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Abstract 

Nitrate (NO3-) contained in food and beverages can transiently increase nitric oxide (NO) 

availability following a stepwise reduction to nitrite (NO2-) by commensal bacteria in the oral 

cavity. We tested the hypothesis that regular ingestion of dietary NO3- would influence the oral 

microbiome, the capacity to reduce NO3- to NO2- in saliva, and the vascular responses to an 

acute dose of NO3-. The abundance of bacterial species on the tongue, the availability of NO 

markers, and vascular function were assessed in 11 healthy males before and after 7 days of 

supplementation with NO3--rich beetroot juice and a NO3--depleted placebo. As expected, 

saliva and plasma NO2- and NO3- were significantly elevated after NO3- supplementation (all P 

< 0.05) but not placebo. We found that NO3- supplementation increased salivary pH (7.13 ± 

0.54 to 7.39 ± 0.68, P = 0.043) and altered the abundance of some bacteria previously 

implicated in NO3- reduction: Neisseria (from 2% ± 3% to 9% ± 5%, P < 0.001), Prevotella 

(from 34% ± 17% to 23% ± 11%, P = 0.001) and Actinomyces (from 1% ± 1% to 0.5% ± 0.4%). 

Despite these alterations to the oral microbiota, an acute dose of NO3- increased salivary and 

plasma NO2-, reduced systolic blood pressure and increased the response to flow mediated 

dilation to a similar extent before and after 7 days of supplementation (P > 0.05). Our study 

establishes that supplementing the diet with NO3- for a sustained period can alter the oral 

environment in favour of health but does not impact the response to an acute NO3- dose. Acute 

ingestion of NO3- results in transient improvements in vascular function but the dietary induced 

adaptations to the oral bacteria did not enhance these effects.  
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1. Introduction 1 

The metabolic and immunological activity of the hundreds of species of bacteria that live 2 

in and on the human body can directly influence biological function and health. The 3 

presence of dysbiotic microbiomes has been linked to various pathologies which include 4 

allergies, asthma, inflammatory diseases, obesity, cardiovascular disease and the 5 

metabolic syndrome [1]. Conversely, certain commensal microbes from the genera 6 

Granulicatella, Actinomyces, Veillonella, Prevotella, Neisseria, Haemophilus, and 7 

Rothia are thought to contribute to the generation of nitric oxide (NO) [2,3]. Myriad 8 

biological processes are critically dependent on NO, including host defence via 9 

antimicrobial actions [4], regulation of mucosal blood flow and mucus generation [5], 10 

regulation of smooth muscle contraction [6,7], cerebral blood flow [8], glucose 11 

homeostasis [9], and mitochondrial function [10].  12 

 13 

Inorganic nitrate (NO3-) is regularly consumed in the diet through foods such as beetroot 14 

and green leafy vegetables [11]. NO3- enters the gastrointestinal tract where it is rapidly 15 

absorbed, enters the circulation, and is secreted in the saliva [12]. Here, it can interact 16 

with bacteria concentrated on the dorsal surface of the tongue [2]. Some species of 17 

bacteria use the NO3- as an alternative electron acceptor which reduces the ion to nitrite 18 

(NO2-). The NO2- in saliva is then swallowed and enters the stomach. In the acidic 19 

environment of the stomach, NO2- forms nitrous acid which is further converted to 20 

nitrosating species and subsequently to bioactive NO in the presence of ascorbic acid 21 

[13]. This pathway is known as the enterosalivary NO3--NO2--NO pathway [14]. 22 

Alternatively, NO3- and NO2- can be stored in the blood and tissues for conversion to NO 23 

when endogenous production of NO via the NO synthases (NOS) is limited [15]. The 24 

ingestion of NO3--rich beetroot juice has been shown to increase the availability of NO 25 

and improve exercise performance in simulated altitude [16], reduce blood pressure (BP) 26 

[17], enhance endothelial function [6], and is protective against models of 27 

ischemia/reperfusion injury [18]. On the other hand, a recent meta-analysis reported that 28 

NO3- supplementation has only small and trivial effects on exercise performance [19].  29 

 30 



2 
 

We have shown previously that individuals with a higher abundance of NO3- reducing 31 

bacteria were able to generate more salivary NO2- and at a faster rate following the 32 

ingestion of NO3--rich beetroot juice [20]. In contrast, when the enzymatic activity of 33 

bacteria in the mouth is disrupted by antibiotic use or rinsing the mouth with anti-bacterial 34 

mouthwash, the BP lowering effects of NO3- are abolished [14,21–23]. Oral microbiota 35 

live in regulated communities [24] in which they can use quorum sensing and potassium 36 

ion channel mediated electrical signalling to communicate and rapidly respond to 37 

environmental stimuli [25]. This allows them to maintain the functional and structural 38 

integrity of their ecosystems via replication and alterations to their gene expression 39 

[26,27]. The composition of an individual’s diet can rapidly alter the conditions of the 40 

oral cavity by varying substrate availability for commensal bacteria and environmental 41 

factors such as pH.  42 

 43 

Given the malleability of the oral environment, previous research has sought to determine 44 

the effects of dietary NO3- supplementation on the oral microbiome with a view to 45 

optimising the enterosalivary pathway to improve health. In an animal model, Hyde and 46 

colleagues [28] found that the abundance of the NO3- reducer Haemophilus 47 

parainfluenzae increased following NaNO3- supplementation. In hypercholesteremia 48 

patients, Velmurugan et al. (2016) reported that 6 weeks of beetroot juice increased the 49 

abundance of Neisseria and Rothia. Recently, Vanhatalo and colleagues [30] expanded 50 

these findings in healthy young and older adults showing that 10 days of beetroot juice 51 

supplementation increased the abundance of Neisseria and Rothia with concomitant 52 

reductions in Prevotella and Veillonella.  53 

 54 

Whilst it is has been shown that NO3- supplementation can alter the microbiome, it is 55 

presently unclear how this impacts the capacity to reduce NO3- following a dietary load. 56 

