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The coronavirus pandemic has reportedly infected over 22 million individuals and caused over 778,000 deaths worldwide. This
novel coronavirus, officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), although primarily causes
significant respiratory distress, can have significant deleterious effects on the cardiovascular system. Severe cases of the virus
frequently result in respiratory distress requiring mechanical ventilation, often seen, but not confined to, individuals with
pre-existing hypertension and cardiovascular disease, potentially due to the fact that the virus can enter the circulation via the
lung alveoli. Here the virus can directly infect vascular tissues, via TMPRSS2 spike glycoprotein priming, thereby facilitating ACE-2-
mediated viral entry. Clinical manifestations, such as vasculitis, have been detected in a number of vascular beds (e.g. lungs, heart,
and kidneys), with thromboembolism being observed in patients suffering from severe coronavirus disease (COVID-19), suggesting
the virus perturbs the vasculature, leading to vascular dysfunction. Activation of endothelial cells via the immune-mediated
inflammatory response and viral infection of either endothelial cells or cells involved in endothelial homeostasis, are some of the
multifaceted mechanisms potentially involved in the pathogenesis of vascular dysfunction within COVID-19 patients. In this review,
we examine the evidence of vascular manifestations of SARS-CoV-2, the potential mechanism(s) of entry into vascular tissue and the
contribution of endothelial cell dysfunction and cellular crosstalk in this vascular tropism of SARS-CoV-2. Moreover, we discuss the
current evidence on hypercoagulability and how it relates to increased microvascular thromboembolic complications in COVID-19.

   

  Contribution to the field

This review evaluates emerging evidence that strongly implicates COVID-19 as a vascular disease. Patients with pre-existing
cardiovascular conditions (i.e. hypertension, coronary artery disease, diabetes) which are commonly characterised by endothelial
dysfunction are particularly at risk of downstream complications and COVID-19-associated mortality. Endothelial cell dysfunction,
inflammation, and damage are implicated as a consequence of COVID-19, which likely results in elevated ACS/AMI and
thromboembolic risk in COVID-19 patients. Direct viral infection of the endothelium, as well as the surrounding pericytes, via the
ACE2 receptor, are likely to be causative factors, as well as the deleterious effects of the supraphysiological increase of
pro-inflammatory factors, the so called ‘cytokine storm’.
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Abstract (350): 30 

The coronavirus pandemic has reportedly infected over 31.5 million individuals and caused 31 

over 970,000 deaths worldwide (as of 22nd Sept 2020). This novel coronavirus, officially 32 
named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), although primarily 33 

causes significant respiratory distress, can have significant deleterious effects on the 34 
cardiovascular system. Severe cases of the virus frequently result in respiratory distress 35 

requiring mechanical ventilation, often seen, but not confined to, individuals with pre-36 
existing hypertension and cardiovascular disease, potentially due to the fact that the virus can 37 

enter the circulation via the lung alveoli. Here the virus can directly infect vascular tissues, 38 
via TMPRSS2 spike glycoprotein priming, thereby facilitating ACE-2-mediated viral entry. 39 

Clinical manifestations, such as vasculitis, have been detected in a number of vascular beds 40 
(e.g. lungs, heart, and kidneys), with thromboembolism being observed in patients suffering 41 

from severe coronavirus disease (COVID-19), suggesting the virus perturbs the vasculature, 42 
leading to vascular dysfunction. Activation of endothelial cells via the immune-mediated 43 

inflammatory response and viral infection of either endothelial cells or cells involved in 44 
endothelial homeostasis, are some of the multifaceted mechanisms potentially involved in the 45 

pathogenesis of vascular dysfunction within COVID-19 patients. In this review, we examine 46 
the evidence of vascular manifestations of SARS-CoV-2, the potential mechanism(s) of entry 47 

into vascular tissue and the contribution of endothelial cell dysfunction and cellular crosstalk 48 
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in this vascular tropism of SARS-CoV-2. Moreover, we discuss the current evidence on 49 
hypercoagulability and how it relates to increased microvascular thromboembolic 50 

complications in COVID-19. 51 

1. Introduction  52 

In January 2020, the Centre for Disease Control recognised a new coronavirus, named severe 53 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is believed to have 54 

originated from the Wuhan city in Hubei province, China. As of the 22nd September 2020, 55 
over 31.5 million people worldwide have been infected, with currently over 970,000 deaths 56 

recorded (1). According to the World Health Organisation (WHO) the total case fatality rates 57 
(CFR) is 3.1%, but this varies significantly depending on geographical location. For example, 58 

the USA have a CFR of 2.9% (6,740,464 cases), whereas the United Kingdom and Italy have 59 
significantly higher CFRs of 10.6% (394,261 cases) and 12.0% (298,156 cases), respectively 60 

(1). The SARS-CoV-2 infection gives rise to COVID-19 disease, which typically results in 61 
fever, respiratory distress (shortness of breath and cough) (2-4), and subsequent respiratory 62 

failure. Symptoms often arise between 2-14 days after infection (5), and the risk of mortality 63 
due to COVID-19 appears greater in older individuals (6), and in individuals with 64 

comorbidities, such as hypertension (7), coronary artery disease (CAD), and diabetes 65 

mellitus.  66 

Despite patients reporting with symptoms relating to fever and respiratory distress, there is 67 
growing evidence for the involvement of the cardiovascular system. Patients often exhibit 68 

elevated cardiac biomarkers such as cardiac troponin I/T (hs-cTnI/hs-cTnT) (3, 4, 6, 8-11) 69 
and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels (8, 12), which suggest 70 

myocardial damage and ventricular/atrial dysfunction. However, the impact of COVID-19 on 71 
the vasculature is largely unknown, but there are case reports of viral infection of the 72 

endothelium (13), as well as elevated markers of coagulation, such as D-dimer in COVID-19 73 
patients (14), which itself may indicate a significant risk of pulmonary thromboembolism 74 

