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Abstract
The development of deep learning has led to a dramatic increase in the number of applications of artificial intelligence.
However, the training of deeper neural networks for stable and accurate models translates into artificial neural networks
(ANNs) that become unmanageable as the number of features increases. This work extends our earlier study where we
explored the acceleration effects obtained by enforcing, in turn, scale freeness, small worldness, and sparsity during the
ANN training process. The efficiency of that approach was confirmed by recent studies (conducted independently) where a
million-node ANN was trained on non-specialized laptops. Encouraged by those results, our study is now focused on some
tunable parameters, to pursue a further acceleration effect. We show that, although optimal parameter tuning is unfeasible, due
to the high non-linearity of ANN problems, we can actually come up with a set of useful guidelines that lead to speed-ups in
practical cases. We find that significant reductions in execution time can generally be achieved by setting the revised fraction
parameter (ζ ) to relatively low values.

Keywords Network science · Artificial neural networks · Multilayer perceptron · Revise phase

1 Introduction

The effort to simulate the human brain behaviour is one of the
top scientific trends today. In particular, deep learning strate-
gies pave the way to many new applications, thanks to their
ability to manage complex architectures. Notable examples
are: speech recognition (Hinton et al. 2012), cyber-security
(Berman et al. 2019), image (Krizhevsky et al. 2017), and
signal processing (Dong and Li 2011). Other applications
gaining popularity are related to bio-medicine (Cao et al.
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2018) and drug discovery (Chen et al. 2018; Ruano-Ordás
et al. 2019).

However, despite their success, deep learning architec-
tures suffer from important scalability issues, i.e., the actual
artificial neural networks (ANN) become unmanageable as
the number of features increases.

While most current strategies focus on using more pow-
erful hardware, the approach herein described employs
network science strategies to tackle the complexity of ANNs
iteratively, that is, at each epoch of the training process.

This work originates in our earlier publication (Mocanu
et al. 2018), a promising research avenue to speed up neural
network training. There, a new approach called sparse evolu-
tionary training (SET) was defined, in which the acceleration
effects obtained by enforcing, in turn, scale freeness, small
worldness, and sparsity, during the ANN training process,
were explored.

The SET framework firstly initializes an ANN as a sparse
weighted Erdős–Rényi graph in which the graph density is
fixed (ε = 20%, by default), and assigns weights to edges
based on a normal distribution with mean equal to zero.
Secondly ( i.e., during the revision step), nonzero weights
iteratively replace null edges ( i.e., links with weight equal
to zero) with the twofold goal of reducing the loss on the
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training set and to keep the number of connections constant.
We should note that the revision step is not only rewiring
the links but also re-computing the actual weight of the new
links.

The efficiency of this approach has also been recently con-
firmed by independent researchers, who managed to train
a million-node ANN on non-specialized laptops (Liu et al.
2019).

Encouraged by those results, our research has nowmoved
into looking at algorithm tuning parameters to pursue a fur-
ther acceleration effect, at a negligible accuracy loss. The
focus is on the revision stage (determined by the ζ parameter)
and on its impact on the training time over epochs. Notewor-
thy results have been achieved by conducting an in-depth
investigation into the optimal tuning of ζ and by provid-
ing general guidelines on how to achieve better trade-offs
between time and accuracy, as described in Sect. 5.2.

The rest of the paper is organized as follows: Sect. 2 pro-
vides the background theories employed in this work. To
better position our contribution, Sect. 3 captures the state of
the art. Next, Sect. 4 addresses the methodology followed
and Sect. 5 shows the results obtained. Finally, Sect. 6 draws
the conclusions.

2 Background

This section briefly introduces the main concepts required
for understanding this work.

Note that, for the sakeof simplicity, thewords ‘weight’ and
‘link’ are used interchangeably, and onlyweighted links have
been considered. The goal is to demonstrate the effectiveness
of the SET approach, aiming at lower revised fraction values,
in the context of the multilayer perceptron (MLP) supervised
model. MLP is a feed-forward ANN composed by several
hidden layers, forming a deep network, as shown in Fig.1.
Because of the intra-layer links flow, an MLP can be seen
as a fully connected directed graph between the input and
output layers.

Supervised learning involves observing several samples
of a given dataset, which will be divided into ‘training’ and
‘test’ samples.While the former is used to train the neural net-
work, the latter works as a litmus test, as it is compared with
the ANN predictions. One can find further details on deep
learning in LeCun et al. (2015); Goodfellow et al. (2016).