Based on our previous findings [19], one may hypothesise that an increased abundance 57 

of NO3--reducing bacteria will increase salivary and plasma NO2- production and enhance 58 

the acute vascular responses to dietary NO3-. Therefore, our primary objective was to 59 

assess the effects of 7 days of beetroot juice supplementation on the abundance of NO3--60 

reducing bacteria in the oral cavity and assess the impact of these changes on NO 61 
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metabolites and markers of vascular function in healthy adults immediately following a 62 

NO3- dose. 63 

 64 

2. Methods 65 

2.1. Ethical approval  66 

The study was approved by the School of Science and Sport Ethics Committee at The 67 

University of the West of Scotland. All procedures described were conducted in 68 

accordance with the Declaration of Helsinki 1974 and its later amendments.  69 

 70 

2.2. Participants 71 

Eleven healthy males (age 30 ± 7 years, stature 179 ± 7 cm, and body mass 86.9 ± 14.1 72 

kg) volunteered and provided written informed consent prior to participating in the study. 73 

All participants were in good cardiovascular and oral health and did not report any use of 74 

antibacterial mouthwash or antibiotics for at least 6 months prior to study 75 

commencement. They were free from non-prescription medication including those known 76 

to interfere with stomach acid production and were not taking any prescribed medication. 77 

Health status was confirmed by completion of a medical questionnaire and The World 78 

Health Organisation’s oral health questionnaire was used to ascertain oral health status. 79 

 80 

2.3. Experimental Design 81 

Participants were required to attend the laboratory on four separate occasions for this 82 

placebo-controlled, single blind randomised crossover study. The study comprised two 83 

separate 7 day dietary supplementation phases, each preceded by a baseline trial (day 0) 84 

and completed with a post-supplementation trial (day 8). In one arm of the study, 85 

participants ingested 70 ml of NO3--rich beetroot juice (~6.2 mmol NO3-) (Pro-Elite 86 

Shots, James White Drinks Ltd., Suffolk, England) in the morning and 70 ml in the 87 

evening. In the other arm, participants ingested the same volume of NO3--depleted 88 

beetroot juice (Placebo shots, James White Drinks Ltd., Suffolk, England). Both versions 89 



4 
 

of the beetroot juice were identical in taste and appearance. The supplementation phases 90 

were separated by a prolonged washout period (4 weeks) as it is currently unclear how 91 

long it takes the oral microbiome to return to baseline following modification via dietary 92 

NO3-. All experimental trials were identical with the exception that an acute NO3- 93 

response test was carried out on days 0 and 8 of the NO3--rich beetroot juice phase but 94 

not the placebo phase. The decision to exclude this protocol from the placebo phase was 95 

based on the premise that the oral microbiome is highly responsive to dietary stimuli 96 

[31,32] and a large amount of NO3- on day 0 might have altered the post-supplementation 97 

markers in the placebo phase. Participants were informed that the acute NO3- response 98 

test would be implemented in one of the two testing arms and they were not aware that 99 

this was only in the NO3--rich phase. 100 

 101 

2.4. Procedures 102 

Prior to the first trial, participants were briefed on procedures and were provided with a 103 

food diary in which they recorded all foods consumed 7 days prior to the trial and during 104 

the supplementation period. This diary was used to replicate diet in the week preceding 105 

the second supplementation phase. Participants arrived at the laboratory on the morning 106 

of each trial in a fasted and euhydrated state after consuming 500 ml of water 1 h before 107 

each trial. Participants were instructed to avoid strenuous exercise for 24 h and caffeine 108 

for 12 h before each trial. On the morning of each trial, participants were requested not to 109 

brush their teeth and tongue or chew gum. They were also requested not to use mouthwash 110 

throughout the study and report any changes in health status. Participants provided 111 

assurance of their compliance with these instructions via completion of a checklist on 112 

each visit.  113 

 114 

Anthropometric characteristics were recorded at the beginning of each visit using 115 

conventional methods. Following this, participants lay supine for the remainder of the 116 

experiment. The posterior dorsal surface of the tongue was swabbed for 1 min with a 117 

sterile Hydraflock swab (Puritan HydraFlock Swabs, Puritan Diagnostics LLC, Guilford, 118 

Maine, USA.). This area of the tongue is known to harbour NO3- reducing bacteria and is 119 
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the area of the oral cavity in which the majority of NO3- reduction activity occurs [2]. The 120 

swabs were transferred to transport tubes containing 0.85 ml of buffered sterile saline and 121 

0.15 ml of glycerol and subsequently frozen and stored at -80 ºC 122 

 123 

No further measurements were collected for 30 min to ensure plasma [NO2-] had 124 

stabilised following the change in body posture [33]. Subsequently, heart rate (HR) was 125 

measured via telemetry (Polar Electro, Oy, Finland) and systolic BP (SBP) and diastolic 126 

BP (DBP) were recorded in triplicate using an automated device (Orman M6, Intelli-127 

Sense. Hoofdorp, Netherlands).  Mean arterial pressure (MAP) was calculated using the 128 

following equation: 129 

 130 

MAP = (2 x DBP + SBP) / 3 131 

 132 

Endothelial function of the brachial artery was then assessed by flow mediated dilation 133 

(FMD), described in detail below. Venous blood was collected via venepuncture from the 134 

forearm in 4 ml aliquots in vacutainer tubes containing ethylenediaminetetraacetic acid 135 

(BD vacutainer K2E 7.2mg, Plymouth, U.K.). Samples of whole blood were immediately 136 

centrifuged for 10 min at 4000 rpm at 4°C (Harrier 18/80, Henderson Biomedical. UK) 137 

following collection. Samples of unstimulated saliva were concurrently collected via an 138 

oral swab (Saliva Bio Oral Swab (SOS) Salimetrics, Pennsylvania, USA) placed under 139 

the tongue for 3 min. Swabs were transferred to a collection tube (Sartedt, 140 

Aktiengesellschaft & Co, Numbrecht, Germany) and centrifuged at 4000 rpm for 10 min 141 

at 4°C (Harrier 18/80, Henderson Biomedical. UK). Following centrifugation, the 142 

samples of plasma and saliva were immediately stored at -80oC for later analysis of NO3- 143 

and NO2- content via ozone-based chemiluminescence. The swabs were analysed and 144 

found to contain negligible levels NO3- and NO2-. 145 

 146 

 147 

 148 
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2.4.1. Acute Nitrate Response Test 149 

