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Abstract—Vehicular computation offloading is a well-received
strategy to execute delay-sensitive and/or compute-intensive tasks
of legacy vehicles. The response time of vehicular computation
offloading can be shortened by using mobile edge computing that
offers strong computing power, driving these computation tasks
closer to end users. However, the quality of communication is
hard to guarantee due to the obstruction of dense buildings or
lack of infrastructure in some zones. Unmanned Aerial Vehicles
(UAVs), therefore, have become one of the means to establish
communication links for the two ends owing to its characteristics
of ignoring terrain and flexible deployment. To make a sensible
decision of computation offloading, nevertheless vehicles need to
gather offloading-related global information, in which Software-
Defined Networking (SDN) has shown its advances in data
collection and centralized management. In this paper, thus, we
propose an SDN-enabled UAV-assisted vehicular computation
offloading optimization framework to minimize the system cost
of vehicle computing tasks. In our framework, the UAV and the
Mobile Edge Computing (MEC) server can work on behalf of the
vehicle users to execute the delay-sensitive and compute-intensive
tasks. The UAV, in a meanwhile, can also be deployed as a relay
node to assist in forwarding computation tasks to the MEC server.
We formulate the offloading decision-making problem as a multi-
players computation offloading sequential game, and design the
UAV-assisted Vehicular Computation Cost Optimization (UVCO)
algorithm to solve this problem. Simulation results demonstrate
that our proposed algorithm can make the offloading decision to
minimize the Average System Cost (ASC).

Index Terms—Mobile edge computing, computation offloading,
vehicular networks, unmanned aerial vehicles, game theory.

I. INTRODUCTION

VEHICULAR network (VN) is developed as a new
networking paradigm to enable the data transmissions

among vehicles for allowing the control and management of
urban traffic and providing intelligent guidance and service
for vehicles in recent years. With this new paradigm, the
information transmission and network access can be realized
through vehicle-to-everything (V2X), including vehicle-to-
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vehicle (V2V) and vehicle-to-infrastructure (V2I) communi-
cation, where such technologies have been designed in forms
of 5G, DSRC [1] or VANET [2], [3]. However, VN has
still faced great challenges like dynamic topology, stability,
and deployment. For example, VNs are susceptible to the
dynamic road conditions including highly-mobile vehicles and
changing of vehicle density, in which both may result in high
packet loss and latency. Consequently, as an emerging network
paradigm, Software-Defined Vehicular Network (SDVN) has
been starting to attract research attention [4], [5], [6], [7], [8],
[9] as one of the most important technologies to manage VNs.
Similar to the general softwarized network, SDVN separates
the data plane and control plane in which the data plane is
mainly composed of vehicles, infrastructure; the control plane
is a logic controller that provides services for the unit of
the data plane with its global view of the network. These
distinguishing characteristics of the SDVN architecture make
VN more flexible and easier to implement intelligent schemes.

With the promotion of VNs, the Internet of Vehicles (IoV)
has been developed rapidly [10], [11], [12] to bring us various
vehicular applications, such as route planning, autonomous
driving, and infotainment applications [13]. These applications
can either ensure travel safety or provide the entertainment
interconnection in the journey. We can observe that most of
these applications are delay-sensitive and resource-intensive,
with complex computation and high energy demand. However,
at present, many legacy vehicles are still of limited storage
capacity and insufficient computing resources. Therefore, it
is important to take advantage of SDVN to offload complex
computation tasks of legacy vehicles to execute such tasks
somewhere else.

Mobile Edge Computing (MEC) is an ideal technology for
the above where it integrates capabilities, including collection,
calculation, and storage. Distinguished from cloud computing
[14], MEC can respond faster as it is closer to users[15]. Com-
pared with the vehicles, MEC servers are equipped with rich
computing resources, which can provide efficient computing
services for the users in the coverage. Hence, vehicles can
choose to offload the computation tasks to the MEC server
through the wireless connection in which the MEC server can
execute the computation tasks on behalf of vehicle users in
order to enhance the capabilities of vehicle users handling
the resource-intensive applications and improve computing
efficiency [16], [17], [18], [19], [20], [21]. However, if we
intend to apply offloading computation technology in the real
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applications, it will face more challenges such as network
accessibility and obstacles. Regions can be with no access
point or base stations to allow network access in these costly
infrastructures. Also, the dense buildings can block the signal
off transmissions. As a result, these constraints can limit the
use of the applications without guaranteeing the reliability of
offloading computation.

On the other hand, in recent years, Unmanned Aerial
Vehicles (UAVs) have been widely studied in military and
civilian fields benefited from its characteristics such as flexible
mobility, low environmental requirements, and variety of sizes
[22], [23], [24], [25], [26], [27]. In networking, UAVs can be
dispatched as aerial Base Stations (BSs), Access Points (APs)
or relays, which therefore, assist the terrestrial communication
and computing. Vehicle users can choose to offload tasks to
UAVs built with computing resource for execution. Unfortu-
nately, as a side effect, offloading computation tasks can gener-
ate additional cost on execution time and energy consumption
from sending offloading data to returning computation results.
Minimizing these costs is the key to implement the offloading
computations.

In this paper, we propose a novel Software-Defined Network
(SDN)-enabled UAV-assisted vehicular computation offloading
cost optimization framework. This framework enables the ve-
hicles to execute computationally complex and time-sensitive
computation tasks while minimizing the task execution time
and system energy consumption. With building our frame-
work in the concept of SDN, the controller can ensure the
information exchange by collecting global information and
sending them to each vehicle. In particular, a UAV with rich
computing resources is employed to assist legacy vehicles to
perform delay-sensitive and compute-intensive tasks in a zone
with dense buildings and a limited infrastructure hosting only
one MEC server.