(PTE) in patients.  75 

The focus of this review is to detail the effects of SARS-CoV-2 and COVID-19 disease on 76 
the vasculature, whilst discussing the potential direct and indirect mechanisms which lead to 77 
endothelial damage and dysfunction. Moreover, we also discuss the pathogenesis of COVID-78 

19 associated thromboembolism and its consequences upon the cardiovascular system and 79 

COVID-19 disease progression. 80 

2. Epidemiology of COVID-19 and Cardiovascular Risk  81 

Patient cohort studies show that there is a large prevalence of patients with COVID-19 who 82 
have comorbidities, such as hypertension (17- 57% of all patients) and cardiovascular disease 83 
(CVD) (11-21% of all patients) (3, 15-17). Patients with hypertension or CAD are not only at 84 

greater risk of infection, and admission to hospital, but having one or more of these 85 
comorbidities also appears to increase the risk of progression of the disease (15). In a Chinese 86 

cohort, it was observed that in COVID-19 patients, 30% of them had hypertension (14). In 87 
the non-survivors, the incidence of hypertension was greater than that of survivors (48% vs. 88 

23% of patients), and this was even more pronounced for incident coronary heart disease 89 
(24% vs. 1% of patients) (14). Hypertension and pre-existing CVD were also more common 90 

comorbidities in patients requiring admission to the intensive care unit (ICU) (18).  91 
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The initial evidence of the cardiovascular impact of COVID-19 was provided in cross-92 
sectional cohort studies which observed significantly elevated hs-cTnI and hs-cTnT levels, 93 

suggestive of myocardial injury in these patients (14, 18, 19). High levels of these cardiac 94 
biomarkers are related to worse prognosis of the disease (19, 20), with a number of studies 95 

demonstrating a higher risk of admission to ICU (10), requirement for mechanical ventilation 96 
(12), and incidence of arrhythmias and death from COVID-19 (3, 4, 10, 12, 19) in those with 97 

elevated circulating hs-cTnI or hs-cTnT levels. Moreover, the mortality risk associated with 98 
elevated hs-TnI/T was greater than that observed for advanced age, pre-existing diabetes, 99 

respiratory disorders, and CAD (10, 12). The elevations in hs-TnI/T are also associated with 100 
elevated levels of NT-ProBNP and C-reactive protein (CRP), suggesting the myocardial 101 

injury observed in COVID-19 patients may be linked with ventricular dysfunction and 102 
inflammation (12). There are several potential reasons for the elevated cardiac injury 103 

observed in COVID-19 patients with worsening outcomes. These include direct viral 104 
infection of the myocardium, the use of anti-viral medications (18), the side-effects of the 105 

COVID-19 associated cytokine storm (21), or likely a combination of the three. Viral entry is 106 
likely, as the SARS-CoV-2 is known to enter human cells via binding of the transmembrane 107 

protein, the angiotensin-converting enzyme 2 (ACE2) receptor, which is highly expressed in 108 
both the lungs and the heart (22). In fact, due to this mechanism of entry, there has been 109 

debate on the use and potential benefit of the use of ACE inhibitors in patients with cardiac 110 
injury and/or hypertension (23), with the American Heart Association, The Heart Failure 111 

Society of America, and the American College of Cardiology publishing a joint consensus 112 

statement for the treatment of COVID-19 patients with ACE inhibitors (24).   113 

Cardiovascular events, such as incidences of acute coronary syndrome (ACS) or acute 114 
myocardial infarction (AMI) in COVID-19 patients have been demonstrated (25), indicating 115 

that the impact of COVID-19 on the cardiovascular system leads to cardiovascular-related 116 
mortality. The root causes of COVID-19 ACS/AMI remain unknown, but could be due to the 117 

elevated myocardial demand as a result of the infection, akin to type 2 MI, cytokine-induced 118 
atherosclerotic plaque instability and rupture, or non-plaque thrombosis (25-27). Although, as 119 

documented, there is a clear impact of the virus on the myocardium, either directly or 120 
indirectly; however, the potential role of the vasculature in COVID-19 associated 121 

cardiovascular complications has been relatively overlooked, and may be prognostically 122 
important in these patients. In fact, in a recent study by Chen, Li (28) using a single cell atlas 123 

of the human myocardium showed that ACE2 is expressed on pericytes  in the heart (28), 124 
suggesting that viral infection of pericytes, which surround the endothelial lining of blood 125 

vessels, could lead to microvascular inflammation in the heart tissue, resulting in non-126 
obstructive MI. Therefore, the following sections will investigate the impact of COVID-19 on 127 

vascular tissues, specifically endothelial cells and pericytes, and the subsequent involvement 128 

of these tissues on thrombotic risk in COVID-19. 129 

3. COVID-19 and Endothelial Cell Dysfunction  130 

Initial SARS-CoV-2 infection occurs within the lung epithelia, whereby serine proteases, 131 
most notably transmembrane protease serine 2 (TMPRSS2), cathepsin B, and cathepsin L1, 132 

prime the SARS-CoV-2 spike glycoprotein, which is followed by ACE2-mediated viral entry 133 
(29). Infection of lung alveoli allows SARS-CoV-2 to enter the systemic circulation, 134 

subsequently predisposing multiple organs to potential infection. Co-expression of both key 135 
serine proteases and ACE2 is required for successful infection of cells by SARS-CoV-2 (29). 136 

Multiple organs contain cells which co-express ACE2 and these serine proteases, including 137 

the lungs, heart, kidneys, liver, and the vasculature (30-32).  138 
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Microvascular dysfunction and the role of the vascular endothelium is increasingly 139 
implicated in the acute respiratory distress syndrome (ARDS) and systemic impact of SARS-140 

CoV-2 infection. Endothelial cells protect the cardiovascular system and are crucial in 141 
regulating vascular homeostasis, preventing coagulation, controlling blood flow, and 142 

regulating oxidative stress and inflammatory reactions (33, 34). There is growing evidence of 143 
a vascular involvement in the pathogenesis of severe COVID-19, with imaging studies 144 

revealing perfusion abnormalities within the brains of patients with COVID-19 presenting 145 
with neurological issues (35), in addition to perfusion abnormalities within the lungs of 146 

