from V;_; to V. In this
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paper, we divide the road between two adjacent intersections
into two road segments (RSGs) with opposite directions,
where a road network can be divided into multiple RSGs. The
neural network prediction model can only predict the situation
that the vehicle does not drive out of the current RSG, so
we design the vehicle turning model based on the driver’s
psychology to deal with the problem of choosing the driving
direction when the vehicle moves to the next RSG (i.e., the
vehicle can turn or move straight to the next RSG). The turning
strategy of the vehicle is defined as C' = {c1,¢2, -+ , ¢},
where C' represents the turning strategy set of the vehicle; ¢
denotes the driving direction of the vehicle at the intersection,
and b is the number of intersections the vehicle passes. As
shown in Figure 1, when the vehicle needs to select the driving
direction, the vehicle driving direction selection layer will be
used to help the vehicle select the correct driving direction. If
the vehicle is driving straight and does not drive out of the
current RSG, the prediction layer directly output the predicted
results to the vehicle driving data without passing through the
vehicle driving direction selection layer. These two layers are
tightly coupled together, which determine the predicted driving
data of the vehicle together. The neural network prediction
model and vehicle turning model will be introduced in Section
V.

In general, the vehicle trajectory prediction problem can
be considered as learning the mapping function F' under the
premise of vehicle driving conditions and turning strategy set.
Then, we have the trajectory information at the next moment,
which is defined as follows:

Ve Vo, oo Vhar| = F (Vi ©) (M

where T is the length of the vehicle trajectory time series to
be predicted; Vt+1 represents predicted vehicle driving condi-
tions. To measure the performance of the mapping function,
we define the trajectory error as follow:

l= [‘/;5+17‘/;5+27"' 7‘/t+1] - |:‘Zf+17‘25+27"' 7‘7t+T (2)

where [ is the error between the predicted vehicle trajectory
and the actual value. Our goal is to minimize [ to achieve high
prediction accuracy.

IV. DATA PROCESSING
A. Parameters

When the vehicle is driven on an RSG, the motion state
of a vehicle will be directly affected by its adjacent vehicles
in the same RSG. Hence, we divide the whole topology into
multiple independent RSGs and analyze the driving state of
vehicles on each RSG. To describe RSG adequately, it will be
shown in the shape of a rectangle, as shown in Figure 2. Next,
we model RSG and vehicle. The characteristic parameters of
RSG can be expressed as follows:

R = (P1, Py, P3, Py, Pori, Pes) 3)

where P represents a two-dimensional (2D) point (z,y). P,
P, Ps, Py are four vertices of the rectangle, which are
vertices of the lower-left corner, the upper-left corner, the
lower-right corner, and the upper-right corner of the rectangle,

Py
PdES
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P,

m Pari

(if) P,
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/ﬂg vieg | (iii)

X

Fig. 2. Vehicle coordinate conversion

respectively. P,,.; and Py represent the starting point and the
ending point of the rectangle, respectively. Since each road has
a driving direction, the two points of P,.; and Py.s are used
to show the direction of the rectangle. In this context, the
vehicles on the road can only move from P,,; to Pg.s. These
parameters will be used to normalize the vehicle position
coordinates in data preprocessing.

We refer to the RSG whose starting point is at the coordinate
origin, and the driving direction of the road is parallel to
the X coordinate axis as normalized RSG. For example, in
Figure 2, the RSG marked as (iii) is a normalized RSG. The
coordinate of the vehicle running on the normalized RSG
is called a normalized coordinate. The vehicle features are
defined as follows.

V = (id,x,y,s,1) “4)

where id is the number of the vehicle; (z,y) represents the
location of the vehicle; ¢ denotes the sampling time of the
vehicle information; s denotes the instantaneous speed of the
vehicle at time ¢. The function of the vehicle coordinate trans-
formation model is to convert non—normalized coordinates
into normalized coordinates.