Computation offloading for legacy vehicles is a promising
technology, however, among which making the optimal of-
floading decision is the key challenge to realize the MEC. We
adopt the idea of game theory to address this challenge. As
such, vehicle users can make mutually satisfactory decision-
making according to their own interests, and reduce the
pressure of central management. Moreover, in existing work
[28], smart devices such as UAV and Vehicle can only execute
one computation task at a time. As a solution, we set up a
waiting queue for the UAV and the MEC server according
to the principle of First-Come-First-Serve (FCFS) queue to
store computation tasks temporarily that are later offloaded
to improve the efficiency of resource utilization. In addition,
we also set up a forwarding queue for UAV based on the
FCFS scheduling principle to solve the situation that multiple
vehicles have forwarding requirements at the same time. We
further propose an algorithm to achieve the Nash equilibrium
to minimize the execution time and energy consumption.

The main contributions of this paper are as follows.
• SDN-enabled UAV-assisted vehicular computing or

relay:We deploy a UAV equipped with intelligent com-
puting capabilities to cruise along fixed trajectories in the
region with dense buildings and sparse infrastructure. In
this scenario, vehicle users can offload computation tasks
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Fig. 1. The proposed offloading architecture

to the UAV, which can execute the computation tasks on
behalf of the vehicle users. In addition, the UAV can serve
as a relay node to transfer the offloaded computation tasks
of vehicle users to the MEC server.

• UAV-assisted vehicular computation cost optimiza-
tion algorithm: We formulate the UAV-assisted vehic-
ular computation offloading decision-making problem
as multi-vehicle users offloading game and design a
decision-making algorithm. The objective is to optimize
the execution time of the vehicular computation task,
system energy consumption, in order to ensure the QoS
of communication links.

• Dynamic scenario: Our scenario is more realistic. Dif-
ferent from existing work such as [14], we consider the
dynamic nature of vehicle which allows vehicles to move
in our scenario. In addition, the UAV cruises at a fixed
trajectory and altitude in our scenario.

The rest of the paper is organized as follows. In Section II,
we introduce the system model of our proposal and take com-
munication and computation aspects into account. The multi-
player computation offloading game and our proposed UVCO
algorithm are described in detail in Section III. Simulation
results are shown in Section IV. We conclude the paper in
Section V.

II. SYSTEM MODEL

In this section, we introduce the system model of legacy
vehicles offloading computation tasks. The system model is
shown in Fig. 1. The controller is deployed to collect the real-
time information (coordinate position, speed, waiting queue
length, etc.) of the global devices (the legacy vehicles, the
UAV, and the MEC server) in the data plane. This controller
also sends the information to each device in the data plane to
realize the information exchange in the coverage area of the
SDN controller. We consider a set N = {1, 2, 3..., a} of legacy
vehicles that have insufficient computation power. In addi-
tion, these legacy vehicles will generate a set of computing-
intensive and delay-sensitive computation tasks denoted by I .
The computation tasks have their own priorities, representing
the degree of the execution time demand. The higher the
priority of the task, the faster it is required to be executed.
There is one MEC server that can execute computation tasks
on behalf of the vehicle users. However, due to the dynamic
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TABLE I
COMPARISON WITH EXISTING WORK

Related Computing SDN Dynamic Delay ASCwork source based
[14] Cloud No No Low Medium
[16] MEC No No High Medium
[18] MEC No Yes High Medium
[19] MEC No No Medium High
[20] MEC No No Medium High

[28] Smart No No High Low
vehicle

UVCO UAV Yes Yes Low Low
MEC

movements of the vehicles in the building intensive scenario,
the vehicle signal cannot transmit through the tall buildings.
Therefore, the occlusion of the buildings may make it im-
possible for the vehicles and the MEC server to establish
a wireless connection directly. Hence, we deploy a UAV as
a cloudlet or a relay node to improve the computation effi-
ciency of legacy vehicles. A coordinate system is established
according to the origin at the lower-left corner of the road. The
distance between the UAV and a vehicle within its coverage is
calculated by the Pythagorean theorem. Most of the existing
studies [25], [29] on UAV-assisted mobile device computation
offloading are assumed in the static scenario. Nevertheless,
without considering the dynamic nature of the vehicle, the
existing assumption is not realistic. In this paper, we propose a
scenario in which vehicle users move dynamically. Then, since
both the communication and computation are key to vehicular
computing, we will introduce the two models and the payoff
function to calculate the cost in detail. In addition, the main
parameters of this paper are shown in Table II.

A. Channel Model

In our scenario, vehicle user n (n ∈ N) intends to
offload tasks to the device (UAV or the MEC server) that
can establish a communication link (i.e., depends on whether
the communication link is blocked by obstacles). We denote
SN = {0, 1, 2, 3} as a set of the decision-making by the user
n. We have Sn = 0 if the vehicle user n chooses to execute a
computation task locally; Sn = 1 if n chooses to offload the
computation task to UAV; Sn = 2 if n chooses to offload the
computation task to MEC server; and Sn = 3 if n chooses
to offload the computation task to the MEC server through
the UAV relay. We define the link-state as Non-Line of Sight
(NLoS) when the communication link between two devices
is blocked by the obstacles. Otherwise, it is defined as Line
of Sight (LoS). In this paper, we assume that the connection
between a Vehicle to the UAV (V2U) is LoS. Therefore, we
can formulate the data transmission rate of offloading the task
from n to the UAV via wireless links as [14]