COVID-19 pneumonia patients (36). Moreover, cross-sectional studies have reported a high 147 
incidence of coagulopathies, characterised by elevated D-dimer and fibrinogen 148 

concentrations, which lead to thrombotic events and are associated with poor outcomes (37, 149 
38), thus demonstrating the potential involvement of endothelial cells in the 150 

pathophysiological consequences of COVID-19.   151 

Endothelial Cell Involvement in COVID-19 152 

Involvement of endothelial cells in the pathophysiology of COVID-19 goes beyond 153 
coagulation derangements, with SARS-CoV-2 being shown to directly infect engineered 154 

human blood vessel organoids and human kidney organoids in vitro (39). This has been 155 
confirmed, in vivo, by histological studies demonstrating viral infiltration into endothelial 156 

cells, with Varga and colleagues (13) reporting endothelial cell involvement across multiple 157 
organs (e.g. lungs, heart, intestines, kidneys, and liver) in three patients; two of whom died 158 

(multisystem organ failure; myocardial infarction, and subsequent cardiac arrest, 159 
respectively) and one survived. Viral infection of endothelial cells was observed in a 160 

transplanted kidney of one patient with evidence of endothelial cell inflammation 161 
(endothelialitis) within cardiac, small bowel, lung, and liver tissue of two patients. 162 

Furthermore, one other patient demonstrated endothelialitis of the submucosal vessels within 163 
the small intestine, which was accompanied by a reduced left ventricular ejection fraction. 164 

These findings demonstrate direct viral infection of endothelial cells and endothelialitis 165 

within multiple tissue beds in patients with COVID-19. 166 

Although limited by a small sample size, the findings of Varga and colleagues (13) are 167 
supported by Ackermann et al. (40), who reported severe endothelial injury, viral infection, 168 

and disrupted cell membranes in seven lungs obtained post-mortem from individuals who 169 
died from COVID-19. When compared to seven lungs from individuals who died from 170 

influenza, microthrombi were nine times as prevalent in the lungs from the COVID-19 171 
individuals. Furthermore, widespread microthrombi was accompanied by microangiopathy 172 

and occlusion of alveolar capillaries (40), which is in line with other studies (41), and can 173 
predispose organs to microinfarcts (42). An unexpected finding was the observation of 174 

intussusceptive angiogenesis, in which the degree was associated with the duration of 175 
hospitalisation (40). Intussusceptive angiogenesis is the formation of new vessels, via non-176 

sprouting angiogenesis, and is constructed of an endothelial-lined ‘pillar’ spanning the vessel 177 
lumen, which significantly alters the microcirculation (43). Cytoplasmic vacuolisation and 178 

cell detachment in pulmonary arteries (44), in addition to pulmonary capillary injury 179 
featuring neutrophil infiltration and fibrin deposition (41, 45) has also been reported, further 180 

demonstrating local endothelial cell perturbations within lung tissue. Moreover, renal post-181 
mortem histopathological analysis by Su et al. (46) found endothelial cell swelling with 182 

foamy degeneration in19% of patients, with 12%  demonstrating a few areas of segmental 183 

fibrin thrombus in glomerular capillary loops that is associated with severe endothelial injury.  184 

Considering endothelial dysfunction leads to impaired systemic microvascular function, it 185 

seems likely that involvement of the vascular system’s first line of defence (endothelial cells) 186 
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precipitates and propagates the systemic damage observed in severe cases of COVID-19, 187 
through altered vascular integrity, vascular inflammation, and via disruption of coagulation 188 

and inflammatory pathways (13, 33). The mechanisms for this have not yet been fully 189 
elucidated and are varied due to the heterogenic nature in which the virus affects individuals. 190 

Cardiometabolic comorbidities associated with poorer prognosis in COVID-19 patients have 191 
a strong association with pre-existing endothelial dysfunction (i.e., hypertension and CAD) 192 

(47, 48). It is therefore evident that understanding the role of endothelial cells in SARS-CoV-193 
2 infection is crucial to identifying potential therapeutic strategies to combat the virus and 194 

improve patient outcomes. The role of endothelial cells and potential mechanisms of 195 

endothelial cell dysfunction in COVID-19 are depicted in Figure 1. 196 

Potential Mechanisms of Endothelial Dysfunction in COVID-19  197 

Angiotensin-Converting Enzyme 2 (ACE2) 198 

ACE2 is an endogenous negative regulator of the renin-angiotensin system (RAS) and has 199 
been identified as the key receptor facilitating viral entry of SARS-COV-2 (49, 50), along 200 

with key serine proteases to prime the spike glycoprotein of the virus, most notably 201 
TMPRSS2 (29), which is expressed by endothelial cells (30). ACE2 is widely expressed in 202 

cells throughout the body, from the respiratory tree to the vascular system, heart, kidneys, 203 
liver, gut, central nervous system, and retina, and is recognised as eliciting protective effects, 204 

particularly against CVD (49). The expression of ACE2 in many organs allows relatively 205 
easy transport of the virus throughout the body (51). Consequently, interference of the 206 

physiological processes associated with ACE2 by viral entry of SARS-CoV-2 is likely to 207 
explain the multi-organ dysfunction pertaining to endothelial cells that is seen in severe cases 208 

of COVID-19. 209 

A downregulation in the expression of ACE2, as a result of viral entry into cells, disrupts the 210 
regulation balance between angiotensin II (Ang II) and ACE2, indirectly affecting the 211 

vasculature. This imbalance facilitates an elevation in the expression of Ang II, subsequently 212 
promoting an atherogenic state across the cardiovascular system, especially inflammation and 213 

oxidative stress, whilst also elevating blood pressure by stimulating an increase in 214 
sympathetic nervous system activity (52). This is supported by studies reporting marked 215 

elevations in plasma AngII concentrations in patients with COVID-19 (53)  and also being 216 
linked to disease severity in patients infected with novel influenza A (54). This 217 