The construction of a fully connected graph inevitably
leads to higher computational costs, as the network grows. To
overcome this issue, theSET framework (Mocanu et al. 2018)
drew inspiration from human brain models and modelled an
ANN topology as a weighted sparse Erdős–Rényi graph in
which edges were randomly placed with nodes, according
to a fixed probability (Erdős and Rényi 1959; Barabási and
Pósfai 2016; Latora et al. 2017).

Like in Mocanu et al. (2018), the edge probability is
defined as follows:

p
(
Wk

i j

)
= ε(nk + nk−1)

nknk−1 , (1)

where Wk ∈ Rnk−1×nk is a sparse weight matrix between
the k-th layer and the previous one, ε ∈ R+ is the sparsity
parameter, and i, j are a pair of neurons; moreover, nk is the
number of neurons in the k-th layer.

As outlined in the previous section, this process led to
forcing network sparsity. This stratagem is balanced by intro-
ducing the tunable revise fraction parameter ζ , which defines
the weights fraction size that needs to be rewired (with a new
weight assignment) during the training process.

Indeed, at the end of each epoch, there is a weight adjust-
ment phase. It consists of removing the closest-to-zero links
in between layers plus a wider revising range ( i.e., ζ ). This
parameter verifies the correctness of the forced-to-be-zero
weights. Subsequently, the framework adds newweights ran-
domly to exactly compensate the removed ones. Thanks to
this procedure, the number of links between layers remains
constant across different epochs, without isolated neurons
(Mocanu et al. 2018).

Herein, the role of ζ is analysed as well as showing how
to find a good range of ζ values. Our aim is to strike a good
balance between learning speed and accuracy.

3 Related literature

In recent years, ANNs have been widely applied in a broad
range of domains such as image classification (He et al.
2016), machine translation (Vaswani et al. 2017), and text
to speech (Kalchbrenner et al. 2018).

Previous work proves that the accuracy of an ANN (also
known asmodel quality) crucially depends on both themodel
size (defined as the number of layers and neurons per layers)
and the amount of training data (Hestness et al. 2017). Due
to these reasons, the amount of resources required to train
large ANNs is often prohibitive for real-life applications.

An approach promising to achieve high accuracy even
withmodest hardware resources is sparsity (Gale et al. 2019).
An ANN is referred to as sparse when only a subset (hope-
fully of small size) of the model parameters has a value
different from zero. The advantages of sparse networks are
obvious. On the one hand, sparse data structures can be used
to store matrices associated with the representation of an
ANN. On the other hand, most of the matrix multiplications
(which constitute the most time expensive stage of neural
network computation) can be avoided. Furthermore, previ-
ousworks (Ullrich et al. 2017;Mocanu et al. 2018) suggested
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Fig. 1 Example of a generic
multilayer perceptron network
with more than two hidden
layers. Circles represent
neurons, and arrows describe the
links between layers

that high levels of sparsity do not severely affect the accuracy
of an ANN.

This section provides a brief overview of methods used to
induce sparse ANNs, by classifying existing methods in two
main categories, namely:

1. Methods derived from network science to induce sparse
ANNs,

2. Methods derived from ANN regularization to induce
sparse ANNs.

3.1 Methods derived from network science to induce
sparse ANNs

Some previous papers focus on the interplay between net-
work science and artificial networks (Stier and Granitzer
2019;Mocanu et al. 2018; Bourely et al. 2017).More specifi-
cally, they draw inspiration from biological phenomena such
as the organization of human brain (Latora et al. 2017;
Barabási and Pósfai 2016).

Early studies in network science, in fact, pointed out that
real graphs (e.g. social networks describing social ties among
members of a community) display important features such
as power-law distribution in node degree (Barabási and Pós-
fai 2016) and the small-world property (Watts and Strogatz
1998). Many authors agree that these properties are likely
to exist in many large networked systems one can observe
in nature. For instance, in case of biological and neuronal
networks,Hilgetag andGoulas (2016) suggested that the neu-
ronal network describing the human brain can be depicted as
a globally sparse network with a modular structure.

As a consequence, approaches based on network science
consider ANNs as sparse networks whose topological fea-
tures resemble those of many biological systems and they
take advantage from their sparseness to speed up the training
stage.