On days 0 and 8 of the NO3--rich supplementation phase, participants completed an acute 150 

NO3- response test following completion of the procedures described above. In this 151 

component, participants ingested 2 x 70 ml of NO3--rich beetroot juice (~12.4 mmol NO3-152 

, James White Drinks Ltd., Suffolk, England). A sample of saliva was collected 90 min 153 

after ingestion followed by a blood sample, and measurements of BP and FMD at 150 154 

min. This protocol facilitated the comparison of NO3- metabolism before and after the 155 

expected alteration of the oral microbiome. 156 

 157 

2.4.2. Flow Mediated Dilation 158 

On the contralateral arm to that used for blood collection, the endothelium-dependent 159 

vascular responses of the brachial artery were assessed by high-resolution ultrasound 160 

imaging and automated vessel diameter measurements. Ultrasound images were recorded 161 

using a Vivid 7 ultrasound machine (GE Vingmed, Horten, Norway) with a L10 11MHz 162 

linear array transducer. A straight, non-branching segment of the brachial artery above 163 

the antecubital fossa was identified and imaged in the longitudinal plane with 164 

simultaneous capture of blood flow gated pulse wave using Doppler imaging. The 165 

Doppler gate was set to encompass the majority of the width of the artery and was angle 166 

corrected at 60°. The brachial artery diameter was initially recorded for 1 min (baseline). 167 

A cuff on the upper forearm (distal to the imaging site) was then inflated to supra-systolic 168 

pressure (220 mmHg) for 5 min using a rapid cuff inflator (Hockansen, Bellevue, WA, 169 

USA). The cuff was then rapidly deflated and the same segment of the brachial artery was 170 

imaged for 5 min with concurrent measurement of blood flow.  171 

 172 

Automatic edge detection software (Brachial Analyzer, Medical Imaging Applications 173 

LLC, Coralville) was used to measure the diameter of the brachial artery and blood flow 174 

using the envelope of the Doppler spectral traces and to calculate hyperaemic shear. The 175 

area under the curve for the hyperaemic shear data was then measured up to the point of 176 

maximal arterial dilation using the Reimann sum technique. The change in brachial artery 177 

diameter was calculated using a 3 s average and expressed as percentage change from 178 



7 
 

baseline. As FMD changes are partly dependent upon vessel diameter, the absolute 179 

diameter changes were also calculated. The coefficient of variation (CV) for the FMD 180 

measurement in our laboratory is 5.6%. 181 

 182 

2.4.3. Analysis of saliva and plasma samples 183 

The pH of saliva samples was measured in duplicate with a circular electrode pH-meter 184 

1140 Mettler Toledo (Greisensee, Switzerland) which has a precision of 0.01 pH unit. 185 

The measured pH value was not accepted until an unchanged pH value was observed for 186 

a period of at least 7 s. Calibration of the pH meter was performed before analysis and 187 

after every 10 samples using buffers with known pH (4.01 and 7.00). The electrode was 188 

rinsed with deionised water between samples.  189 

 190 

For the analysis of plasma and saliva [NO2-], tri-iodide reagent (2.5 ml glacial acetic acid, 191 

0.5 ml of 18 Ω deionised water, and 25 mg sodium iodide) was placed in a glass purge 192 

vessel heated to 50°C and connected to a NO analyser (Sievers NOA 280i, Analytix, UK). 193 

A standard curve was created by injecting 100 μL of NO2- solutions at various 194 

concentrations up to 1000 nM (plasma) and 3000 nM (saliva). Samples were thawed in a 195 

water bath at 37°C and 100µL of the sample was injected immediately into the purge 196 

vessel in duplicate. Saliva samples were initially diluted with deionised water at a ratio 197 

of 1:100 before injection. The NO2- content was calculated via the area under the curve 198 

using Origin software (version 7.1). 199 

 200 

For the analysis of [NO3-], vanadium reagent (24 mg of vanadium tri-chloride and 3 ml 201 

of 1 M hydrochloric acid) was placed into the purge vessel and heated to 90°C. A standard 202 

curve was created by injecting 10-25 μL NO3- solutions at concentrations up to 100 µM 203 

for both plasma and saliva. Plasma samples were initially de-proteinised using 1 M zinc 204 

sulfate (ZnSO4) at 1:10 w/v and 1 M sodium hydroxide (NaOH) at a 1:1 ratio. 200 µL of 205 

plasma was added to 400 µL of ZnSO4 and 400 µL of NaOH. Each sample was vortexed 206 

for 30 s prior to being centrifuged for 5 min at 4000 rpm and the supernatant was injected 207 

into the purge vessel. The NO3-concentration was calculated as previously described for 208 

NO2-. 209 
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 2.4.4. 16S Metagenomic Sequencing 210 

DNA from the tongue swab samples was isolated (Illumina MasterPure kit, Epicentre, 211 

Madison, WI, USA) before shipping to a commercial analysis centre (Omega Bioservices, 212 

Norcross, GA, USA). The libraries were prepared using an Illumina 16S Metagenomic 213 

Sequencing kit (Illumina, Inc., San Diego, CA, USA) according to the manufacturer`s 214 

protocol. The V3-V4 region of the bacterial 16S rRNA gene sequences were amplified 215 

using the primer pair containing the gene-specific sequences and Illumina adapter 216 

overhang nucleotide sequences. Samples were prepared by combining 12.5 ng of the 217 

DNA sample with 12.5 μL of 2x KAPA HiFi HotStart ReadyMix  (Kapa 218 

Biosystems, Wilmington, MA) and 5 μL of 1 μM of each primer. The full-length primer 219 

sequences were: 16S Amplicon PCR Forward Primer (5'-220 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG) 221 

and 16S Amplicon PCR Reverse Primer (5'-222 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTA223 