pathophysiological increase in Ang II and without the modulator and protective effects of 218 
Ang 1-7, results in downstream elevation of plasminogen activator inhibitor-1 (PAI-1) from 219 

endothelial cells, further accelerating vascular inflammation and the facilitation of the 220 
coagulation cascade (42), thus resulting in endothelial damage (55). Elevated PAI-1 is a 221 

hallmark of endothelial dysfunction, promoting increases in circulating endothelial 222 
microvesicles, resulting from endothelial shedding via activated cells, which pose a risk of 223 

thromboembolic events (56, 57). 224 

Some have argued that following cell entry of SARS-CoV-2, down-regulation of ACE2 225 

receptors may result in an indirect activation of the kallikrein-bradykinin pathway, thereby 226 
promoting an increase in vascular permeability and thus leading to oedema and 227 

microcirculatory dysfunction (33, 58, 59). It has been suggested that kinin inhibition may be 228 
a potential therapeutic approach to reducing vascular leakage into the lung, and therefore, 229 

oedema (60). Kinin inhibition may, therefore, promote endothelial repair through reducing 230 
vascular permeability, although whether this is an effective therapeutic approach is yet to be 231 

confirmed within the literature. In contrast to this, consistent reports of hypokalaemia in 232 
patients with severe COVID-19 (61, 62) suggest an increase in aldosterone, via elevations in 233 
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Ang II, resulting in an increase in ACE, which acts to metabolise bradykinin (63). Therefore, 234 
the role of bradykinin in the pathogenesis of microvascular dysfunction in COVID-19 is 235 

questionable and more likely a result of the effects of Ang II, stemming from a 236 
downregulation of ACE2 after viral entry into cells. Moreover, given that hypokalaemia is 237 

associated with ventricular arrhythmias that are commonly observed in COVID-19 (18), it is 238 
plausible that this is a contributing mechanism to both endothelial dysfunction and 239 

arrhythmogenesis.  240 

The Cytokine Storm  241 

The mechanisms involved in the pathogenesis of microvascular dysfunction in COVID-19 242 
patients, although not yet fully understood, are likely not solely attributed to direct viral 243 

infection of endothelial cells. Endocytosis or membrane fusion of SARS-CoV-2 to cells 244 
either leads to cell damage or apoptosis which activates the immune response and the release 245 

of various cytokines promoting an exaggerated inflammatory environment (42). Moreover, 246 
endothelial cells regulate local and systemic inflammatory reactions and immune responses 247 

(33) and activation of these cells via the exaggerated immune-mediated inflammatory 248 
response of SARS-CoV-2 may present an indirect mechanism of endothelial damage and 249 

dysfunction among the COVID-19 patient population. Endothelial cells produce various 250 
cytokines and chemokines and have been identified as central regulators of an exaggerated 251 

systemic inflammatory response, or “cytokine storm” (64), a common feature of severe 252 

SARS-CoV-2 infection (65). 253 

More severe cases of COVID-19 are associated with progressive lung damage which has, in 254 
part, been attributed to this cytokine storm (65-67), leading to a loss of vascular barrier 255 

integrity and likely promoting pulmonary oedema, thereby causing endothelialitis and 256 
activation of coagulation pathways. Cross-sectional studies have consistently demonstrated 257 

marked elevations in pro-inflammatory markers, such as soluble interleukin-2 receptor (IL-258 
2R), interleukin-6 (IL-6), CRP, and tumour necrosis factors (TNF) (6, 12, 68). This marked 259 

elevation in pro-inflammatory markers has been linked with mortality and promotes inter-260 
endothelial gaps and thus vascular hyperpermeability (69, 70), along with exacerbating 261 

oxidative stress. IL-6 in particular is associated with increased vascular permeability, a 262 
hallmark of the inflammatory response (71, 72), and IL-6 levels are directly correlated with 263 

the severity and mortality of COVID-19 (14, 73, 74). Moreover, IL-6, along with other 264 
cytokines released from activated macrophages, such as IL-1β, activate endothelial cells via 265 

elevations in adhesion molecules (42) leading to a myriad of vascular disturbances including 266 

leukocyte tethering to the vascular bed, platelet aggregation and coagulation derangements.  267 

Oxidative Stress  268 

An overproduction of reactive oxygen species (ROS) in infected cells is a key factor in viral 269 
replication of respiratory viruses and subsequent tissue damage (75). Following viral 270 

infection, endothelial activation and regulation of adhesion molecules leads to neutrophil 271 
activation, which results in the production of a plethora of histotoxic mediators including 272 

ROS (59). This has implications for the onset and progression of the cytokine storm since, as 273 
described above, endothelial cells are key orchestrators of cytokine overload. The ensuing 274 

oxidative stress, defined as a systemic imbalance between ROS (or free radicals) and 275 
antioxidants, causes an increased expression of prothrombotic and cell-surface adhesion 276 

molecules (76). Oxidative stress may therefore be  linked to the pathogenesis and severity of 277 
COVID-19 infections (77) and peri-endothelial ROS production in COVID-19 may, 278 

therefore, contribute to the multi-organ failure associated with severe disease, which seems 279 
likely given that it has previously been demonstrated in the pathogenesis of other viral 280 
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infections, such as SARS-CoV and influenza (78, 79), and ARDS (80). The elevation in ROS 281 
accumulation promotes oxidative stress and nuclear factor kappa B (NF-κB) signalling, with 282 

the potential for dysregulated antioxidant mechanisms, such as Nrf2 and antioxidant response 283 
element signalling, promoting the release of various endothelial genes, such as endothelin and 284 

adhesion molecules, thus favouring vasoconstriction and increased vascular permeability (81, 285 