B. Vehicle Coordinate Transformation Model

The topological structure of the urban road network is
arranged in a crisscross pattern, which constrains the vehicle’s
moving path. Generally speaking, vehicles always travel from
the upstream to the downstream of the lane following the di-
rection, and the connectivity between roads will also affect the
next direction of vehicles. The complex spatial correlation of
the urban road network makes the vehicle trajectory challeng-
ing to predict. We know that the coordinate range of each RSG
of a road network is different, which can lead to a significant
difference in the coordinate values of vehicle positions on
different RSGs. Hence, it is complicated to train a general
prediction model, which can adapt to all RSGs, especially
for the vehicle position, which requires high precision. For
instance, the vehicle position predicted by the neural network
may deviate from the road where it locates. To solve the above
problem, we propose the vehicle coordinate transformation
model to deal with the complex spatial dependence in urban
roads, which can improve the prediction accuracy of vehicle
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trajectory and reduce the prediction error of the neural network
prediction model.

We would like to present the two motivations to transform
the vehicle coordinate on the general road into the normal-
ized coordinate through the vehicle coordinate transformation
model in detail. First, since the normalized RSG is parallel
to the X coordinate axis, the Y coordinate value of the
vehicle is kept unchanged when the vehicle is driving on the
normalized RSG, and only the value of X coordinate changes
continuously along with speed. By considering this feature of
the normalized RSG, the change of vehicle motion initially
required 2D X and Y coordinate to be represented. Never-
theless, now, it can be expressed by using one-dimensional
(1D) of X coordinate. Transforming 2D coordinate data into
1D X data can significantly reduce the complexity of data,
and is helpful to predict the location of vehicles. Second,
all RSGs are converted to the position of normalized RSGs
through the vehicle coordinate transformation model, which
means that the vehicle coordinates on all RSGs in the road
topology are converted to normalized coordinates. Thus, it
is only necessary to train a model that can predict the location
of vehicles in the normalized RSG, rather than predicting
the location of vehicles on all RSGs. This method reduces
the generalization ability of the neural network model but
improves the prediction accuracy of the model.

Next, the vehicle coordinate normalization model is de-
scribed as an example shown in Figure 2. Without loss of
generality, we use the RSG at State (i) to represent the urban
road to show the coordinate transformation process. V; is the
original position of the vehicle. For the RSG translation from
the State (i) to State (ii), we define transformation as below.

{V{x = Vie — Prs

i 5
Vly:V1y_P1y ()

where V) represents the point of vehicle V' at State (i),
and Vll represents the point of the vehicle at State (ii) after
translation. Vi, and V3, are X and Y coordinates of V; point,
respectively, while Vllm and Vlly are X and Y coordinates of Vll
point, respectively. To convert the RSG to the position of the
normalized RSG, the RSG is needed to rotate a certain angle
around the coordinate origin to the corresponding position.
This angle of RSG rotation is defined as follows.

1 PByf-Ply
\/(PBx_le)z“‘(Piiy_Ply)Q

where 6 represents the angle of rotation required for RSG
from the State (ii) to State (iii). Then, the coordinate value
after vehicle V rotates 6 around the coordinate origin is:

0 = sin~

(6)

{ Vi, = (P3y — Piy) cosd + (P3, — Pyy) sind o

Vl/’/y = - (P?):L’ - Pl:c) sinb + (ng — Ply) cosH

where Vl/; and Vll; are the coordinate values of vehicle
V in the State (iii). The vehicle coordinate normalization
model transforms the original vehicle coordinate into the
normalized coordinate, which brings great convenience to
predict the vehicle position and speed with the neural network.

V. TRAJECTORY PREDICTION METHOD

In this section, we will introduce the neural network pre-
diction model and vehicle turning model for vehicle trajectory
prediction. The neural network prediction model predicts the
driving state of the vehicle at the next time-window. In
addition, the vehicle turning model selects the next driving
direction (i.e., straight, or left, or right, or other directions)
when the vehicle leaves the current RSG. In general, the
prediction model is for predicting the driver’s behavior, and
the turning model is for predicting the trajectory.

A. Prediction Model of GAN

GAN is a generative model [24]. Compared with other
generative models (including Boltzmann machine [25] and
GSNs [26]), GAN only employs backpropagation and does not
need complex Markov chains. Generally speaking, GAN can
produce more precise, artificial samples. Inspired by the zero-
sum game in game theory, GAN will consider this generation
problem as the confrontation and game between the two
networks of the discriminator and the generator. The generator
tries to produce more real data to fool the discriminator
while the discriminator tries to distinguish real data from
generated data more perfectly. The discriminator distinguishes
the output of the generator and real data. The generator outputs
the composite data from the given noise (generally under a
uniform distribution or a normal distribution). As a result,
the two networks make progress in the confrontation and
continue to fight after the progress as shown in Figure 3. This
results that the data obtained from the generative network will
become perfection, by approaching the real data, so that the
demanded trajectories can be generated. The major advantage
of GAN is that it can automatically learn the data distribution
of the original real sample set. No matter how complicated
the distribution is, it can learn as long as the training is good
enough. Besides, GAN automatically defines the potential loss
function.