A special mention goes to recent research in Liu et al.
(2019), where the authors managed to train a million-node
ANN on non-specialized laptops, based on the SET frame-
work that was initially introduce in Mocanu et al. (2018).
SET is a training procedure in which connections are pruned
on the basis of their magnitude, while other connections are
randomly added. The SET algorithm is actually capable of
generating ANNs that have sparsely connected layers and,
yet, achieve excellent predictive accuracy on real datasets.

Inspired by studies on rewiring in human brain, Bellec
et al. (2018) formulated the DEEPR algorithm for training
ANNs under connectivity constraints. This algorithm auto-
matically rewires an ANN during the training stage and, to
perform such a task, it combines a stochastic gradient descent
algorithm with a random walk in the space of parameters to
learn.

Bourely et al. (2017) studied towhat extent the accuracy of
an ANN depends on the density of connections between two
consecutive layers. In their approach, they proposed sparse
neural network architectures, which derive from random or
structured bipartite graphs. Experimental results show that,
with a properly chosen topology, sparse neural networks can
equal or supersede a fully connected ANN with the same
number of nodes and layers in accuracy, with the clear advan-
tage of handling a much smaller parameter space.
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Stier andGranitzer (2019) illustrated a procedure to gener-
ate ANNs, which derive from artificial graphs. The proposed
approach generates a random directed and acyclic graph
G according to the Watts-Strogatz (1998) or the Barabási-
Albert (2016) models. Nodes in G are then mapped onto
layers in an ANN, and some classifiers (such as support
vector machines and random forest) are trained to decide
if a Watts–Strogatz topology yields a better accuracy than a
Barabási–Albert one (or vice versa).

3.2 Methods derived from ANN regularization to
induce sparse ANNs

Methods such as L1 or L0 regularization, which gained pop-
ularity in supervised learning, have been extensively applied
to generate compact yet accurate ANNs.

For instance, Srinivas et al. (2017) introduced addi-
tional gate variables to efficiently perform model selection.
Furthermore, Louizos et al. (2017) described an L0-norm
regularization method, which forces connection weights to
become zero. Zero-weight connections are thus pruned, and
this is equivalent to induce sparse networks.

The methods above are successful in producing sparse
but accurate ANNs; however, they lack explainability. Thus,
it is hard to understand why certain architectures are more
competitive than others.

It is also interesting to point out that regularization tech-
niques can be viewed as procedures compressing an ANN by
deleting unnecessary connections (or, in an equivalent fash-
ion, to select only few parameters). According to Frankle and
Carbin (2018), techniques to prune an ANN are effective to
uncover sub-networks within an ANN whose initialization
made the training process more effective. According to these
premises, Frankle and Carbin suggested what they called the
lottery ticket hypothesis. In other words, dense and randomly
initialized ANNs contain sub-networks (called winning tick-
ets) that, when trained in isolation, are able to reach the same
(or a comparable) test accuracy as the original network, and
within a similar number of iterations.

4 Method

Herein we illustrate our research questions and strategy.
To speed up the training process, the investigation relates

to the effects drawn by ζ variations during the evolutionary
weight phase, at each epoch. The analysis involves a gradual
ζ reduction with the goal to provide a guideline on how to
find the best ζ values range, to trade-off between speed-up
and accuracy loss on different application domains.

In Mocanu et al. (2018), the default revise fraction was
set to ζ = 0.3 (i.e. 30% of the revised fraction of nodes)
and no further investigations on the sensitivity to ζ were

carried out. Unlike in Mocanu et al. (2018)’s research, an
in-depth analysis on the revised fraction is herein conducted
to understand these effects, particularly how the revise step
affects the training when ζ is substantially reduced. In this
paper, ζ ∈ [0, 1] and ζ ∈ [0% − 100%] notations are used
interchangeably.

Some obvious considerations of this problem are that a
shorter execution time and a certain percentage of accuracy
loss for smaller values of ζ are expected. Nonetheless, this
relationship is bound to be nonlinear; thus, it is crucial to get
to quantitative results.

4.1 Dataset and ANN descriptions

The experiments were conducted using well-known datasets,
publicly available online1:

– Lung Cancer2 is a biological dataset composed by fea-
tures on lung cancer in order to train the ANN to be able
to detect them.

– CLL_SUB_1113 is composed by B-cell chronic lympho-
cytic leukaemia. This dataset born to profile the five most
frequent genomic aberrations ( i.e., deletions affecting
chromosome bands 13q14, 11q22-q23, 17p13 and 6q21,
and gains of genomic material affecting chromosome
band 12q13) (Haslinger et al. 2004).