82).   286 

The elevation in free radical production, potentially as a combined result of increased Ang II 287 

expression, pro-inflammatory responses, and a reduced capacity for free radical scavenging 288 
by impaired antioxidant signalling, impairs endothelial function. Elevated superoxide 289 

concentrations, promoted by the release of mitochondrial-derived ROS is a hallmark of 290 
oxidative stress, which facilitates the quenching of nitric oxide (NO) and the formation of the 291 

secondary free radical, peroxynitrite, in turn reducing NO bioavailability (83). Moreover, this 292 
process uncouples endothelial nitric oxide synthase, which further elevates superoxide 293 

production, contributing to the pro-oxidant environment of the vasculature. Such elevations 294 
in oxidative stress would promote antioxidant signalling, however, numerous respiratory viral 295 

infections, such as respiratory syncytial virus, human metapneumovirus, and influenza, have 296 
perturbed antioxidant defence mechanisms by inhibiting antioxidant enzyme induction (84). 297 

Interestingly, it has been proposed that Nrf2 activators could be a potential therapeutic 298 
strategy for inhibiting viral entry of SARS-CoV-2 (85), and may also pose a benefit to 299 

endothelial repair and functioning by the scavenging of free radicals, reducing oxidative 300 

stress, and inhibiting pro-inflammatory signalling.   301 

Coagulation Cascade  302 

Perturbations to the endothelium may result in vascular leakage and promote inflammation, 303 
but also predispose the vasculature to a pro-coagulant state. Indeed, a common manifestation 304 

in patients with COVID-19 is the presence of coagulation abnormalities and instances of 305 
thromboembolism, which has been associated with disease severity and a higher incidence of 306 

mortality (38), whilst also increasing the risk of MI and stroke. The endothelium plays an 307 
important role in the prevention of thromboembolic events by regulating the coagulation 308 

cascade, achieved, in part, via inhibition of various tissue factors by a Kunitz-type protease 309 
inhibitor, known as the tissue factor pathway inhibitor (TFPI) that resides on the endothelial 310 

cell surface (34). The transmembrane protein tissue factor is required for in vivo coagulation 311 
by the binding and activation of various tissue factors (i.e. activation of factor Xa) promoting 312 

prothrombin conversion to thrombin, and thus the conversion of fibrinogen to fibrin (34, 86), 313 
inhibiting TFPI and promoting clot formation. TFPI is predominantly bound to the 314 

microvasculature (87), however, it has been demonstrated to play a role in the regulation of 315 

arterial thrombosis in mice (86). 316 

Marked coagulation derangements have been reported in a single-centre cross-sectional study 317 

by Goshua and colleagues (88) who assessed markers of endothelial cell and platelet 318 
activation, namely circulating von Willebrand factor (vWF), soluble P-selectin and soluble 319 

thrombomodulin, in critically and non-critically ill COVID-19 patients. They observed that 320 
endotheliopathy is present in COVID-19 and is associated with increased mortality, with a 321 

suggestion that soluble thrombomodulin concentrations may predict mortality and clinical 322 
outcomes in COVID-19 patients. It was suggested that the coagulopathy observed in their 323 

data was distinctly separate from disseminated intravascular coagulation (DIC) and should be 324 
considered an endotheliopathy (88). The notion of a “COVID-19 coagulopathy” is supported 325 

by a number of other studies. DIC has been reported to be characteristic of COVID-19, 326 
however, its presentation is different to that regularly observed in sepsis-induced DIC. In 327 

sepsis-induced DIC, marked thrombocytopenia is observed with a mild elevation in D-dimer 328 
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concentrations (89), which is in contrast to DIC observed in COVID-19 patients (90). This is 329 
supported by only 14.7% (22 of 150) of patients scoring positive on the “sepsis-induced 330 

coagulopathy score” (90). DIC has been linked with multi-organ system failure within the 331 
COVID-19 population (38, 91, 92), demonstrating a pro-coagulant state of the vasculature. 332 

Furthermore, mild thrombocytopenia can be found in 70 to 95% of patients with severe 333 
COVID-19, however, it has not been found to be an important predictor of outcome (21, 93). 334 

Therefore, the presence of coagulopathy within patients with COVID-19 should be 335 

considered as an endotheliopathy, rather than traditional DIC.    336 

Cellular Cross-Talk: Endothelial Cells and Pericytes  337 

Pericytes share a basement membrane with endothelial cells, which is formed, maintained, 338 

and remodelled successfully through cellular cross-talk between these two cells, 339 
demonstrating that pericytes and endothelial cells have an extensive linkage and are key for 340 

maintaining basement membrane, and thus vascular barrier integrity. This has been 341 
confirmed by cell-to-cell interaction analysis, demonstrating that endothelial cells are the 342 

main cross-talking cell with pericytes within cardiac tissue, with a predominant role of 343 
angiopoietin ligands (ANGPT1/2) and Tie receptor 2 (TIE2) maintaining endothelial cell 344 

stability and function in capillary vessels (28). A balance between ANGPTs and TIE2 is key 345 
for the maintenance of endothelial stability and vascular integrity (28, 94); therefore, it is 346 

possible that a breakdown of the cross-talk between pericytes and endothelial cells disrupts 347 
this balance and results in a compromised vasculature that is prone to a pro-inflammatory, 348 

pro-coagulant state. Whilst these findings were observed in normal heart tissue, this is 349 
supported by a pericyte-specific infection by SARS-CoV-2 in experimental (95) and human 350 

histological studies (96). 351 

Whilst there is evidence of a direct viral infection of endothelial cells, some have argued that 352 

endothelial cell dysfunction is a result of pericyte infection. Cardot-Leccia and colleagues 353 
(96) reported wall thickening of the venules and alveolar capillaries in lung tissue of a 354 

deceased COVID-19 patient, accompanied by a marked decrease in pericytes, compared to 355 
normal lung parenchyma. Combined with the findings of He et al. (95) and the highly 356 

infectious potential of pericytes demonstrated by single cell RNA sequencing studies (28), 357 
these data seem to support a potential “pericyte hypothesis” as a mechanism for 358 

microvascular dysfunction in the pathogenesis of COVID-19. Moreover, infection and loss of 359 
pericytes would result in a dysregulation of the cross-talk between pericytes and endothelial 360 

cells, promoting capillary endothelial dysfunction, which would explain the wall thickening 361 
of venules and capillaries observed in the data from Cardot-Leccia and colleagues (96). 362 