Therefore, GAN is used to train the model and predict the
vehicle trajectory in this paper. As we know, vehicle trajectory
is highly time-series data. The position and speed of the
vehicle are closely related to the vehicle state at the previous
moment. Hence, we formalize the vehicle trajectory prediction
problem as a time-series prediction process in Eq. (8).

Vigr = f(V2) ®)

where V; represents the driving condition data of the vehicle
in the last time frame (as the input of the generated network);
Vit1 represents the driving condition data of the vehicle
predicted by the generated network one second later. That is
to say, each prediction only predicts the driving condition of
all vehicles in the current topology one second later. Then
take the predicted driving condition data after one second
as input, and continue to predict the driving condition of
the vehicle in the next second. This prediction process is
iterated until the required vehicle trajectory data is obtained.
The advantage of this method is that as long as the error of
each predicted data is minimized, the accuracy of the final
predicted vehicle trajectory can be high. In the following
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subsections, the generative model and the discriminant model
will be introduced, respectively.

1) Generative Model: The problem of predicting vehicle
trajectory with the GAN model can be considered as making
the model learn mapping function G and predict the vehicle
state information in the next second under the premise of
given driving condition data of the vehicle. We use the
depth neural network (DNN) as the generative model. The
process of generative model to predict V;4 can be expressed as
Vis = G (V4—1), where V;_; represents the driving condition
data of the vehicle at the £ — 1 moment, and V;, is the state
set of the vehicle generated by the generated model. The
generated Vs can be combined with the V;, at that time to
get the V; of the vehicle. Then V; is applied as the input of
the generative model, while the output is the predicted state
data Vi1, of the vehicle at the next moment. By iterating this
process, continuous vehicle trajectory data can be generated.
In Algorithm 1, Line 5-8 shows the process of training the
generator.

2) Discriminant model: The function of the discriminator is
to distinguish the difference between the generated vehicle tra-
jectory data and real data. The closer the generated trajectory is
to the real trajectory, the closer the result of the discriminator
is to 1. On the contrary, the result of the discriminator will
be closed to 0. Since the generator will learn the mapping
function G from V;_; to Vi, the discriminator cannot judge
the data generated by generator only by V;_1 or V. Therefore,
only the vehicle trajectory data output by the generator is
used as the input of the discriminator, the discriminator cannot
judge whether the data is closed to the real. If the discriminator
intends to judge whether the prediction result of the generator
is close to the real, it needs the input of the generator to
assist the discrimination. The discrimination process is shown
as follows.

e =D (Vi-1;G (Vi-1)) ©)

where € is the probability of discriminator to distinguish the
data generated by generator into real data. From the above
equation, it can be seen that the discriminator needs to accept
two parts of data to correctly judge the correctness of the
mapping function learned by the generator. The first part is

Hidden
Layer

Output
Layer

7N

X7

.W.
s:r‘\y"‘i?i‘
KRN

D1

Fig. 4. The structure of the Discriminant model

the input data of the generator, while the second is the output
data of the generator. As shown in Figure 3, V,_; represents
the driving condition data, and G(V;_1) denotes the predicted
data. Hence, in this paper, the discriminant network of the
discriminant model is also composed of two parts, D1 and
D2. As shown in Figure 4, D1 and D2 are both deep neural
networks with three hidden layers, which jointly determine the
probability of discriminator to distinguish the data generated
by generator into real data. Positive and negative samples
are applied in the training of discriminators. The positive
sample is the complete vehicle trajectory data generated by
the SUMO simulator. On the other hand, the negative sample
is the forecast data generated by the generator based on the
input. Then, the discriminator gives a reward to the generator
according to the positive and negative samples. On this basis,
the discriminator is updated by the policy gradient (Line 11-
14).