ATCC).  224 

 225 

Samples were initially subjected to denaturation at 95°C for 3 min followed by 25 x 30 s 226 

cycles of denaturation (95°C), annealing (55°C) and extension (72°C), and a final 227 

elongation of 5 min at 72°C. The PCR product was cleaned up from the reaction mix with 228 

Mag-Bind RxnPure Plus magnetic beads (Omega Bio-tek, Norcross, GA). A second index 229 

PCR amplification, used to incorporate barcodes and sequencing adapters into the final 230 

PCR product, was performed in 25 μL reactions, using the same master mix conditions 231 

as described above. Samples were further subjected to 8 x 30 s cycles of denaturation 232 

(95°C), annealing (55°C), and extension (72oC) followed by a 5 min elongation step at 233 

72°C. The library of approximately 600 bases in size was checked using an Agilent 2200 234 

TapeStation and quantified using QuantiFluor dsDNA System (Promega). Following this, 235 

libraries were normalised, pooled and sequenced on the MiSeq (Illumina, San Diego, CA) 236 

using the 2 x 300 bp paired-end read setting.  237 

 238 

 239 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiT28rzztXPAhUDQSYKHVmoB2gQFggdMAA&url=https%3A%2F%2Fwww.kapabiosystems.com%2F&usg=AFQjCNH2ckStYKfNu_G3Rp82oDoDyfcUvQ&sig2=na72hk3Ut1ekBIuNHRZFOA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiT28rzztXPAhUDQSYKHVmoB2gQFggdMAA&url=https%3A%2F%2Fwww.kapabiosystems.com%2F&usg=AFQjCNH2ckStYKfNu_G3Rp82oDoDyfcUvQ&sig2=na72hk3Ut1ekBIuNHRZFOA
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2.4.5. 16s rRNA Gene Data Analysis 240 

Quality filtered data received from the sequencing centre were interrogated using the 241 

Qiime 1.8 database [34]. Sequences were clustered de novo and binned into operational 242 

taxonomic units (OTU) based on 99% identity. Taxonomy was assigned using the RDP 243 

classifier trained to the GreenGenes database (October 2013 release). After removal of 244 

singleton reads from the dataset, 964,418 sequences remained with an average of 21918 245 

sequences per sample. Alpha diversity metrics were calculated by subsampling the OTU 246 

table ten times at a depth of 1420 reads per sample. The mean values across the ten 247 

subsampled OTU tables were used in diversity calculations. Only species of NO3--248 

reducing bacteria that comprised at least 0.01% of the total oral microbiome were 249 

included in the subsequent statistical analyses. 250 

 251 

2.5. Statistics 252 

The Statistical Package for the Social Sciences (SPSS Version 24.0. Armonk, NY: IBM 253 

Corp) was used for statistical analysis. GraphPad Prism version 5 (GraphPad Software 254 

Inc., San Diego, USA) was used to create the figures. The distributions of data were 255 

assessed using the Shapiro Wilk test and non-parametric tests were used where data were 256 

not normally distributed. A two-way repeated measures analysis of variance (ANOVA) 257 

was used to assess the main effects of time (pre- (day 0) and post-supplementation (day 258 

8)) and study arm (placebo vs NO3-) and interaction effects on plasma and salivary NO3- 259 

and NO2-, pH, BP measurements, and the abundance of NO3--reducing bacteria. For the 260 

acute NO3--response tests, a two factor ANOVA was used to determine the main effects 261 

of time (pre- (day 0) and post-supplementation (day 8)) and measurement (before and 262 

after the acute ingestion of beetroot juice) and their interaction on plasma and salivary 263 

NO3- and NO2-, pH, and BP measurements. Post-hoc analysis was conducted following a 264 

significant main effect or interaction using paired samples t-tests with Bonferroni 265 

correction for multiple pairwise comparisons. The alpha level for declaring statistical 266 

significance was set at P ≤ 0.05. Data are presented as mean ± standard deviation (SD) 267 

unless otherwise stated. Probability values are expressed with 95% confidence intervals 268 

(95% CI) where appropriate.  269 
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3. Results  270 

3.1. Impact of 7 days of NO3
- supplementation on bacterial abundance 271 

Alpha diversity data are presented in Table 1. The Shannon diversity index and the 272 

number of observed OTU’s were similar between study arms and did not change 273 

following supplementation (all P > 0.05). The abundance of the most prevalent (>1% 274 

relative abundance) at each measurement point are included in the supplementary data.   275 

 276 

The most abundant five phyla on the tongue across all four visits were Bacteroidetes (38.1 277 

± 3.5%), Firmicutes (30.7 ± 2.3%), Fusobacteria (12.1 ± 1.4%), Proteobacteria (11.3 ± 278 

4.6%), and Actinobacteria (3.7 ± 0.6%). The relative abundances of Bacteroidetes, 279 

Firmicutes, Fusobacteria, and Actinobacteria did not change after NO3- or placebo 280 

supplementation and did not differ at baseline between study arms (all P > 0.05). There 281 

was a main effect of ‘time’ (P = 0.009), and ‘study arm’ (P = 0.04) on Proteobacteria. 282 

The abundance of Proteobacteria significantly increased following NO3- supplementation 283 

(P = 0.011, 95% CI 2.5% - 15.5%) but not placebo (P > 0.05). Proteobacteria did not 284 

differ at baseline between study arms (P > 0.05). The relative abundance of the phyla at 285 

each measurement point are included as supplementary data. 286 

 287 

Dietary NO3- supplementation altered the abundance of four genera of bacteria on the 288 

tongue (Table 1). Dietary NO3- supplementation reduced the relative abundance of 289 

Prevotella (P = 0.021, 95% CI 2.1% – 20.3%), Streptococcus (P = 0.029, 95% CI 0.4% 290 

– 6.1%) and Actinomyces (P = 0.028, 95% CI 0.1% - 1.1%) with no change following 291 

placebo and no differences at baseline between study arms (all P > 0.05). The abundance 292 

of Neisseria increased from baseline in both the NO3- supplementation arm (P < 0.001, 293 

95% CI 4.4 – 9.5%) and the placebo (P = 0.006, 95% CI 0.9% – 4.2%). There were no 294 

differences at baseline between study arms (P > 0.05). The magnitude of the increase in 295 