Taken together, pericytes seem to have the potential as a highly infectious cell population for 363 
SARS-CoV-2 and may contribute to endothelial dysfunction by promoting an imbalance 364 

between ANGPT1/2 and TIE2, perturbing vascular barrier integrity and increasing vascular 365 
permeability. However, the notion that it is solely pericytes that are infected and induce 366 

endothelial dysfunction is unlikely considering the compelling histological data presented 367 

within the literature (13, 40). 368 

4. COVID-19 and the Coagulation Cascade- Risk of Thromboembolic Events  369 

There is evidence to suggest increased risk of thrombotic complications and stroke (both are 370 
hereafter referred to as thromboembolism for simplicity) in COVID-19 (97). At the 371 
mechanistic level, both venous and arterial thrombosis have been attributed to activation of 372 

inflammation and hypoxia, platelet activation, endothelial dysfunction, and circulatory stasis. 373 
However, the impact of thromboembolic complications on the prognosis of COVID-19, 374 
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clinical course of thromboembolic disorders in these patients, and the impact of prophylactic 375 

and therapeutic anticoagulation therapies in COVID-19 are not well known. 376 

Epidemiological Burden of Thromboembolism in COVID-19 377 

The prevalence of neurologic manifestations, including cerebrovascular diseases, was 378 
reported at 36.4% in an earlier retrospective case series from Wuhan, China  (98). In patients 379 
presenting with confirmed or suspected COVID-19, thromboembolism is prevalent at 20.4% 380 

(99). In the same study, six of the patients with laboratory findings demonstrated elevated D-381 
dimer levels (>7000 mg/L) and 40% of the patients had pulmonary thromboembolism. 382 

Another series showed that 67% of thromboembolic complications are ischaemic in origin, 383 
while 33% are haemorrhagic (100). In the paediatric population, thromboembolic 384 

complications are not common. For instance, elevation of D-dimer was not found in children 385 
with SARS-CoV-2 compared to other inflammatory multisystem syndromes (101), and no 386 

thromboembolic event was found in children and adolescents in a large, multicentre 387 

European cohort (102). 388 

In addition to a prior history of stroke, patients with COVID-19 develop incident 389 
thromboembolism. The incidence rates of acute thromboembolic complications are reported 390 

between 5% and 32.5% in retrospective cohorts (103, 104). Underlying cardiovascular risk 391 
factors, including diabetes, hypertension, and a history of CVD, are implicated as univariate 392 

correlates (103). D-dimer levels at hospital admission is also significantly correlated with 393 
incident thromboembolism, with a negative predictive value of more than 90% (104). In a 394 

prospective cohort of 150 French COVID-19 patients versus a historic cohort of 233 non-395 
COVID-19 controls, COVID-19 ARDS independently predicted thromboembolic 396 

complications and pulmonary thromboembolism even after propensity score matching (90).  397 

The comorbid nature of thromboembolic lesions in patients with COVID-19 underscores 398 
some underlying predisposition to SARS-CoV-2 infection. Indeed, thromboembolic 399 
complications have been associated with depressed immune function and increased post-400 

stroke infections. Infection rates ranging from 18.7% to 43.7% have been reported in patients 401 
with intracerebral haemorrhage (105, 106), with respiratory infections predicting almost 6-402 

fold higher risk of future thromboembolism (106). A 1-unit increment in National Institutes 403 
of Health Stroke Scale (NIHSS) was associated with 23% increased risk of COVID-19 404 

positivity. Interestingly, in a retrospective multicentre study of stroke patients (107), 28% 405 
were later diagnosed with COVID-19. However, the true burden of thromboembolism 406 

COVID-19 remains unknown and will, hopefully, be answered by larger prospective studies. 407 

Impact of Thromboembolic Complications on COVID-19 prognosis 408 

The presence of underlying or incident thromboembolic complications is associated with 409 
poor prognosis of COVID-19. A history of thromboembolism is reported in 2.3% to 22% of 410 

severe cases compared to 0% to 6% in non-severe cases (108). Patients with prior neurologic 411 
thromboembolic complications are shown to have a 2.5-fold increased risk of COVID-19 412 

severity (108) and D-dimer is often elevated above reference range in hospitalised cases (17). 413 
These patients are usually older, have a higher number of comorbidities, have a higher 414 

prevalence of ARDS, and are more likely to be non-invasively ventilated (109). Data also 415 
shows that patients with more severe COVID-19 have higher incidence rates of 416 

thromboembolic complications. For instance, 31% of patients admitted to the ICU developed 417 
thromboembolic complications during follow-up in one Dutch study (110). Yearly increment 418 

in age and prior coagulopathy, defined as prothrombin time >3 s or activated partial 419 
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thromboplastin time (aPPT) >5 s, are shown as independent predictors of incident 420 
thromboembolic complications in severe COVID-19 (110). Diagnosis of pulmonary 421 

thromboembolism in ICU patients with COVID-19 is more common (at 21%) compared to 422 

7% admitted due to influenza or 6% for all ICU patients (111). 423 

Additionally, the association between a history of thromboembolic complications and 424 
mortality has been analysed in COVID-19 patients. The burden of underlying coagulopathy 425 

was reported in 50% of non-survivors in the Wuhan cases (14), with a D-dimer >1000 ng/mL 426 
(reference range ≤250 ng/mL) shown to be an independent predictor of 18-fold greater risk of 427 

in-hospital mortality (14). A multicentre cohort from the US showed that the coagulation 428 
component of the SOFA score is associated with 64% greater odds of 28-day in-hospital 429 

death in a multivariable adjusted model (112). These observations are further supported by 430 
the results of a meta-analysis (113), which show a 2.4-fold elevated risk of mortality in 431 

COVID-19 patients with cerebrovascular disease, defined as stroke and brain infarction. 432 
Overall, these data highlight the risk, and subsequent poor prognosis of thromboembolism in 433 