In summary, Algorithm 1 shows full details of the GAN.
After initializing the generator and the discriminantor, G, and
D, are trained alternately. As the generator gets progressed
via training on G — steps updates, the discriminator needs to
be retrained to keep a good pace with the generator. When
training the discriminator, the positive examples are from the
given dataset i, whereas negative examples are generated from
the generator. To get a more accurate generative model, the
learning rate of generator is a little higher than discriminator,
which also make generator converge faster.

In this way, we can use GAN to simulate the driver’s
behavior in order to predict the future state of the vehicle inde-
pendently. However, GAN cannot choose the turning direction
of the vehicle. This is mainly because the RSGs we used for
training do not contain the turning directions. Therefore, we
integrate the vehicle turning model in the prediction method.
This model is specially designed to deal with the situation that
the vehicle is at the end of the current RSG and has to choose
its future moving direction.

B. Vehicle Turning Model

The prediction model introduced above is to foretell the
position if the vehicle is still within the current RSG. However,
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Algorithm 1: Generative Adversarial Network

Input: generator G ; discriminator D,; a dataset
uw=A{Z1n}, Zt = {Viz1 U Vis}; learning rate of
generator wy; learning rate of discriminator wq

Output: roll-out policy G,

1 Initialize G, D, with random weights «, p

2 0+«

3 repeat

4 for G-steps do

5 Generate a negative example Zy = {V}_l U Vzg},
‘7ts - Ga(‘/t—l)

6 v = log (1 - D, (Zt))

7 a4~ a—wgV

8 Update the generator parameters o

9 end

10 for D-steps do

11 Generate a negative example Z; by using current
Ga

12 7 = log (D, (Z:)) + log (1 - D, (Zt))

13 p = p+wiv

14 Update the discriminator parameters p

15 end

16 04+

17 return o

18 until GAN converges;

if the vehicle reaches the end of the current RSG and going
to move out of the current RSG, we will require the vehicle
turning model to determine the next direction of the vehicle
in order to put the vehicle in the next RSG (i.e., it can either
move straight, or turn left, or turn right, or other directions
in this case). The driving direction of a single-vehicle is not
the first concern for the traffic flow prediction. Generally,
the evaluation of macro traffic flow focuses on the overall
performance of all vehicles in the whole topology by ignoring
the differences of each vehicle. However, for fine-grained
micro vehicle trajectory prediction, it is the key to predict
vehicle trajectory close to the real scenario. In this study, we
focus on the specific performance of each vehicle in the road
topology. Hence, the vehicle turning at every intersection has a
significant influence on the result of trajectory prediction. The
vehicle turning model is designed to select the driving route of
the vehicle by simulating the real-world drivers’ behavior. The
relation between the prediction model and the turning model
are like navigation app and driver, in which the navigation app
points out the turning direction and the the driver controls the
moving of vehicle on the road. When the vehicle is turning,
the turning model can select the best driving direction based
on the driver’s psychology, which is greedy for time and cost.

We use a directed graph n = (N, E) to describe the
topological structure of the road network, and we define
each intersection as a node. /N is the intersection node-set,
N = {ni,n2, -+ ,ny}, m is the number of nodes, and E
is the road edge set; E = {e1,ea,- -, ey}, Where w is the
number of edges. The adjacency matrix A is used to express
the connectivity between nodes, A € U"*™. The adjacency
matrix contains only elements 0 and 1. If there is no link
between two nodes, the element is 0. Otherwise, the element

is 1. Each link represents a directed edge, where each edge is
constrained by two intersection nodes, namely the start node
and the end node. The direction of the edge is from the start
node to the end node. We use the feature matrix H € R%*°
to represent the attributes of roads, where o is the number of
attributes of roads. The attribute of the road includes the length
of the road and the traffic light status of the intersection.

Besides, we should consider two contextual points for
the selection of driving direction. The first is under what
circumstance the vehicle needs to choose a driving direction,
while the second is what direction the vehicle chooses to
drive. We will discuss these two points as follows. (1) We
aim to discuss the circumstances in which the vehicle adopts
the turning model. If the vehicle reaches the end of RSG and
the traffic light at the intersection is the green light, the vehicle
will drive out of the current RSG. Thus the vehicle will adopt
the turning model at this time. Another situation is that when
the traffic light at the intersection is green, but the vehicle
is still a certain distance from the end of the current RSG.
The vehicle will drive out of the current RSG after driving
at the current speed for one second, where it should also
implement the turning model. When the vehicle is in the above
two situations, the vehicle will execute the turning strategy.
(2) Generally speaking, the driver will choose the best path
(with the least travel cost) according to the road topology and
destination. Since the driving route is composed of multiple
RSGs, to evaluate the cost of a route, we first calculate the
cost of each RSG in the route. Hence, we define the driving
cost of each RSG according to the linear weighted sum of
travel time and travel price [27].