Neisseria was greater in the NO3- supplementation arm compared to the placebo (P = 296 

0.001, 95% CI 2.9% - 8%).  297 

 298 
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At species level, there were significant effects of time and an arm*time interaction effect 299 

on the relative abundance of Prevotella melaninogenica (P = 0.03, P = 0.01) and 300 

Neisseria subflava (Fig. 1). There was also a significant main effect of ‘time’ on 301 

Actinomyces hyovaginalis (P = 0.01). The relative abundance of Prevotella 302 

melaninogenica and Actinomyces hyovaginalis were lower after 7 days of NO3- 303 

supplementation compared to pre-supplementation (P = 0.001, 95% CI 6.7% – 20% and 304 

P = 0.002, 95% CI 0.1% - 0.3% respectively) and at both time points in the placebo arm 305 

(both P < 0.005). The relative abundance of Prevotella melaninogenica and Actinomyces 306 

hyovaginalis did not differ at baseline between study arms and were unaltered by 7 days 307 

of placebo supplementation (all P > 0.05). The relative abundance of Neisseria subflava 308 

increased from baseline after 7 days of NO3- supplementation (P < 0.001, 95% CI 3.5% 309 

– 8.6%) and also after 7 days of placebo (P = 0.008, 95% CI 0.7% – 3.6%). The magnitude 310 

of the increase in Neisseria subflava was greater in the NO3- supplementation arm 311 

compared to the placebo (P = 0.001 95% CI 2.3% - 7.3%). There was no difference in the 312 

relative abundance of Neisseria subflava at baseline between the NO3- and placebo 313 

supplementation arms (P > 0.05). There were no other differences in any other species or 314 

genera of bacteria that are thought to contribute to NO3- reduction (all P > 0.05). 315 
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 316 

Fig. 1. The % relative abundance of bacterial species that were significantly altered between pre- 317 
and post-supplementation. (A) Neisseria subflava, (B) Actinomyces hyovaginalis and (C) 318 
Prevotella melaninogenica. * denotes significant change from baseline (P < 0.05). Only within 319 
condition differences are shown for clarity. 320 

 321 

 322 

 323 



13 
 

3.2. Impact of 7 days of NO3
- supplementation on salivary pH, NO metabolites, and 324 

blood pressure 325 

3.2.1. Salivary pH 326 

There was a significant arm*time interaction for salivary pH (P = 0.022). There were no 327 

differences in salivary pH at baseline (day 0) between the supplementation arms (P > 328 

0.05). In the NO3- supplementation arm, salivary pH increased from baseline (P = 0.043, 329 

95% CI 0.1 – 0.48) but did not change in the placebo arm (P = 0.20, Fig. 2). The post-330 

NO3- supplementation salivary pH was also higher than the equivalent value in the 331 

placebo arm (P = 0.05, 95% CI 0.0 – 0.7).  332 

 333 

Fig. 2. Salivary pH pre- and post-supplementation with NO3
- and placebo. * denotes a significant 334 

difference between measurement points (P ≤ 0.05). 335 

 336 

3.3. Nitrate and nitrite levels in plasma and saliva 337 

There were no differences in baseline measurements of plasma and saliva NO metabolites 338 

between the NO3- and placebo arms of the study (Table 2). Supplementation with NO3- 339 

increased salivary [NO2-] (P = 0.012, 95% CI 263 – 1701 µM), plasma [NO2-] (P = 0.01, 340 
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95% CI 30 – 175 nM), salivary [NO3-] (P = 0.001, 95% CI 3228 – 8694 µM) and plasma 341 

[NO3-] (P < 0.001, 95% CI 90 – 208 µM). In the placebo arm of the study, none of the 342 

metabolites changed from baseline (all P > 0.05). The post-supplementation levels of 343 

salivary NO3-, plasma NO3-, and salivary NO2- were higher in the NO3- arm compared to 344 

the placebo (all P < 0.001). Conversely, the post-supplementation levels of plasma NO2- 345 

did not differ between supplementation arms (P > 0.05).   346 

 347 

3.4. Blood Pressure, flow mediated dilation, and resting heart rate 348 

There were no differences in SBP, DBP, MAP, flow mediated dilation, or resting heart 349 

rate between supplementation arms at baseline (all P > 0.05, Table 3). There was a main 350 

effect of study arm on MAP, but further interrogation with post hoc analyses revealed no 351 

differences between study arms at either measurement point. None of the cardiovascular 352 

variables were altered following supplementation with either NO3- or placebo (all P > 353 

0.05). 354 

 355 

3.5. Acute nitrate response test 356 

3.5.1. Nitrate and nitrite metabolism  357 

The levels of NO metabolites in the saliva and plasma are presented in Figure 3. For 358 

salivary [NO2-] and [NO3-] there was a main effect of ‘time’ (all P ≤ 0.01), ‘measurement’ 359 

(all P ≤ 0.002) and a ‘time * measurement’ interaction (all P ≤ 0.015). Salivary [NO2-] 360 

increased following the acute administration of NO3- in both the pre-supplementation 361 

(day 0) (P = 0.002, 95% CI 968 - 3331 µM) and post-supplementation (day 8) acute 362 

response tests (P = 0.043, 95% CI 50 – 2582 µM). Likewise, salivary NO3- was 363 

significantly elevated in the acute tests on day 0 (P < 0.001, 95% CI 7107 – 16725 µM) 364 

and day 8 (P = 0.039, 95% CI 400 – 13262 µM). The magnitude of the increase in both 365 

salivary [NO2-] and [NO3-] was similar on days 0 and 8 (both P > 0.05). There were 366 

significant main effects of ‘time’ (P < 0.001), ‘measurement’ (P < 0.001), and a ‘time x 367 

measurement’ interaction (P = 0.001) on plasma [NO3-]. For plasma [NO2-], only the 368 

‘measurement” main effect was significant (P = 0.01). Plasma [NO2-] and [NO3-] 369 

increased in the acute response tests on both day 0 (NO2- P < 0.001, 95% CI 214 – 415 370 
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nM, NO3- P < 0.001, 278 – 428 µM) and day 8 (NO2- P = 0.004, 95% CI 72 - 275 nM, 371 