Rn,u =Wlog2(1 +
PV ρLoSd

−αV
n,u

N0 +
∑
s∈N,s6=n PV ρLoSd

−αV
s,u

) (1)

where ρLoS is the shadow fading component following the
Gamma distribution; dn,u denotes the distance between n

and the UAV; and αV is the path loss exponent for V2I
channels; W is the channel bandwidth, and PV is the trans-
mission power of the vehicle; N0 represents the noise power;∑
s∈N,s6=n PV ρLoSd

−αV
s,u represents the vehicle users (exclud-

ing n) choosing to offload computation tasks to the UAV via
the wireless links simultaneously. Then, the data transmission
rate of offloading task from n to the MEC server via wireless
links as

Rn,M =Wlog2(1 +
PV ρv,Md

−αV

n,M

N0 +
∑
s∈N,s6=n PV ρv,Md

−αV

s,M

) (2)

where ρv,M denotes the small-scale fading; dn,M is the
distance between the vehicle user n and the MEC server;∑
s∈N,s6=n PV ρv,Md

−αV

s,M is the vehicle users (excluding n)
who choose to offload computation tasks to the MEC server
simultaneously via the wireless links. In this scenario, the UAV
and vehicles move dynamically. Therefore, the transmission
rate will vary regarding the changing distance between the
two devices. From Eq. (1) and (2), if too many vehicle
users choose to offload computation tasks via the wireless
links simultaneously, it may cause severe interference. The
value of

∑
s∈N,s6=n PV ρv,Md

−αV

s,M will increase. Then the data
transmission rate will be greatly lowered, and the efficiency
of offloading computation tasks via wireless links will be
reduced. In this circumstance, we define the link-state as Weak
LoS (WLoS).

B. Computation Model

We consider that vehicle user n will generate a computation
task In = (Ci, Oi, Di), In ∈ I in a certain time interval needs
to be executed in time. Here, Ci denotes the total Central
Processing Unit (CPU) cycles required to accomplish the task
In; Oi is the total size of offloading computation task data
(i.e., the input parameters and the program codes); and Di

represents the size of the execution results of task returned
to the requesting vehicle. In our scenario, the legacy vehicles
travel in a dense building area and with less infrastructure.
In order to improve the computation efficiency of the legacy
vehicles for ensuring the quality of communication service, we
employ a UAV to assist legacy vehicles. On the other hand,
the lifetime of UAV power supply is limited. Therefore, in
the follows, we will focus on discussing the computation cost
in terms of the execution time of the vehicle and the system
energy consumption for each strategy.

1) Local Computing: For the local computing strategy,
a vehicle user executes the computation task locally. The
execution time is related to the computation capability (i.e.,
the CPU cycles per second) FV,nCPU of vehicle user n, where
each vehicle is of limited computation capability which may
also vary. The computation execution time for each vehicle
user to perform a task In, (In ∈ I) locally is given as

TLocIn =
Ci

FV,nCPU

(3)

The total energy consumption of task In executed locally
in vehicle n (ELocIn

) can be given as

ELocIn = Ci × eVCPU (4)
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TABLE II
NOTATIONS

Notation Description

γTn /γ
E
n

Weight of execution time / energy consumption
in the payoff function

Rn,u/Rn,M
The transmission rate of data sent by vehicle

n to UAV / MEC server

ρLos/ρv,M
Component of shadow fading / small-scale

fading

dn,u/dn,M
Distance between vehicle n and

the UAV / MEC server

αV Path loss exponent for V2I channels

W Channel bandwidth

N0 Noise power

PV The transmission power of vehicles

Total CPU cycles required for execution /
Ci/Oi/Di offload data size / size of execution

results of computation task In

FV,n
CPU/F

MEC
CPU /FUAV

CPU

Computation capability of the vehicle user n
/ MEC server / UAV

eUAV
CPU/e

V
CPU

Energy consumed in each CPU cycle
of the UAV / vehicles executing locally

eVSEND/e
UAV
SEND

Energy consumed by a vehicle / UAV to send
one data unit to the other devices.

where eVCPU denotes the energy consumed in each CPU cycle
of a vehicle for computing locally. Then, we calculate the
overhead of the local computing where this payoff function
can be given as

LLocIn,V = γTn T
Loc
In + γEn E

Loc
In (5)

where γTn and γEn denote the weight of execution time and
energy consumption, respectively; the value of γTn depends on
the priority value of the computation task; and γTn+γ

E
n = 1. In

order to satisfy the user-specific demands, we use a weighted
payoff function to adapt scenarios under different require-
ments. If the user’s energy level is insufficient, the user can
set greater weight for energy consumption during the decision-
making to save energy. In contrast, suppose that the user
intends to execute a delay-sensitive computation task (such
as collision monitoring which requires in real-time process)
in another scenario, the user can increase the weight of the
execution time to reduce delay.