COVID-19. 434 

Coagulation Cascades and the Mechanisms of Thrombosis in COVID-19 435 

While significant associations have been noted for thromboembolism and SARS-CoV-2 436 
infection and worsening of COVID-19, a causal relationship is not well defined. However, 437 

there are data to suggest some mechanistic underpinnings (Figure 2). Laboratory 438 
investigations have demonstrated significant elevations of markers of coagulation cascades, 439 

such as D-dimer, aPPT, fibrinogen, and factor VIII. D-dimer ≥2600 ng/mL and failure of clot 440 
lysis at 30 min on thromboelastography predicted future thromboembolic events in ICU 441 

patients with c-statistic of 0.78 and 0.74, respectively (114). This highlights the fact that 442 
shutdown of fibrinolysis occurs in COVID-19. In addition to coagulation markers, 443 

endothelial dysfunction may underlie the increased risk of thromboembolism in COVID-19 444 
as both vWF activity and vWF antigen are increased in COVID-19 ARDS compared to non-445 

COVID-19 ARDS (90).  446 

Thromboembolic complications might also be precipitated by underlying cardiovascular 447 
injury. For example, patients with co-existing ST-elevation MI and COVID-19 have 448 

significantly increased rates of thromboembolic complications, affecting multiple vessels and 449 
stents, thrombus grade post-percutaneous coronary intervention (115). Additionally, cardiac 450 

arrhythmias play an important role in the development of thromboembolic events, due in part 451 
to the shared underlying myocardial substrate (116). Cardiomyopathy, consisting of 452 

mechanical dysfunction, structural remodelling, and electrophysiological changes, is a 453 
common cause of both intracardiac thrombus and cardiac arrhythmogenic substrate formation 454 

(116). The presence of right-heart echodensity on transoesophageal and transthoracic 455 
echocardiography has been reported in COVID-19 patients (117-119). Interestingly, 456 

intracardiac thrombus coexisted with persistent tachycardia, global hypokinesis, left 457 
ventricular dysfunction, and right ventricular dilatation and reduced systolic function (117-458 

119). Taken together, this indicates that thromboembolism in COVID-19 might be mediated 459 

via cardiac-specific pathologies.  460 

At the mechanistic level, thromboembolic complications may arise due to activation of 461 
inflammation and hypoxia, platelet activation, endothelial dysfunction, and circulatory stasis 462 

in COVID-19. Inflammatory overdrive and hypoxia may induce abnormalities of coagulation, 463 
the third component of the Virchow triad. On necropsy, areas of diffuse and extensive 464 

inflammatory infiltrations have detectable thromboemboli and microemboli (120). Direct 465 
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infection of immune cells with SARS-CoV led to activation of monocyte-macrophage 466 
differentiation, coagulation pathway upregulation, and increased cytokine production (121). 467 

SARS-CoV-2 might drive thromboembolic mechanisms by its utilisation of the ACE-2 468 
receptor, which is needed to clear Ang II from the circulation. Increased Ang II could, in turn, 469 

drive the release of vWF from endothelial cells and platelet activation via involvement of 470 
Na+/H+ exchanger (122). Finally, the presence of auto-antibodies, such as lupus 471 

anticoagulant, might drive activated coagulation pathways and thromboembolic risk (123). 472 

Direct activation of platelets by SARS-CoV-2 is a likely pathway for the development of 473 
thromboembolism. Hottz and colleagues (124) reported platelet activation and formation of 474 
platelet-monocyte aggregates in patients with severe but not in mild COVID-19. Similar 475 

findings were observed when platelets from COVID-19 negative patients were treated with 476 
plasma from COVID-19 positive patients (124). Platelets from COVID-19 patients induces ex 477 

vivo expression of tissue factor (TF) in monocytes (124), indicating a likely reprogramming 478 
event during SARS-CoV-2 infection. Indeed, this hypothesis is supported by pre-publication 479 

evidence reporting the presence of SARS-CoV-2 RNA in platelets of COVID-19 patients, 480 
which were shown to be hyperactivated and aggregated at a lower threshold of in vitro 481 

thrombin stimulation  (125). Platelets from COVID-19 degranulate, which correlates with 482 
reduced platelet factor 4 and serotonin levels, and release extracellular vesicles to participate 483 

in coagulation (125). Consequently, platelet reprogramming could facilitate the transmission 484 
of SARS-CoV-2 and promote thrombo-inflammation. Indeed, thrombo-inflammation 485 

mediated by distinct patterns of platelet and neutrophil activations, neutrophil-platelet 486 
aggregate formation, and neutrophil extracellular traps has been reported in COVID-19 487 

pneumonia (126).  488 

Prophylaxis and Management of Thromboembolism in COVID-19 489 

Given the high burden of comorbidities and mortality in patients with thromboembolic 490 
complications, proper and adequate anticoagulation is highly warranted. Current management 491 

of patients with severe COVID-19 includes subcutaneous low molecular weight heparin 492 
(LMWH), suspicion of venous thromboembolism in those with high D-dimer levels and rapid 493 

respiratory deterioration, and consideration of therapeutic anticoagulation in those in whom 494 
diagnostic testing is not possible and there is no apparent bleeding risk (127, 128). A 495 

retrospective series showed no mortality benefit with LMWH compared to non-users (129). 496 
However, in those with a high sepsis-induced coagulopathy score and markedly elevated D-497 

dimer level, 28-day mortality was lower among users (129). There is also consideration of 498 
experimental interventions, such as plasma exchange or administration of anti-inflammatory 499 

drugs, in clinical trial settings. 500 

Nevertheless, there are several unknowns with the management of thromboembolism and 501 
associated complications in COVID-19. For instance, will prophylactic as compared to 502 
therapeutic anticoagulation result in a better outcome in these patients? A prospective cohort 503 

recently demonstrated significant reduction in pro-coagulants seven days after 504 
thromboprophylaxis (130). However, the study was very limited by sample size. In another 505 