L = By X time + B2 X price (10)

where L is the cost of RSG; time denotes the travel time of a
vehicle on an RSG; price represents the travel price, e.g., cost
of oil or electricity; 5, and (35 represent the weight of time and
price, respectively, which are equally set to 0.5 in this study.
Travel time represents the time vehicles driving from the start
to the end of the RSG. The more crowded the RSG is, the
more time it may take a vehicle to pass the RSG. Similarly,
a vehicle is needed to spend more time on a longer RSG.
Hence, we use vehicle density and length of RSG to represent
the travel time of each RSG, which is defined as follows:

(1)

where den represents the density of RSG, calculated by the
number of vehicles per kilometer; v is a constant; th is the
threshold, and rt is the duration of red traffic lights. Observed
from the statistics of vehicle trajectory data, without traffic
lights, we find that time represents the linear ratio between
vehicle density and the length of RSG; -y represents the linear
ratio between travel time and density. However, the traffic
lights exist in the actual urban roads. Therefore, we set a
threshold, which means that when the vehicle density reaches
the threshold, the vehicle will wait for a red traffic light
when driving on the RSG. This threshold is determined by the
average value of the statistical vehicle trajectory data, which
is set to 22. Here, price is defined as:

time = v X den X len + [den =+ th] x rt

cost = uc X len (12)
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where len is the length of RSG, and wuc represents the price
of a vehicle per kilometer.

After calculating the L of each RSG in the current topology,
we transform the vehicle routing problem into an L-based
shortest path problem. Regarding the starting point and desti-
nation of the vehicle, A* [28] is applied to find the shortest
path. When the vehicle needs to execute the turning model, the
shortest path to the destination will be calculated according to
the current topology. The vehicle then turns by following this
shortest path. In summary, GAN learns the behavior model
of ordinary drivers, by iteratively predicting the future driving
states. The vehicle turning model makes the turning decision
and couples with the prediction model to output the continuous
vehicle trajectory data.

VI. EXPERIMENT EVALUATION

This section evaluates the prediction accuracy of GAN-
VEEP. Although our proposal is for trajectory prediction, it
can be used for forecasting traffic flow as a whole. For this,
we will evaluate the prediction ability of this model regarding
the macro-traffic changes (i.e., traffic speed and the traffic
flow) and micro-vehicle changes (i.e., trajectory-level speed
and position). The fine-grained vehicle trajectory shows more
behavior patterns and activity rules of vehicles. In this context,
it is evident that the accuracy of GAN-VEEP in trajectory
level can determine whether we can apply such a method
in the future design and evaluation of intelligent vehicular
networking schemes.

A. Data Description

Due to the sparse of probing car data, we employ the SUMO
to generate vehicle trajectory data for model training and
evaluation. SUMO simulates the trajectory of multiple vehicles
in a 1000m x 1000m map. The average vehicle density
is 250/km?2. During the simulation, there will be vehicles
ending their journey, and new vehicles will be generated
simultaneously, to simulate the real urban scenario to the
maximum extent. In SUMO, the road is defined by two nodes
and a directed edge. Hence, we use adjacency matrix A to store
the connectivity between nodes (i.e., the spatial relationship
of roads). The feature matrix H is used to the attribute
information of the road (i.e., the state of the road traffic lights,
the length of the road). The vehicle turning model is based
on adjacency matrix A and feature matrix H to choose the
optimal route for vehicles. The vehicle trajectory information
generated by SUMO is stored in matrix V. Vehicle trajectory
information includes coordinate value, speed, and vehicle ID
information of each vehicle. We take the matrix V' as known
to predict the future driving state of vehicles in road topology.