2) Direct Offloading to MEC server: When a connection to
the MEC server can be established, vehicle user n may decide
to offload the computation task In to the MEC server and then
the MEC server will execute In on behalf of n. Under these
circumstances, the total execution time of the task In is the
sum of the execution time of the task In on the MEC server,
the duration of user n transmitting the data packets containing
its task In, and the duration of the executed results return to
n. Since the MEC server is far away from the vehicle, the data
sent by the server to the UAV will not be interfered with by the
signal of the vehicle, while the LTE interface is adopted for
communication. As a result, we can formulate the execution

time of the task In for offloading to the MEC server as

TV−MIn
= TSV−M + TMEC

In + TRM−V (6)

where
TSV−M =

Oi
Rn,M

(7)

TMEC
In =

Ci
FMEC
CPU

(8)

TRM−V =
Di

RLTE
(9)

where RLTE denotes the data transmission rate of LTE
interface; FMEC

CPU is the computing frequency of the MEC
server, which is the number of CPU cycles per second. We
assume that the energy consumption of executing tasks by the
MEC server and sending the results by the MEC server is not
considered. Then we can give the total energy consumption
of vehicle user n offloading the computation task In to MEC
server as

EV−MIn
= Oi × eVSEND (10)

where eVSEND denotes the energy consumed by a vehicle to
send one data unit to the other devices. Then, the payoff
function of the vehicle user n offloading computation task In
to the MEC server directly strategy can be given as

LV−MIn
= γTn T

V−M
In

+ γEn E
V−M
In

(11)

3) Offloading to UAV: This strategy can be achieved in two
ways, in which both are based on the premise that the vehicle
user can establish a connection with the UAV. The first is that
the vehicle user n offloads the computation tasks to the UAV;
then the UAV will execute the task In on behalf of n. The
second is to offload the computation tasks to the UAV; then,
the UAV is deployed as a relay node to assist in forwarding the
tasks to the MEC server; the MEC server will execute the task
In on behalf of n and send back the results of computation
via the UAV to n. Next, we will introduce them in detail.

(a) The UAV executes the computation tasks instead of
vehicle users

When a link can be established between the UAV and the
vehicle user n, the task In can be offloaded from n to the
UAV. Once tasks are received, the UAV will execute the task
on behalf of n.

In this way, the total execution time of the task In will
include the time duration of the user n transmitting the packet
containing the task In to the UAV, the time duration of
executing the computation task In in the UAV, and the time
duration of the computation results sent back to the user n.
Since only one UAV is deployed in this scenario, the data sent
by the UAV to other devices will not be interfered with by the
signal, and the communication adopts the Wi-Fi interface. The
total execution time of offloading computation task In to the
UAV can be given that

TV−UIn
= TSV−U + TUAVIn + TRU−V (12)

where
TSV−U =

Oi
Rn,u

(13)
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TUAVIn =
Ci

FUAVCPU

(14)

TRU−V =
Di

RWiFi
(15)

where RWiFi represents the data transmission rate of the Wi-
Fi interface; FUAVCPU denotes the computation frequency of the
UAV, which is the number of the CPU cycles per second. Due
to the limited power life of the UAV, the energy consumption
of the UAV is a key challenge to realize the applications of the
UAV. In this way, the total energy consumption of offloading
the computation task In to the UAV is the energy of sending
the computation task to the UAV plus the energy of executing
In by the UAV plus the energy of the results sending back
from the UAV. Consequently, the total energy consumption of
offloading computation task In to the UAV is given as

EV−UIn
= ESV−U + EUAVIn + ERU−V (16)

where
ESV−U = Oi × eVSEND (17)

EUAVIn = Ci × eUAVCPU (18)

ERU−V = Di × eUAVSEND (19)

where eUAVCPU denotes the energy consumed in each CPU
cycle of the UAV executing locally; eUAVSEND is the energy
consumption of the UAV via the Wi-Fi interface for sending
one data unit to n. Then, we can formulate the payoff function
of offloading the computation task In to UAV for executing
In on behalf of the vehicle user n as

LV−UIn
= γTn T

V−U
In

+ γEn E
V−U
In

(20)

(b) UAV as a relay node
In this way, the vehicle user n chooses to offload the

computation task In to the UAV. Then, the UAV relays In
to the MEC server. After that, the MEC server will execute
In on behalf of n. The total execution time can be defined as
the sum of the time interval user n sending In to the UAV,
the time interval of the UAV relaying In to the MEC server,
the time interval of the MEC server executing In, the time
interval of the computation results sent back to the UAV, and
the time interval from the UAV to the user n. Therefore, the
total execution time of the UAV as a relay node to execute In
generated by n can be given as

TV−U−MIn
= TSV−U+T

S
U−M+TMEC

In +TRM−U+T
R
U−V (21)

where
TSU−M =

Oi
RWiFi

(22)

TRM−U =
Di

RLTE
(23)

In addition, the total energy consumption is the sum of the
energy of sending the data packets, including the task In to
the UAV, the energy of the UAV sending task In to the MEC
server, and the energy sending the computation results to the
requester n by the UAV. Then the total energy consumption
can be given by

EV−U−MIn
= ESV−U + ESU−M + ERU−V (24)

where
ESU−M = Oi × eUAVSEND (25)

Then, we can give the payoff function of the way that the
UAV is deployed as the relay node

LV−U−MIn
= γTn T

V−U−M
In

+ γEn E
V−U−M
In

(26)

In summary, the vehicle users need to select the most bene-
ficial one of these strategies to execute the computation tasks.
In the next section, we will adopt the game theory method
to make the vehicle users calculate the optimal offloading
decision.

III. MULTI-PLAYER COMPUTATION OFFLOADING
GAME

In this section, we formulate the computation offloading
decision-making problem of legacy vehicles as a multi-player
computation tasks offloading game. Game is the interaction
between rational and intelligent players. Here, the rationality
means players choose their own strategies to maximize utility,
in which intelligence represents that players can calculate their
optimal strategy independently. The behavior of the players
conforms to their interest, where no one has the motivation
to deviate unilaterally. Hence, game theory is a powerful
framework to analyze the interaction between players.