study, patients on prophylactic anticoagulation had higher venous thromboembolism than the 506 
therapeutic anticoagulant arm, although the latter group had a higher overall incidence of 507 

thromboembolic events, including pulmonary embolism (131). It is envisaged that these 508 
issues will be answered in ongoing clinical trials, such as the COVID-19 HD, a randomised 509 

controlled trial comparing high-dose versus low-dose LMWH (132). 510 

 511 
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5. Summary  512 

In addition to the known impact on the respiratory system, emerging evidence strongly 513 
implicates COVID-19 as a vascular disease. Patients with pre-existing cardiovascular 514 
conditions which are commonly characterised by endothelial dysfunction are particularly at 515 

risk of downstream complications and COVID-19-associated mortality. Endothelial cell 516 
dysfunction, inflammation, and damage are implicated as a consequence of the disease, 517 

which likely results in elevated ACS/AMI and thromboembolic risk in COVID-19 patients. 518 
Direct viral infection of the endothelium, as well as the surrounding pericytes, via the ACE2 519 

receptor, are likely to be causative factors, as well as the deleterious effects of the 520 

supraphysiological increase of pro-inflammatory factors, the so called ‘cytokine storm’.  521 

Clinicians and research scientists should consider monitoring the vascular effects of the 522 
disease to help identify and manage patients, which may highlight individuals at risk of 523 

cardiovascular complications. Despite therapeutic anticoagulation, COVID-19 patients 524 
remain at a high risk of both systemic and pulmonary venous thromboembolism. This 525 

highlights the need for, perhaps, a more aggressive anticoagulant therapy and monitoring. 526 
Studies should explore the benefits of using D-dimer levels to guide treatment of 527 

thromboembolic complications. Further work is needed to determine how best to manage 528 
vascular inflammation in COVID-19 patients, which has the potential to significantly 529 

improve clinical outcomes in this pandemic. 530 

 531 
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 936 

Figure Legends 937 

Figure 1. The role of endothelial cells and mechanisms of endothelial cell dysfunction in 938 
COVID-19. A. SARS-CoV-2 infects endothelial cells through angiotensin-converting 939 
enzyme 2 (ACE2) mediated viral entry, facilitated by TMPRSS2 priming the SARS-CoV-2 940 

spike glycoprotein. Infection of endothelial cells may result in a downregulation of ACE2, 941 
promoting an imbalance between ACE2 and angiotensin II (AngII) levels, in favour of AngII. 942 

Moreover, infection of either endothelial cells or pericytes will perturb the crosstalk between 943 
these two cells, thus contributing to endothelial cell dysfunction. B. In severe cases of 944 

COVID-19, activated macrophages release various cytokines (e.g. soluble interleukin 2-945 
receptor [IL-2R], interleukin-6 [IL-6] and tumour necrosis factors [TNFs], which are 946 

attributed to the exaggerated immune-mediated cytokine storm and can result in vascular 947 
inflammation (endothelialitis) as a result of increased adhesion molecule expression on 948 

endothelial cells and inter-endothelial gaps, thus promoting vascular hyperpermeability. 949 
Activated endothelial cells can contribute to the cytokine storm by releasing various 950 

cytokines in response to damage and dysfunction, contributing to a vicious cycle of 951 
inflammation and oxidative stress that inhibits the release of vasoactive factors (e.g. nitric 952 

oxide [NO]), thus favouring vasoconstriction and further contributing to vascular 953 
permeability. Abnormal activation of platelets and endothelial cells is the key process leading 954 

to thrombosis, which represents the role of endothelial cell dysfunction in the pathogenesis of 955 
thromboembolism in COVID-19 patients. Subsequently, the dislodgement of thrombotic clots 956 

creates a mobile embolus that disseminates intravenously, thereby leading to thromboembolic 957 

complications in COVID-19. 958 

Figure 2. The development and consequences of thromboembolism in COVID-19. The 959 
thromboembolic implications of SARS-CoV-2 are best conceptualised in three key stages. 960 

First, lung infection of SARS-CoV-2 can spill over, with a consequent cardiovascular tropism 961 
of the virus. Within the vascular beds, the increased level of Ang II, which occurs due to 962 

SARS-CoV-2 mediated depletion of ACE2, could drive the dysfunction of endothelial cells. 963 
This, and other independent pathways (i.e., direct infection of endothelial cells), could lead to 964 

the release of von Willebrand factors (vWF), which can activate circulating platelets via 965 
adhesive glycoprotein receptors (i.e., gpIb). Activated platelets form aggregates with 966 

monocytes and neutrophils, leading to enhanced production of pro-coagulants, inflammatory 967 
cytokines, and neutrophil-extracellular traps (NETosis). Within the heart, SARS-CoV-2 968 

infection can directly and indirectly (via cytokine storm) lead to myocardial ischaemia, 969 
myocardial infarction, endocardial dysfunction (via inflammation and subsequent fibrosis), 970 

and blood stasis in the left atrial atrium (LA) and left atrial appendage (LAA). These can, in 971 
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turn, lead to intracardiac thrombus. Moreover, thromboinflammation within the vascular beds 972 
can drive myocardial injury and vice versa. In the second stage, the dislodgement of 973 

thrombus creates mobile embolus, which can be carried to the brain (causing stroke), 974 
pulmonary vasculature (causing pulmonary thromboembolism [TE]), or systemically 975 

(causing venous thrombosis). Importantly, the presence of thromboembolic complications 976 
can lead to progressive COVID-19 disease (in the third conceptual stage). The presence of 977 

underlying cardiovascular disease (CVD; i.e., TE) could predispose individuals to SARS-978 
CoV-2 infection via inflammatory derangement. Coexistence of SARS-CoV-2 infection and 979 

TE can lead to dysregulated inflammation and coagulation disorders, manifesting with high 980 
symptom burden and hospitalisation, and increased de novo incidence of TE and other CVDs. 981 

Consequently, TE and CVDs predispose COVID-19 patients to worse outcomes, including 982 

prolonged intensive care unit (ICU) stay and in-hospital mortality. 983 
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