In the experiment, we apply the vehicle coordinate trans-
formation model to normalize the coordinate information of
all vehicles in the topology. The normalized data is converted
for the training and testing of GAN. 80% of data is applied
as a training set, while 20% is used as a test set. We predict
vehicle trajectory in the next 30 seconds.
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Fig. 5. Performance comparison between training Data and test data

B. Evaluation Metrics and Counterparts

We use the following metrics widely used in traffic flow
prediction [29], [30] to evaluate the performance of GAN-
VEEP.

(1) Average Accuracy (AA): it represents the average
prediction accuracy of the predicted vehicle trajectory. The
bigger the values are, the better the result is.

1 ¢ 19: — wil
AA = — 1 — == 2
w2 (-7
(2) Mean Absolute Error (MAE): MAE is the average
value of absolute error, which can reflect the actual situation
of the error of predicted value, the smaller the value is, the
better the result is.

1 M
MAE = MZ;Iywyil

(3) Root Mean Squared Error (RMSE): RMSE is the
square root of the ratio of the square sum of the error of the
prediction value to the prediction times M. RMSE and MAE
are both used to measure the error. RMSE is more sensitive to
the abnormal value of prediction (i.e., if there is a significant
prediction error, RMSE will be very large).

M
1 2
RMSE = | — i — i
M;ﬂ (i — i)

where y; represents the real traffic information; y; is the
predicted value of y;; and M is the number of vehicles; K is
a constant.

We compared the performance of the proposed method with
the following five well-known methods.
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Fig. 6. Experimental results of traffic speed and traffic flow
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(1) History average model (HA) [29]: This method pre-
dicts based on the average value of historical traffic informa-
tion. Since the method proposed in [29] is more about traffic
flow prediction, we then apply the HA model as one of our
counterparts.

(2) Adaptive prediction model (AP) [31]: A dynamic
OD (Origin-Destination) matrix is used to make an initial
prediction while it adjusts the prediction model adaptively
every once it receives new traffic data.

(3) Markov-based trajectory prediction (Traj-clusiVAT)
[20]: It is used to cluster a large number of overlapped tracks
in urban dense road network. Then the Markov model can be
trained according to the clustering results in order to predict
the trajectory.

(4) DNN-based trajectory prediction (DNN) [21]: In this
method, the vehicle is modeled by speed, acceleration, yaw
rate, steering, and road curvature, which are then used as the
input of the deep neural network model.

(5) Maneuver-based trajectory prediction (Maneuver)
[23]: This method estimates the current driving action of each
vehicle by using the Bayesian inference. Then, the future
trajectory of the vehicle is predicted on the basis of the current
physical information of the vehicle.

C. Experimental Environment and Parameter Setting

In the experiment, we use Python 3.5 to develop the
neural network prediction model, where TensorFlow 1.12
and Google’s neural network algorithm library are deployed.
Java is applied to preprocess the vehicle trajectory data and
conduct the overall framework of GAN-VEEP. As an ad-
dition, the source code and dataset are available online at
https://github.com/GANVEEP/GAN-VEEP.git. The hardware
platform is a PC with Intel(R) Core(TM) i5-4210, 2.40GHz
CPUs, and 12G bytes memory under Windows 8.1.

Because the vehicle data after the normalization of the
coordinate transformation model has a linear correlation, the
deep neural network can well represent the relationship of
linear data. Hence, we use a deep neural network with three
hidden layers as the generator and discriminator model. In the
experiment, the learning rate of the generative model is set to
0.02, while the learning rate of the discrimination model is set
to 0.01. For in adversarial learning, we need the generator to
learn faster to produce a better prediction model. The number
of hidden layer neurons is an essential parameter that affects
the performance of the GAN model. To choose the best value,
we have done incremental experiments on different numbers
of hidden layer neurons and choose the value with the best
prediction results.