Throughout our study, we tackle the issue that how vehicle
users choose the efficient and green strategy to minimize
the cost of executing the delay-sensitive and computational
complex tasks. This cost includes the time to execute the
computation task generated by the legacy vehicle user and
the system energy consumption. The main reason for adopting
game theory to address offloading decision-making problems
is that it can make decentralized and low-complexity offload-
ing decisions. Vehicle users choose to maximize their benefits
and calculate the optimal decision independently. At the same
time, it can reduce the workload of the SDN controller in
computing and sending offloading decisions. The controller
only needs to collect global information and send it to users.

A. Game Formulation

In UAV-assisted VNs with dense buildings and less in-
frastructure, the offloading decision-making problem can be
formulated as a perfect information sequential game of R
players. By deploying the controller to distributing the global
information, all players will know the statuses (i.e., param-
eters) of the system, where this can reduce the delay of
information acquisition. Players take satisfactory solutions
regarding their interests mutually. The sequential game can
be indicated as G(R,Sr, L) and next three elements of the
game will be introduced.

1) Players: The players of the game are the users of legacy
vehicles who need to make computation offloading decisions,
can be represented as a set R = {1, 2, ..., r}.

2) Strategies: The set of strategies for the players can
be represented as Sr = {s1, s2, ..., sn, ..., sr}, where sn ∈
{0, 1, 2, 3}.
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3) Payoff function: Let L denote the payoff function of the
computation task In of each player in the sequential game.
Payoff depends on execution time and energy consumption.
The payoff function of the player n who chooses the strategy
sn(sn ∈ Sr) is

Lsnn = lim
θ→0+

θ|sn−0|LLocIn,V + lim
θ→0+

θ|sn−1|LV−UIn
+ lim
θ→0+

θ|sn−2|LV−MIn
+ lim
θ→0+

θ|sn−3|LV−U−MIn
(sn ∈ {0, 1, 2, 3})

(27)

where θ is constant. The decision made by other players except
player n is denoted as a set s−n = (s1, ..., sn−1, sn+1, ..., sr).
Then, a player can choose a strategy based on minimization
of their costs, i.e.,

min
sn∈{0,1,2,3}

Ln(sn, s−n), n ∈ N

According to Eq. (27), we can obtain the payoff function
of player n as

Ln(sn, s−n) =


LLocIn,V

if sn = 0

LV−UIn
if sn = 1

LV−MIn
if sn = 2

LV−U−MIn
if sn = 3

(28)

The decision-making of each player is sequential, which
means the player who acts later can know the choice of
the player who acts earlier. Consequently, we call the game
G as a multi-player computation offloading sequential game.
Ln(sn, s−n) is the payoff function of the vehicle user n which
aims to calculate the cost of executing the computation task
In. Next, we will introduce the concept of Nash equilibrium
(NE), and investigate the existence of the NE.

Definition 1. Given a strategic game G(R,Sr, L) of the
offloading computation game and its strategy group S∗r =
{s∗1, s∗2, ..., s∗n, ..., s∗r}, if

Ln(s
∗
n, s−n) ≤ Ln(sn, s−n),∀sn ∈ Sr, n ∈ N (29)

here S∗r is a NE of the computation offloading game G.
When the game is at NE, no one can reduce its cost by

unilaterally changing its strategy. Then, we can define S∗r as an
optimal strategy set. The optimal strategy (i.e., the way players
execute computation tasks) is formulated by optimizing the
execution time and the energy consumption of executing tasks.

According to the above definition, we can see that all
the users make the corresponding optimal decisions at NE
according to the decision of other participants. In the current
state, all players are in the most favorable states.

B. Decentralized Computation Offloading Mechanism

In this part, we will introduce the decentralized computation
offloading of the multi-player computation offloading game.
The decentralized computation offloading mechanism mainly
composed of two parts, judging connectivity and judging the
optimal utility.

TABLE III
THE POSSIBLE STRATEGY SET FOR VEHICLES

Strategy set Connectible to MEC server Not connectible to
MEC server

Connectible Locally, V-M, V-U, Locally, V-U,
to UAV V-U-M V-U-M

Not Connectible Locally, Locallyto UAV V-M

1) Judging Connectivity:
(a) The Connectivity Between Vehicle and MEC server
For a vehicle, we first consider the possibility of establishing

a communication link by sending a request message to the
MEC server. If the connections can be established, vehicles
then consider whether to offload the computation task to the
MEC server. On the contrary, if the connection fails, vehicles
only consider whether offload the tasks to the UAV or execute
the task locally.

(b) Whether the vehicle is within the UAV communication
coverage

Vehicles should determine whether they are within the
communication range of the UAV. In our scenario, we set
the flight path of the UAV to cruise in a fixed trajectory to
ensure that most of the vehicles in the scenario are covered
by the communication range of the UAV as far as possible.
However, due to the limited communication power, there still
will be vehicles outside the communication coverage of the
UAV. These vehicles broadcast the requests continuously to
determine whether they can establish communication with the
UAV. When legacy vehicles are within the communication
range of the UAV, the vehicles can offload tasks to the UAV.
Otherwise, if the reply packet has not been received after the
timeout, the vehicle is out of the UAV communication range.

2) Decision making by judging the optimal utility:
Assuming that vehicle user n has a computation task In

needs to be processed. Based on the part of judging connec-
tivity, if the UAV or the MEC server can be connected to
n, it will affect the decision types of n. If neither can be
connected, the vehicle user has to execute the computation
task locally. In the proposed framework, the SDN controller
distributes the network information to the vehicles in real-
time including the locations of the UAV and the MEC server,
the number of tasks in the waiting queue of the UAV and
the MEC server, the computing power of the UAV and the
MEC server, and the number of vehicles offloading data to
the UAV or the MEC server at the same time. Then, the
vehicle user will make the offloading decision based on the
global information provided by the SDN controller. Moreover,
the decision-making of executing the computation task of the
vehicle user depends on the value of the payoff function.
According to Eq. (27) and Eq. (28), we introduce the strategy
of selecting the value of the payoff function. In light of the
value of each strategy’s payoff function, the strategy with the
lowest cost is selected as the optimal decision.