– COIL204 is an image dataset used to trainANNs to detect
20different objects. The images of eachobjectwere taken
five degrees apart as the object is rotated on a turntable
and each object has 72 images. The size of each image
is 32 × 32 pixels, with 256 grey levels per pixel. Thus,
each one is represented by a 1024-dimensional vector
(Cai et al. 2011, PAMI), (Cai et al. 2011, VLDB).

Both Lung Cancer and CLL_SUB_111 are biological
datasets, widely used for their importance in medicine,
whereas the COIL20 dataset is a popular images dataset.
Further quantitative details are provided in Table 1.

The ANN used is composed of three hidden layers with
3,000 neurons per layer. The activation functions used by
default are ReLu for the hidden layers and sigmoid for the
output (Table 2).

4.2 Comparison with our previous work

In Mocanu et al. (2018), the goal was to implement the SET
algorithm and test it with numerous datasets, on several ANN

1 http://featureselection.asu.edu/.
2 https://sites.google.com/site/feipingnie/file/.
3 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2466.
4 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
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Table 1 Dataset structures
description

Name Type Inst. (#) In. Feat. (#) Out. C. (#)

Lung cancer Biological 203 3,312 5

CLL_SUB_111 Biological 111 11,340 3

COIL20 Face image 1440 1024 20

From left: dataset name; dataset type; number of instances, number of input features; number of output classes

Table 2 Artificial neural networks description

Loss function Batch size (fitting) Batch size (prediction) Learning rate Momentum Weight decay

MSE 2 1 0.01 0.9 0.0002

It provides information about: the loss function, the batch sizes, the learning rate, the momentum, and the weight decay

types (MLPs, CNN, RBMs), and on different types of tasks
(supervised and unsupervised learning). The current study
investigates the role of the revise fraction parameter ζ , rather
than on the algorithm itself. The aim is to provide a gen-
eral guideline on finding the best ζ values range to reduce
execution time, at a negligible loss of accuracy.

InCavallaro et al. (2020), a preliminary studyon the role of
ζ has suggested anegligible accuracy loss, lowerfluctuations,
and a valuable gain in overall execution time with ζ < 0.02
with the Lung Cancer dataset. In the present paper, this
intuition is analysed on a wider range of datasets to provide
stronger justifications for the findings. The most important
contribution of our study has been to confirm the effective-
ness of the SET framework. Indeed, the random sparseness in
ANNs introduced by the SET algorithm is powerful enough
even without further fine tuning of weights ( i.e., revise frac-
tion) during the training process.

5 Results

This section compares the results obtained by varying the
parameter ζ , evaluating the training goodness in terms of the
balance between high accuracy reached and short execution
time. These topics are treated in Sects. 5.1 and 5.2, respec-
tively. Section 5.3 provides a brief comment on the preferable
ζ value, following up from the previous subsections.

For brevity, only themost important outcomes are reported
hereafter. The number of epochs was increased from the
default value of 100 up to 150 with the aim of finding the
ending point of the transient phase. By combining these two
tuning parameters ( i.e., number of epochs and ζ ), we have
discovered that, with the datasets herein analysed, the mean-
ingful revise range is 0 ≤ ζ ≤ 0.02.

In particular, Sect. 5.2 shows further investigations in
terms of execution time gains, conducted by replicated exper-
iments over ten runs and averaging the obtained results.

5.1 Accuracy investigation

This section shows the results obtained from the comparative
analysis in terms of accuracy improvements over 150 epochs,
on the three datasets.

In the Lung Cancer dataset (Fig. 2a), substantial accu-
racy fluctuations are present, but there is a no well-defined
transient phase for ζ > 0.02. The benchmark value ζ = 0.3
shows an accuracy variation of more than 10% (e.g. accu-
racy increasing from 82% to 97% at the 60-th epoch and
an accuracy from 85% to 95% at the 140th epoch). Note
that, since the first 10 epochs are within the settling phase,
the significant observations concern the simulation from the
11th epoch. Due to this uncertainty and due to the absence of
a transient phase, it is impossible to identify an optimal stop-
ping condition for the algorithm. For instance, at the 60th
epoch an accuracy collapse from 97% to 82% was found,
followed by an accuracy of 94% at the next epoch.

For a lower revise fraction, i.e., ζ ≤ 0.02, an improve-
ment in terms of both stability ( i.e., lower fluctuations) and
accuracy loss emerges, as expected. In this scenario, defining
an exit condition according to the accuracy trend over time is
easier. Indeed, despite a higher accuracy loss, the curve sta-
bility allows the identification of a gradual accuracy growth
over the epochs, with no unexpected sharp drops.