In our incremental experiments, we choose the incremental
parameters from [100, 200, 300, 400, 500] for training and
select the value with the highest prediction accuracy as the
final experimental parameter. As shown in Figure 5, the
horizontal axis represents the change of the number of neurons
in the hidden layer, and the vertical axis represents the change
of the evaluation index. Figure 5 (a) shows the effect of the
number of neurons on the training results. It can be seen that
the error is the smallest when the number of neurons in the

9
TABLE I
COMPARISON OF TRAFFIC SPEED AND TRAFFIC FLOW
. Traffic Speed Traffic Flow

T Metries == p T My | HA | AP | MY
RMSE | 3.801 | 4309 | 1.812 | 1.814 | 4.483 | 1.474
5s | MAE | 2.960 | 3.739 | 1.447 | 1375 | 3.854 | 1.043
AA | 0901 | 0.875 | 0.951 | 0.903 | 0.871 | 0.949
RMSE | 5.654 | 5.120 | 4.066 | 3.446 | 5.295 | 2.907
10s | MAE | 4.539 | 4320 | 3.475 | 2.875 | 4.436 | 2.181
AA | 0.848 | 0.855 | 0.884 | 0.852 | 0.852 | 0.878
RMSE | 6.091 | 6.687 | 5.000 | 4.659 | 5819 | 4.524
15s | MAE | 5.210 | 5.550 | 3.866 | 4.041 | 4379 | 3.421
AA | 0826 | 0.814 | 0.871 | 0.825 | 0.854 | 0.852
RMSE | 0.811 | 7.330 | 4.737 | 5.642 | 6.834 | 6.411
20s | MAE | 5.668 | 5.785 | 3.237 | 5.000 | 5319 | 4.444
AA | 0.848 | 0.807 | 0.892 | 0.804 | 0.822 | 0.858
RMSE | 0.753 | 6.967 | 6.037 | 6.461 | 7.518 | 7.166
25s | MAE | 7.405 | 5.680 | 4.085 | 5.833 | 5915 | 4.764
AA | 0.882 | 0.810 | 0.863 | 0.739 | 0.802 | 0.828
RMSE | 9.690 | 6.691 | 5.326 | 6.958 | 8.637 | 8.733
30s | MAE | 8.015 | 5487 | 4.338 | 6.416 | 7.024 | 5.066
AA | 0732 | 0.817 | 0.855 | 0.717 | 0.765 | 0.811

hidden layer is 300. Figure 5 (b) shows the changes in the
results in test sets. Similarly, when the number of neurons
in the hidden layer is 300, the test accuracy is the highest.
Therefore, we set the number of neurons in the hidden layer
to 300 in our experiment.

In training, although Minlog(—D) is used in the original
work of GAN [24], we apply M axlog(D) as the loss function
of optimized G. This is because this function confirms that
there is a gradual disappearing gradient at an early stage.
Moreover, we use the ADADELTA [32] optimizer to train the
model.

D. Experimental Results

1) Traffic flow and Speed: Figure 6 shows the performance
of the vehicle trajectories predicted by our proposed method
for 1s, 5s, 10s, 15s, 20s, 25s, and 30s, respectively, in terms
of macro evaluation indexes (traffic flow and traffic speed).
The traffic flow represents the number of vehicles on an
RSG. The traffic speed denotes the average speed of vehicles
on an RSG. In Figure 6, with the increase of prediction
time, the AA decreases slowly, while the RMSE and MAE
increase gradually. This is because each iteration will predict
the trajectory one second later, and the error generated by
each prediction in the process of continuous iteration is also
accumulating. Another reason is, as a scenario construction
rule of SUMO, vehicles can move in and out of the map,
where this is not the issue we considered in GAN-VEEP.
The AA value of traffic flow and speed is above 0.8 in the
30s, which confirms that our method still exhibits an excellent
performance in the 30s. However, since the error produced by
GAN-VEEP in each prediction will accumulate, GAN-VEEP
is more suitable for short-term trajectory prediction tasks.
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Fig. 8. Error distribution of trajectory position and speed

Table I shows the comparison between our proposed method
and the other two methods in the prediction performance of Ss,
10s, 15s, 20s, 25s, and 30s where we mark the best result of
each row in bold. In most cases, our model achieves the best
performance under all evaluation metrics, which also proves
the effectiveness of the vehicle trajectory predicted by our
model in the macro indicators. The RMSE value of the HA
model is smaller than that of our model at 20s, 25s, 30s in the
traffic flow table. This is because the vehicles in our model
start slowly. It is more likely to lead to the phenomenon
of vehicle crowds within an RSG. Then, the error on the
RSG of the vehicle crowds will be more significant. RMSE
is more susceptible to big values but less effected by the
small values. This is also the reason that AA value is still
better than the HA although the RMSE value of our model is
higher than the HA. HA takes the mean value of the historical
period as the prediction values for a period, which is more
suitable for the scenario with considerable time granularity. AP
builds vehicle trajectory by OD matrix without considering the
current driving state of vehicles, so it does not perform well
in short-term traffic prediction.
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Time(s)

(b) Speed error

Time(s)
(a) Distance error

Fig. 9. Comparison of trajectory position and speed

However, with the increase of prediction time, the RMSE
of AP becomes stable, which is due to the adaptive acceptance
of some topology information.