NO3- P < 0.001, 95% CI 220 – 337 µM). The magnitude of the increase in both plasma 372 

[NO2-] and [NO3-] was similar on each day (both P > 0.05). 373 

 374 

 375 

Fig. 3. Salivary and plasma nitrate and nitrite concentration measured at baseline (day 0), 376 
following the acute administration of nitrate (day 0), after 7 days of nitrate supplementation (day 377 
8), and following further acute administration of nitrate (day 8). In the acute response 378 
measurements, saliva and plasma were measured 1.5 h and 2.5 h, respectively, after the ingestion 379 
of nitrate-rich beetroot juice. (A) Salivary NO2

-, (B) plasma NO2
-, (C) salivary NO3

-, and (D) 380 
plasma NO3

-.  * denotes significant change from baseline (P < 0.05). 381 

 382 

3.5.2. Blood pressure 383 

BP data in the acute response tests are presented in Figure 4. There was a significant main 384 

effect of ‘measurement’ on SBP (P = 0.004) but no ‘time’ effect or ‘time * measurement’ 385 

interaction. SBP was significantly reduced from baseline in the acute NO3- response test 386 
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on day 0 (P = 0.05, 95% CI 0 – 4 mmHg) and on day 8 (P = 0.031, 95% CI 0 – 6 mmHg, 387 

Fig. 5). The magnitude of the decline in SBP did not differ between days 0 and 8 (P > 388 

0.05). DBP and MAP did not differ between any measurements (all P > 0.05). 389 

 390 

 391 

Fig.4. Blood pressure measured at baseline (day 0), following the acute administration of nitrate 392 
(day 0), after 7 days of nitrate supplementation (day 8), and following further acute administration 393 
of nitrate (day 8). In the acute response measurements blood pressure was measured 2.5 h after 394 
the ingestion of nitrate-rich beetroot juice. (A) Systolic blood pressure, (B) Diastolic blood 395 
pressure, (C) Mean arterial blood pressure.  * denotes significant change from baseline (P < 0.05). 396 
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3.5.3. Flow Mediated Dilation 397 

There was a significant main effect of ‘measurement’ on FMD % (P = 0.021). The FMD 398 

response increased from baseline in the acute NO3- response tests on both day 0 (P = 399 

0.014, 95% CI 0.5% – 3.2%) and day 8 (P = 0.042, 95% CI 0.1% – 3.8%, Fig.5). The 400 

magnitude of the FMD response was similar between days 0 and day 8 (P > 0.05). The 401 

acute administration of NO3- did not alter the baseline or peak diameter of the brachial 402 

artery (all P > 0.05). 403 

 404 

 405 

Fig. 5. The flow mediated dilation response measured at baseline (day 0), following the acute 406 
administration of nitrate (day 0), after 7 days of nitrate supplementation (day 8), and following 407 
further acute administration of nitrate (day 8). In the acute response measurements flow mediated 408 
dilation was measured 2.5 h after the ingestion of nitrate-rich beetroot juice. * denotes significant 409 
change from baseline (P < 0.05). 410 

 411 

 412 

 413 

 414 
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4. Discussion 415 

This study demonstrates that, as expected, 7 days of dietary NO3- supplementation in 416 

healthy adults increases the levels of circulating NO metabolites and alters the abundance 417 

of oral bacteria that have been previously implicated in the enterosalivary NO3--NO2--NO 418 

pathway. Importantly, the magnitude of the change we observed in the altered bacterial 419 

populations exceeds that of the typical biological variation [35] suggesting dietary NO3- 420 

supplementation results in meaningful alterations to the oral microbiome. Contrary to our 421 

hypothesis, however, the adaptations to the oral environment did not enhance the plasma 422 

and salivary responses to a NO3- dose. Furthermore, whilst the ingestion of NO3--rich 423 

beetroot juice transiently increased the FMD response and reduced SBP in the hours 424 

immediately following a NO3- dose, these effects were not augmented following a period 425 

of chronic supplementation and had dissipated 10 h following the final NO3- dose. These 426 

data suggest that frequent daily doses of NO3- would be necessary to result in a sustained 427 

reduction in BP, at least in this healthy population. 428 

 429 

4.1. Impact of 7 days of nitrate supplementation on tongue bacteria and salivary pH 430 

Our samples had a high number of sequences (964,418) with a median of 21918 431 

sequences per sample indicating that our sequencing coverage was at a sufficient depth 432 

to detect meaningful changes in the dataset. This is further confirmed by the high Shannon 433 

diversity index of 6.2 ± 0.6 and observed OTU value of 337 ± 81. In concordance with 434 

previous findings [30], NO3- supplementation did not change the Alpha diversity metric  435 

demonstrating that this dietary intervention does not alter the community evenness of 436 

bacterial species. However, 7 days of NO3- supplementation doubled the abundance of 437 

the phylum Proteobacteria. These changes were predominantly due to an increase in the 438 

abundance of the genus Neisseria and specifically the species Neisseria subflava.  439 

 440 

Salivary pH increased in ten out of our eleven participants (from 7.13 ± 0.54 to 7.39 ± 441 

0.68) following dietary supplementation with NO3-. These data are in agreement with 442 

previous work [36] which found that regular ingestion of beetroot juice increased salivary 443 

pH from 7.0 to 7.5. We show further that supplementation with NO3--rich beetroot juice 444 
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reduced the abundance of Prevotella melaninogenica, an acidogenic species of bacteria 445 

which thrive in environments with a pH between 5.5 and 6 and are thought to contribute 446 

to dental caries [37,38]. This species are suggested to be important to NO3- reduction by 447 

some [3] but not others [39]. One week of NO3- supplementation also reduced the 448 

abundance of the genera Streptococcus and Actinomyces and the species Actinomyces 449 

hyovaginalis. In support of these findings, Doel and colleagues [40] observed lower 450 

counts of Streptococcus mutans in children with higher levels of NO3- and NO2- in their 451 

saliva. While we did not detect this particular species in any of our samples, this is not 452 