To quantify the amount of accuracy loss, refer to Table 3,
which reports both the revise fraction and the highest accu-
racy reached during the whole simulation, as a percentage.
Moreover, mean and confidence interval bounds are pro-
vided. From Table 3, it is possible to assert that, on average,
the improvement achieved by using a higher revise fraction
(as the default one is) has an accuracy gain of just less than
3% (e.g. mean at ζ = 0% vs mean at ζ = 30%) that is a
negligible improvement in most of the application domains.
This depends on the tolerance level required. For example,
if the goal is to achieve an accuracy of at least 90%, then a
lower ζ is sufficiently effective. The confidence interval is
rather low, given that the fluctuation between the lower and
the upper bounds is comprised between 0.8 and 0.9.
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(a) (b)

(c)

Fig. 2 Accuracy percentage over 150 epochs varying ζ among [0%, 1%, 2%] plus ζ = 30% that is the benchmark value. In particular, ζ = 0%
with circled markers, ζ = 1% has triangular markers, ζ = 2% is shown with squared markers, and for ζ = 30% cross shape markers have been
used

In theCoil20dataset (Fig. 2b), a short transient phasewith
no evident improvements among the simulations with differ-
ent values of ζ emerges. Indeed, there are just small accuracy
fluctuations of ±3%. These results do not surprise, since
improvements achieved through ζ variations also depend on
the goodness of the dataset itself, both in terms of its size and
in the choice of its features. Table 3 shows that accuracy is
always above 98%; thus, even with ζ = 0 the accuracy loss
is negligible. Also the confidence interval is lower than 0.3.
As the accuracy is continuously increasing over the training
epochs, defining a dynamic exit condition is easier in this
application domain.

Figure 2c shows the results obtained in CLL_SUB_111
dataset. It is evident that the worse and more unstable
approaches among the one considered are both the default
one ( i.e., ζ = 30%) and ζ = 2%.

From Table 3, it is interesting to notice how the accuracy
levels are evenmore stablewhen using a lower revise fraction
( i.e., going from a mean equal to 62.23% in ζ = 30% up
to 67.14% in ζ = 0%). The fluctuations compared with the
other two datasets aremore evident, evenwhen looking at the
confidence interval; indeed, it varies from 1.06 (with ζ = 0)
up to 2.18 (with ζ = 30), which is larger than the previously
analysed one. Because of significant accuracy fluctuations, a
possible early exit condition should be considered only with
ζ = 0 even at the cost of a slighter higher accuracy loss.

The results obtained so far suggest that there is no need
to fine-tune ζ , because the sparsity introduced by the SET
algorithm is sufficiently powerful, and only a few links need
to be rewired ( i.e., ζ ≤ 0.2). Apart from the goodness of the
datasets themselves (as in COIL20), opting for a lower revise
fraction has shown that, on the one hand, the accuracy loss
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Table 3 Evaluating parameters
varying the revise fraction on
datasets considered in a single
run with fixed seed

ζ (%) Max Acc. (%) Mean (%) Lower B. (%) Upper B. (%)

(a) Lung cancer dataset

30% 97.06% 93.13% 92.67% 93.58%

2% 95.59% 90.38% 90.08% 90.68%

1% 94.12% 90.19% 89.84% 90.55%

0% 94.12% 90.21% 89.79% 90.62%

(b) COIL20 dataset

30% 100% 98.82% 98.75% 98.90%

2% 98.96% 98.17% 98.08% 98.25%

1% 99.79% 99.09% 98.99% 99.18%

0% 99.79% 98.84 % 98.70% 98.98%

(c) CLL_SUB_111 dataset

30% 72.97% 62.23% 61.14% 63.32%

2% 72.97% 65.15% 64.54% 65.76%

1% 75.67% 70.79% 70.15% 71.42%

0% 70.27% 67.14% 66.61% 67.67%

From left: the revise fraction in percentage; the highest accuracy reached during the simulation expressed in
percentage; the accuracy mean during the simulation, and the confidence interval bounds. Note that these last
three parameters are computed after the first 10 epochs to avoid noise

is sometimes negligible. On the other hand, as it was in the
CLL_SUB_111 dataset, the performances are even higher
than the ones obtained through the benchmark value. This
confirms the hypothesis made in Sect. 5.1 of the goodness of
using a randomly sparse ANN topology.