Next, we will introduce the process of choosing the strategy
to execute the computation task by maximizing computing
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Algorithm 1: UAV-assisted Vehicle Computing Cost
Optimization

Input: Each vehicle user n generates a set of
time-sensitive computation tasks In;

Output: optimal offloading decision scheme.
1 Initialization: Each vehicle user n first chooses the

computation decision local computation: A = 0 and
make the initial optimal decision sn = 0

2 compute the initial value of local computation payoff
function µA=0

n .
3 measure the transmission rate of vehicle user n to the

UAV and vehicle user n to the MEC server and the
expected waiting time to offload to the UAV or MEC
server waiting queue.

4 repeat
5 for each vehicle user n and each computation task

execution time slot t in parallel:
6 if vehicle user n can be connected to the MEC

server then
7 if vehicle user n can be connected to the UAV

then
8 compute the value of payoff function

µA=1
n , µA=2

n and µA=3
n .

9 select the minimum value of µA=0
n , µA=1

n ,
µA=2
n and µA=3

n .
10 end
11 else vehicle user n cannot be connected to the

UAV
12 compute the value of payoff function

µA=2
n . select the minimum value of µA=0

n ,
µA=2
n .

13 end
14 end
15 else vehicle user n cannot be connected to the

MEC server
16 if vehicle user n can be connected to the UAV

then
17 compute the value of payoff function

µA=1
n , and µA=3

n .
18 select the minimum value of µA=0

n , µA=1
n ,

and µA=3
n .

19 end
20 else vehicle user n cannot be connected to the

UAV
21 choose the value of µA=0

n .
22 end
23 end
24 make sn ←the value of A of the minimum value

of payoff function.
25 return sn
26 until there are no computation tasks need to be

executed;

efficiency. In light of the various possible situations in Table
III, we next introduce the process of vehicle decision-making.

(a) Vehicle user n can establish a communication link with

both the UAV and the MEC server
We introduce the situation that vehicle user n can establish a

communication link with the UAV and the MEC server. Under
this circumstance, the strategy set of user n includes executing
the computation task locally, offloading the computation task
to the MEC server directly (V-M), offloading the task to
the UAV (V-U), and offloading the task to the MEC server
through the relay of the UAV (V-U-M). Then, n will make the
offloading decision based on the global information provided
by the SDN controller. User n can obtain the optimal execution
decision s∗n by solving the following problem

µsn(n) = arg min
TIn ,EIn

Lsnn = lim
θ→0+

θ|sn−0|LLocIn,V + lim
θ→0+

θ|sn−1|LV−UIn
+ lim
θ→0+

θ|sn−2|LV−MIn
+ lim
θ→0+

θ|sn−3|LV−U−MIn

(30)

where lim
θ→0+

θ|sn−d|, d ∈ {0, 1, 2, 3} is the coefficient. When
the execution decision sn = 0 (i.e., local execution),
lim
θ→0+

θ|sn−0| = 1 and other multiple items lim
θ→0+

θ|sn−d|, d ∈
{1, 2, 3} is 0 and µsn(n) = LLocIn,V

.
Moreover, it is easy to prove that the Eq. (30) is a convex

function.

∂2Lsn
n (TIn ,EIn )
∂2TIn

= 0,
∂2Lsn

n (TIn ,EIn )
∂2EIn

= 0

According to the above proof, it can be concluded that Eq.
(30) is a convex function. Consequently, it returns an optimal
solution. At the same time, we can know that NE exists for
the sequential game. The optimal strategy s∗n for n is given
by

s∗n = µsn(n) =



arg min
TLoc
In

,ELoc
In

Lsnn if sn = 0

arg min
TV −U
In

,EV −U
In

Lsnn if sn = 1

arg min
TV −M
In

,EV −M
In

Lsnn if sn = 2

arg min
TV −U−M
In

,EV −U−M
In

Lsnn ifsn = 3

(31)
(b) Vehicle user n only can establish a communication link
with the UAV

We consider the condition that vehicle user n can only
establish a communication link with the UAV. In this case, the
strategy set of n will include executing the computation task
locally, V-U, and V-U-M. Then, n will make the offloading
decision based on the information provided by the SDN
controller. User n can obtain the optimal execution decision
s∗n by solving the following problem

µsn(n) = arg min
TIn ,EIn

Lsnn = lim
θ→0+

θ|sn−0|LLocIn,V+

lim
θ→0+

θ|sn−1|LV−UIn
+ lim
θ→0+

θ|sn−3|LV−U−MIn

(32)

where lim
θ→0+

θ|sn−d|, d ∈ {0, 1, 3}. In the meanwhile, we can
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TABLE IV
SIMULATION PARAMETERS