unusual in a healthy mouth [41]. Of note, both Prevotella melaninogenica and 453 

Streptococcus mutans have been detected in atherosclerotic plaques and diseased heart 454 

valve tissue suggesting these species may also be involved in the pathogenesis of 455 

cardiovascular disease [42,43], whilst Actinomyces species can produce organic acid 456 

leading to the accumulation of  intracellular polysaccharides causing dysbiosis in the 457 

biofilm leading to caries [44].  458 

 459 

Prevotella was recently identified as the most abundant species in periodontal plaque 460 

samples followed by Streptococcus, with Actinomyces identified as the fourth most 461 

abundant and it is suggested that these bacteria are involved in the pathogenesis of oral 462 

disease [45]. The reduction in the abundance of Prevotella, Actinomyces, and 463 

Streptococci are likely due to the antimicrobial effects arising from elevated salivary NO2- 464 

levels. Studies conducted in-vitro have shown that NO formed from NO2- can exert 465 

bactericidal effects [46,47]. When present in the mouth, these pathogenic species of 466 

bacteria ferment carbohydrates from the diet with strong acids produced as bi-products 467 

[47]. A reduction in the number of these bacteria, therefore, will reduce the amount of 468 

acid in the mouth and increase the pH of the saliva. These findings are important given 469 

that a salivary pH sustained below 5.5 will result in de-mineralisation of the teeth [48] 470 

and oral acidosis and acidogenic bacteria are the primary drivers behind dental caries and 471 

periodontitis [49]. 472 

 473 

Dietary NO3- supplementation also increased the abundance of Neisseria subflava on the 474 

tongue. This species of bacteria are able to use oxidised nitrogen compounds as 475 



20 
 

alternative electron acceptors for energy production [50] and can reduce NO3- in the 476 

mouth [3]. Neisseria subflava are generally considered to be non-pathogenic and are 477 

associated with good oral health [51]. Neisseria subflava favour a pH of between 7 – 7.5 478 

and this species will replicate via binary fission when conditions and resources are 479 

optimal [51,52]. The increase in salivary pH resulting from the ingestion of NO3--rich 480 

beetroot juice coupled with the concomitant reduction of other species within the oral 481 

community, likely created an optimal environment for Neisseria subflava to propagate.  482 

 483 

While the main outcomes of this study are broadly in agreement with two previous studies 484 

[29,30], there are some notable differences. Firstly, both of the earlier studies reported that 485 

NO3--rich beetroot juice supplementation increased the abundance of Rothia 486 

mucilaginosa. Secondly, Vanhatalo and colleagues [29] reported that NO3- 487 

supplementation reduced the relative abundance of Veillonella whereas we did not. We 488 

did, however, observe significant reductions in Actinomyces and Streptococcus. Although 489 

the reasons for these conflicting findings are unclear, inter-individual differences between 490 

participants and variations in oral bacteria sampling methodologies provide the most 491 

likely explanations. Participants in the present study were a heterogeneous group of 492 

healthy males (age 21 – 44 years). The earlier studies used  hypercholesteremia patients 493 

[29] or separate groups of younger (age 18-22 years) and older (70 – 79 years) adults [30]. 494 

Furthermore, both previous studies analysed the abundance of bacteria in saliva samples 495 

whereas we collected bacteria directly from the tongue dorsum. While saliva samples will 496 

likely provide a more representative composition of bacteria from all areas of the mouth, 497 

the dorsal surface of the tongue has been shown to have the highest NO3- reduction 498 

capacity of all oral sites [39]. The deep clefts of the tongue provide a protective and stable 499 

anaerobic environment that is more conducive to the production of biofilms where 500 

bacterial NO3- reduction can easily occur [2]. In addition, the bacteria in saliva include 501 

those shed from biofilms [53] which may be less metabolically active than those found 502 

on the tongue [13]. Given that we aimed to relate bacterial presence to NO3--reduction 503 

capacity it was considered more appropriate to sample the tongue in this instance.  504 

 505 
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An unexpected finding of the study was the increase in the abundance of Neisseria 506 

subflava following ingestion of the placebo, albeit to a lesser extent than in the NO3- 507 

supplementation arm. This is all the more surprising given there was a small but non-508 

significant reduction in salivary pH after 7 days of NO3--depleted beetroot juice (from 509 

7.22 ± 0.61 to 6.99 ± 1.00); an environment which may be expected to suppress Neisseria 510 

subflava. Of note is that both NO3--rich and NO3--depleted versions of the beetroot juice 511 

contained a considerable amount of sugar (~15g total carbohydrate per 70 ml bottle). In 512 

the absence of an elevation in salivary NO2-, cariogenic bacteria will increase acid 513 

production in response to an increased availability of carbohydrate. However, beetroot 514 

juice also has a high total antioxidant capacity and polyphenol content and is rich in 515 

several compounds including phenolic acids, flavonoids, and betalains [54]. It is possible 516 

that that Neisseria subflava responded positively to some of these components although 517 

the effects are clearly augmented by NO3-. Conversely, a previous study [29] did not 518 

report alterations to the oral microbiome after placebo. It is not possible to elucidate 519 

whether the placebo altered the microbiome of participants in similar work [30] as 520 

samples were not collected at baseline. While our data require corroboration, they do 521 

suggest that the NO3--depleted beetroot juice is not completely inert; a point that should 522 

be carefully considered by researchers during study design.  523 

 524 

4.2. Consequences of changes in the oral microbiome on nitrate and nitrite levels 525 

Recent work [30] showed that individuals with a high abundance of Prevotella 526 

melaninogenica and Campylobacter concisus on the tongue at baseline had less NO2- in 527 

the plasma and smaller reductions in BP in response to chronic NO3- supplementation. 528 