5.2 Execution time investigation

This section shows the comparative analysis conducted
among the datasets used, in terms of execution time, over
replicated simulations. Ten runs have been averaged, using
the default value ζ = 0.3, as benchmark ( i.e., ζde f ault ).
Note that only the most significant and competitive ζ value
has been considered ( i.e., ζ0 = 0). Figure 3 shows the exe-
cution time (in seconds) of the same averaged simulations
computed on the three datasets.

In bothLung andCLL_SUB_111 datasets, ζ = 0 is faster
than the benchmark value. In particular, in CLL_SUB_111,
the execution time is almost 40% faster than the default one
and with higher accuracy performances too, as previously
asserted in Sect. 5.1. It became less competitive in COIL20.
The reason is the same with the results emerged in the accu-
racy analysis. Indeed, the goodness of the dataset is such as
to make insignificant the improvements obtained by varying
the revise parameter. Furthermore, the execution time gain
between ζ = 0 and ζde f ault has been computed among the
datasets over ten runs as follows:

Gain = 1 − ζ0

ζde f ault
(2)

The execution time gain was equal to 0.1370 in Lung,
−0.0052 in COIL20, and 0.3664 in CLL_SUB_111. This
means that, except for COIL20, there is an improvement
in terms of algorithm performances. Thus, the algorithm
became faster using a lower revise fraction. This is evenmore
evident in CLL_SUB_111 as already noticed from Figure 3.
On the other hand, the slow down emerged in COIL20 is
almost negligible; thus, it may be concluded that for specific
types of datasets, there is neither gain nor loss in choosing a
lower ζ .

These results confirmed the previous hypothesis of the
unnecessary fine-tune ζ process even because, on particular
datasets (e.g. COIL20), an in-depth analysis of ζ is profitless.
Thus, a relatively low revise fraction has been demonstrated
to be a good practice in most of the cases.

5.3 Considerations on the � tuning process

In Sects. 5.1 and 5.2, we have described the effects of ζ in
terms of accuracy loss and execution time, respectively. This
section provides a brief summary ofwhat emerged from those
experiments. As largely discussed in the literature, it is unre-
alistic to try and find a perfect value, which works well in
all possible deep learning scenarios a priori. The same con-
sideration should be made during the revise fraction tuning.
This is why those tests are not aimed at finding the opti-
mal value, which depends on too many variables. Instead,
it may be asserted that, from the experiments herein con-
ducted, a relatively low ζ is always a good choice. Indeed, in
the datasets analysed the best results have been obtained with
0 ≤ ζ ≤ 0.02. It also important to highlight that because of
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Fig. 3 Execution Time over 10 runs. From left to right, the Lung,
COIL20 and CLL datasets are shown

the high non-linearity of the problem itself, more than one ζ

value could effectively work, and the process of fine-tuning
ζ is an operation that may require more time than the training
process itself. This is why this study would provide a good
enough range of possible ζ values. Thus, the tests have been
conducted on very different datasets to assert that, empiri-
cally speaking, in different scenarios 0 ≤ ζ ≤ 0.02 it is
sufficient to offer a high accuracy with low fluctuations and,
at the same time, faster execution time.

6 Conclusions

In this paper, we moved a step forward from earlier work
Mocanu et al. (2018). Not only did our experiments confirm
the efficiency arising from training sparse neural networks,
but they also managed to further exploit sparsity through a
better tuned algorithm, featuring increased speed at a negli-
gible accuracy loss.

The revised fraction goodness is independent from the
application domain; thus, a relatively low zeta is always a
good practice. Of course, according to the specific scenario
considered, the performance may be higher than (or at least
equal to) the benchmark value. Yet, it is evident that net-
work science algorithms, by keeping sparsity in ANNs, are a
promising direction for accelerating their training processes.

From one side, acting on the revise parameter ζ , accu-
racy and execution time performances are positively affected.
From the other side, it is unrealistic to try and define a priori
an optimal ζ value, without considering the specific applica-
tion domain, because of the highnon-linearity of the problem.
However, through this analysis it is possible to assert that a
relatively low ζ is generally sufficient to balance both accu-
racy loss and execution time. Another strategy could be to
sample the dataset in order to manage a lower amount of

data and train only that portion of information on which to
conduct tests on ζ .

This study paves the way for other works, such as
the implementation of dynamic exit conditions to further
speed-up the algorithm itself, the development of adaptive
algorithms that dynamically tune the parameters, and the
study of different distributions for the initial weight assign-
ments.
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