Simulation Parameter Value
Size of the simulation area 1000m×1000m

W 20MHz

αV 4

N0 -100dB

FV,n
CPU {0.5, 1.7, 0.8, 1.0}GHz

FUAV
CPU 10GHz

FMEC
CPU 50GHz

eVCPU 1u

eUAV
CPU 1u

eVSEND 25u

eUAV
SEND 50u

obtain the optimal strategy s∗n for vehicle user n as

s∗n = µsn(n) =


arg min

TLoc
In

,ELoc
In

Lsnn if sn = 0

arg min
TV −U
In

,EV −U
In

Lsnn if sn = 1

arg min
TV −U−M
In

,EV −U−M
In

Lsnn ifsn = 3

(33)
(c) Vehicle user n can establish a communication link with

the MEC server only, but not with UAV
We consider the condition that vehicle user n can only

establish a communication link with the MEC server here.
In this case, the strategy set of n includes performing the
computation tasks locally, and V-M. n will make the offloading
decision based on the information given by the controller.
Then, n can obtain the optimal execution decision s∗n by
solving the following problem

µsn(n) = arg min
TIn ,EIn

Lsnn = lim
θ→0+

θ|sn−0|LLocIn,V+

lim
θ→0+

θ|sn−2|LV−MIn

(34)

where lim
θ→0+

θ|sn−d|, d ∈ {0, 2}. Then, we can obtain the
optimal strategy s∗n for vehicle user n as

s∗n = µsn(n) =


arg min

TLoc
In

,ELoc
In

Lsnn if sn = 0

arg min
TV −M
In

,EV −M
In

Lsnn if sn = 2
(35)

(d) Vehicle user n cannot establish a communication link
with the MEC server or the UAV

We consider the condition that vehicle user n who is out
of the communication range of the MEC server and the UAV
here. In this circumstance, n cannot offload the computation
task In to the UAV or the MEC server to execute the
computation task. Therefore, the strategy of n can only execute
the task locally. We can obtain the optimal strategy s∗n for n
as

s∗n = arg min
TLoc
In

,ELoc
In

Lsnn , sn = 0 (36)

Based on the above statement, we design the UVCO al-
gorithm that can be seen in Algorithm 1. Multiple legacy
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Fig. 2. Average system cost of each strategy

vehicle users can generate a set of computation tasks with time
sensitivity. We set the time-sensitivity equals to the weight of
the cost of execution time in the payoff function. The objective
of the UVCO algorithm is to achieve mutually satisfactory
decision-making and optimizing the cost (i.e., execution time
and energy consumption) simultaneously. In order to synchro-
nize the time of each device, the time signal synchronization
of MEC server is adopted. When a task generated by the
vehicle user needs to be executed, the vehicle user can make a
satisfactory decision mutually according to Algorithm 1. The
algorithm terminates when every vehicle user completes the
decision and reaches equilibrium.

IV. EXPERIMENTS

In this section, we will present our experimental results.
To evaluate our proposed UVCO algorithm, we develop a
simulation platform to meet the requirements of vehicular
computation offloading. We first capture a real map by 1000
m × 1000 m, where the buildings are modeled according to
the map topology. SUMO is applied to simulate the trajectory
of N = 30 vehicles on the map, in which the MEC server is
located on the left-most side of the map whose communication
range is large enough to cover the map region. The trajectory
of the UAV is a circle with coordinates (500, 500) as its center
and 100 m as its radius. The altitude of the UAV is fixed
at 300 m, in which it runs at a uniform speed of 20 m/s.
For the wireless communications, the channel bandwidth is
W=20 MHz; the background noise is set as N0=-100 dB; and
the transmission power is RW iF i=100 mWatts. During the
movement of the vehicle, there will be computation tasks I
need to be executed after one computation task of a vehicle
is solved, the next computation task will be generated at
an interval of 1 second. The priority of the computation
task equals to γTn in the utility function and γEn is based
on the execution time weight which is γEn = 1 − γTn . We
consider FUAVCPU as 10 GHz, and FMEC

CPU as five times more
powerful than the UAV. We assume that the computing power
of the vehicles are poor, by selecting a value from a set as
FV,nCPU ∈ {0.5, 0.7, 0.8, 1.0} randomly. The transmission rate
of the vehicle to the UAV or the MEC server depends on
how many vehicles transmit data simultaneously which can
be calculated from Eq. (1) and Eq. (2). Since there is only
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(a) (b)

Fig. 3. The average system cost with the change of the offloaded data size
and the number of CPU cycles

one UAV in the scenario, the transmission power of the UAV
is fixed at 20 Mbps. Table IV shows the parameter setting of
our vehicular computation offloading and simulator.

We evaluate the performance of the proposed UVCO algo-
rithm in cost optimization. The evaluation method is compared
with three other strategies. The first one is all vehicles can only
execute computation tasks locally (LC). Second, all vehicles
can offload computation tasks to the MEC server through the
MEC server or execute computation tasks locally, while there
is no UAV (NU). In the third strategy, there is a UAV, which
has a certain computing power. Vehicles can randomly choose
to offload the computation tasks to the UAV or the MEC server
to execute the task instead of the vehicles. However, the UAV
cannot be used as a relay node (UNRD). If the vehicle cannot
establish a communication connection with the UAV and the
MEC server, the vehicle user can only choose to execute the
task locally.

As shown in Fig. 2, we mainly study the average cost of the
system in these different strategies to deal with computation
tasks. The results show that the system average cost of
all local computing is the highest while the UVCO is the
lowest. In these strategies, vehicles generate the same size of
computation tasks, where the size is 780 KB and the number
of CPU cycles is 1857 Megacycles. When all other parameters
are the same, UVCO outperforms the other three strategies LC,
NU and UNRD with achieving 51.19%, 31.94% and 29.72%
gain in terms of the parameters to the vehicle users. In this
case, the utility of the system cost is minimized to make
optimal decisions for achieving NE. Without acting as a relay
node, UNRD is less costly than the strategies LC and NU. This
proves that the involvement of the UAV is necessary indeed
which can reduce the average cost of the system.