2) Trajectory Speed and Position: The micro-level speed
and position of the individual vehicle is the key to intelligent
networking. The predicted track points of each vehicle lasting
for the 30s are compared with the real track data. Figure 7
shows the visual results of the predicted X and Y values of
vehicle coordinates compared with the real data. In most cases,
the predicted value and the real value fit well. However, some-
times there is a significant difference between the predicted
value and the real value. After analysis, we find that this is a
colossal error caused by tiny differences in some cases. For
instance, a predicted vehicle arrives at the intersection a few
seconds late and has to wait for the traffic light change from
red to green. In this case, the errors between the predicted
vehicle position and the real vehicle position may reach tens
or even hundreds of meters. However, the probability of large
errors is relatively small.

Besides, we evaluate the distance and speed error distri-
bution of each trajectory. Figure 8 (a) shows the average
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dataset

distance error distribution for each trajectory. Figure 8 (b)
shows the average speed error distribution for each trajectory.
From Figure 8, within the 30s, the position errors of most
trajectories are less than 80m, and only 18.8% of the tracks
are more than 80m. In the same aspect of speed errors, only
18.8% are more than 9m/s.

Then, we also compare the performance of GAN-VEEP
with other methods in 30 seconds in terms of position and
speed. It can be seen that GAN-VEEP has almost the best
prediction performance in position and speed prediction, which
proves the effectiveness of the model in short-term vehicle
trajectory prediction tasks. In Figure 9 (b), Maneuver, DNN,
and Traj-clusiVAT reach the peak and then begin to decline.
This is because some vehicles end their journey after arriving
at the destination. Here, since the speed of vehicles in Ma-
neuver is the highest, the model also reaches the peak as the
earliest method. The overall trend of speed error and distance
error is similar, which shows that the position of the vehicle
is closely related to the speed of the vehicle. The speed of the
vehicle affects the accuracy of the whole track by affecting
the position of the vehicle. To conclude, the most accurate
model for vehicle speed modeling can often obtain the most
accurate prediction trajectory. GAN-VEEP, therefore, can get
better prediction results by learning the hidden behavior of
vehicle drivers from the historical data.

Last, we verify the robustness of GAN-VEEP to test the
noise immunity through perturbation analysis experiments.
Two types of common random noise are added to the
dataset. They obey Gaussian distribution N (0,0?), where
o € (0.2,0.4,0.8,1,2), and Poisson distribution P (vy), and
v € (0.2,0.4,0.8,1,2), respectively. To illustrate the robust-
ness of our proposal, we evaluate the stability of GAN-VEEP
in terms of traffic speed and traffic flow. The results are
shown as follows. Figure 10(a) and (b) show the results of the
traffic speed after adding Gaussian noise and Poisson noise,
respectively, where the vertical axis represents the change of

each evaluation metrics, and different colors indicate different
metrics. Similarly, Figure 10(c) and (b) are the results of the
traffic flow after adding Gaussian noise and Poisson noise,
respectively. From the above results, it can be seen that the
fluctuations of metrics are relatively small whatever the noise
distribution is. Therefore, the GAN-VEEP is robust as it is
proved to handle high noise issues.

VII. CONCLUSION

In this paper, a novel short-term high-precision vehicle
trajectory prediction method, GAN-VEEP is proposed. First,
we use a vehicle coordinate normalization model to transform
the position coordinates of each vehicle into normalized
coordinates. This method improves the accuracy of the
prediction model for vehicle trajectory prediction. Then, we
use GAN to train a high-precision vehicle position prediction
model to forecast the driving position of the vehicle on the cur-
rent RSG. An cost-based vehicle turning model is introduced
to select the next driving direction when the vehicle turns.
According to the experimental results, compared with existing
methods, GAN-VEEP has shown excellent performance in
predicting vehicle trajectory on urban road scenarios.
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