In Fig. 3, we investigate the impact of offloaded data size
(Oi) and the number of CPU cycles (Ci) changed simultane-
ously on the system average cost in the four strategies. In the
simulation, we change the size of the offloaded data, and the
number of CPU processing cycles. Fig. 3 shows that as the
size of the offloaded data and the computational complexity
in terms of the number of CPU cycles increase, the average
system cost (ASC) of all strategies climbs up to varying
degrees. Results show that our UVCO algorithm outperforms
other three strategies LC, NU and UNRD achieving from
42.4% to 55.01% gain in terms of the ASC. When the size

(a) (b)

Fig. 4. The impact of data size and CPU cycles on average system cost

of offloaded data increases, the transmission time and system
energy consumption enlarge. Also, with the increase in the
number of CPU processing cycles, the complexity of the
computation increased and the cost also rises. In addition, with
the same parameters, the ASCs of NU and UNRD are closed,
since the relative energy consumption of UAV is larger, and
the advantages of execution time cost and the disadvantages
of energy consumption are offset. The LC strategy climbs
up linearly as the highest ASC. The reason is that the local
computation depends on the computation frequency of the
vehicle only.

Fig. 4(a) illustrates the effect of data size on ASC in
computation offloading. We fix the computational complexity
represented by the number of CPU cycles (Ci), then change
the size of the offloaded data (Oi). With the increment of the
size of offloaded data, all of NU, UNRD, and UVCO show an
upward trend. UVCO outperforms the other three strategies
LC, NU and UNRD achieving from 1.46% to 52.82% gain
in terms of the ASC. Nevertheless, LC has not received any
impact, in which the reason is that all vehicles computation
tasks are locally executed. Therefore, the change of offloaded
data size has no effect on LC. As shown in Fig. 4(a), the ASC
of UNRD is much lower than that of NU as the offloaded data
size is small. However, with the increase in the data size, the
ASC of the two strategies tend to be close. The main reason is
that the UAV joins the system, which increases the throughput
of the system, but it also lifts up the cost consumption. For
offloading computation tasks, the larger the size of the data
can be offloaded, the more cost it will consume.

To evaluate the impact of the computation size on computa-
tion offloading, we implement the simulations with a different
number of Ci required for performing computation tasks, and
fixed Oi. In Fig. 4(b), we observe that the overall system cost
of four strategies keeps climbing as the number of CPU cycles
increase. Since the increment of the number of CPU cycles for
performing computation tasks, the cost of computing tasks for
devices rises accordingly. UVCO outperforms the other three
strategies LC, NU, and UNRD by achieving from 18.01% to
52.44% gain in terms of the ASC. The system cost of NU
is slightly higher than that of UNRD. Therefore, it can be
concluded that the existence of the UAV can effectively reduce
the system cost. To this end, UVCO can balance the cost of
the execution time and the energy consumption to achieving
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(a) (b)

Fig. 5. The performance comparison in terms of average system cost and
throughput

NE.
In the following, we compare the proposed UVCO with the

VCR algorithm [28] and deep learning (DSL) algorithm [19]
in terms of the ASC and throughput. Combining the analysis
from Fig. 5(a) and (b), we can draw that UVCO can calculate
the optimal offloading decision for different data sizes in terms
of ASC and throughput (i.e., the number of computational
tasks completed per minute) under the same scenario. We
set the scenario with 30 moving vehicles and generating the
computation tasks. Three algorithms are adopted to make the
offloading decision in order to observe the impact of increasing
data size on ASC and average system throughput per minute.
Fig. 5(a) illustrates that as the increase of data size, UVCO
achieves the lower cost from 39.07% to 61.78%. Furthermore,
in Fig. 5(b), UVCO can provide more throughput than its
counterparts varying from 11.17% to 62.44%. Benefited from
the design of global information provided by the controller,
it can save a lot of time to collect information. Hence, the
proposed UVCO algorithm makes the optimal decision in
order to achieve NE and minimize system cost in our scenario.
Since the DSL algorithm makes the offloading decisions for
a single user only, it takes no account of the interaction
and cooperation between multiple users. Also, in existing
work [28], once an intelligent device executes an offloaded
computation task, it will broadcast the occupied signal and
cannot be offloaded until the computation task is completed.
In this context, the intelligent device will be idle within the
time from the completion of the computation task to the
transmission of the next computation task. In our proposal,
the waiting queue of offloading tasks perfectly refrains from
the resource waste caused by the above issue. Regarding the
effectiveness, UVCO is an optimal algorithm for offloading
decision-making in the proposed scenario.

V. CONCLUSION

In this paper, we consider the dynamic movement of mul-
tiple legacy vehicles in the scenario with dense buildings
and scarce infrastructure. In our solution, we employ a UAV
with certain intelligent computing power to assist the legacy
vehicles in executing or relaying time-sensitive and resource-
sensitive computation tasks and design the UVCO algorithm
with the idea of game theory. According to the offloading

parameters provided by the SDN controller, UVCO mini-
mizes the system cost by formulating mutually satisfactory
offloading decisions. Moreover, in order to fully utilize the
resources in the system, a waiting queue is set in the UAV
and the MEC server for the offloaded computation tasks
to improve efficiency. Experimental results show that the
proposed algorithm has outstanding performance in terms of
ASC and system throughput. UVCO reduces the ASC by
55.01%. Furthermore, compared with its counterparts, UVCO
achieves as high as 61.78% reduction in terms of the ASC.
For the system throughput, UVCO achieves up to 62.44%
improvement compared with the related works.
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