The authors suggested that the NO2- reduction genes encoded by these bacteria impair 529 

downstream NO2- accumulation via bacterial reduction of NO2- in the oral cavity before 530 

it enters the circulation. In the present study, seven days of NO3- supplementation reduced 531 

the abundance of Prevotella melaninogenica and increased Neisseria subflava. As 532 

expected, both saliva and plasma NO2- were elevated from baseline in the NO3- arm of the 533 

study. However, it is not possible to isolate the influence of the altered microbiome on 534 

basal levels of NO2- as these parameters were almost certainly increased directly by the 535 

ingestion of beetroot juice on the previous day. Nevertheless, previous data from our 536 
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laboratory has demonstrated that the capacity to generate NO2- in the mouth is associated 537 

with the abundance of NO3--reducing bacteria on the tongue [20]. As a consequence, we 538 

also expected that saliva and plasma NO2- levels would be augmented post-NO3- 539 

supplementation following ingestion of a NO3--rich beetroot juice bolus. Data from the 540 

acute response component of this study, however, provides evidence to the contrary. 541 

Firstly; the peak levels of saliva and plasma in response to the beetroot juice bolus were 542 

similar before and after the NO3- supplementation period. This is particularly intriguing 543 

given baseline levels were elevated in the post-supplementation test. This suggests that 544 

when “excess” NO2- is produced it is excreted, perhaps to avoid excessive drops in BP. 545 

Secondly; the magnitude of increase in salivary NO2- during the acute response test did 546 

not change following 7 days of NO3- supplementation. The lack of changes to NO2- 547 

generation may be due to the fact that Prevotella and Actinomyces, although antagonistic 548 

to oral health, have also been identified as important to NO3- reduction either directly or 549 

through bacterial community interactions [3]. Therefore, an increase in the abundance of 550 

one species of bacteria thought to be important to the NO3- reduction process (Neisseria 551 

subflava) has been offset by reductions in others. An enhanced reduction of NO2- to NO 552 

in the oral cavity to prevent accumulation of NO2- in the saliva [30] seems unlikely in this 553 

instance as the abundance of these bacterial species were not altered by NO3- 554 

supplementation. Furthermore, NO2- reduction  is a slow reaction and it is questionable 555 

whether there would be time for this to occur in the open in vivo salivary system [55].  556 

 557 

It should also be acknowledged that the participants in the present study were all in good 558 

oral health meaning their oral microbiome was already capable of efficient NO3- 559 

reduction. Alternatively, there may be other rate limiting steps in the NO3- reduction 560 

process including gastric emptying and absorption rates, the availability of sialin (NO3- 561 

transporter in saliva), and salivary flow rates. Further mechanistic insight would also be 562 

provided by a direct test of NO3- reduction in the mouth, metatranscriptomic analysis to 563 

determine NO2- and NO3- reductase gene expression of the oral bacteria and collecting 564 

data from patients with oral diseases such as periodontitis.  565 

 566 

 567 
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4.3. Consequences of changes in the oral microbiome on vascular function 568 

In the present study, there was a transient reduction in SBP and increase in the FMD 569 

response during the acute NO3- response tests before and after NO3- supplementation. 570 

These effects were likely mediated by the increased production of NO resulting in 571 

vasodilation [56]. Likewise, it has been previously observed that SBP was similarly 572 

reduced after acute (2.5 h after ingestion) and chronic (15 d) supplementation with 573 

beetroot juice [57]. Our data extends these findings and demonstrates that adaptations to 574 

the oral microbiome arising from sustained NO3- supplementation did not in this instance 575 

alter vascular responsiveness to a NO3- dose. This is not surprising given that the increase 576 

in plasma [NO2-] was not augmented in the post-supplementation acute response test. It 577 

should be noted, however, that our participants were a group of normotensive healthy 578 

volunteers and results may be different in populations with compromised vascular 579 

responsiveness. 580 

 581 

It should be highlighted that SBP was only reduced during the acute NO3- response tests 582 

but not following 7 days of NO3- supplementation. This was likely due to the 10 h gap 583 

between the ingestion of the last NO3- dose and the collection of measurements on day 8. 584 

While plasma NO2- was elevated from baseline, the magnitude of this increase was small 585 

(102 nM) and was seemingly insufficient to reduce BP in this healthy population. 586 

Therefore, larger or more frequent doses of NO3- may be needed to elicit sustained 587 

improvements in vascular function. 588 

 589 

5. Conclusions 590 

Seven days of supplementation with NO3--rich beetroot juice significantly increased the 591 

levels of circulating NO metabolites, increased the pH of saliva, and caused meaningful 592 

alterations to the oral microbiome in favour of oral health. These data are significant given 593 

that a high abundance of pathogenic bacteria can cause periodontitis and sustained oral 594 

acidosis will result in dental caries. For the first time, our data shows that the 595 

aforementioned adaptions to the oral microbiome do not alter the capacity to produce 596 

salivary NO2- or enhance vascular responsiveness following a dose of beetroot juice, at 597 

least in a healthy adult population.  598 
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Table 1: Pre- and post-supplementation bacterial diversity metrics and relative abundance 619 
of the bacteria that were altered by dietary nitrate supplementation.  620 

Diversity Metric 
Time 

(Day) 
Nitrate Placebo ANOVA (P Value) 

Shannon Diversity  

Index 

Pre (0) 

Post (8) 

6.3 ± 0.6 

6 ± 0.9 

5.9 ± 0.7 

6.6 ± 0.3 

Time = 0.707 

Arm = 0.858 

Interaction = 0.122 

 

Observed OTUs 

Pre (0) 

Post (8) 

312 ± 89 

383 ± 56 

349 ± 97 

304 ± 83 

Time = 0.876 

Arm = 0.856 

Interaction = 0.07 

Bacteria     

Prevotella  

(% relative abundance) 

Pre (0) 

Post (8) 

34 ± 17 

23 ± 11*† 

26 ± 16 

31 ± 14 

Time = 0.283 

Arm = 0.993 

Interaction = 0.053 

Neisseria 

(% relative abundance) 

Pre (0) 

Post (8) 

2 ± 3 

9 ± 5*† 

1 ± 1 

4 ± 3* 

Time = 0.001 

Arm < 0.001 

Interaction = 0.008 

Streptococcus  

(% relative abundance) 

Pre (0) 

Post (8) 

9 ± 6 

6 ± 4*† 

6 ± 4 

8 ± 3 

Time = 0.404 

Arm = 0.816 

Interaction = 0.006 

Actinomyces 

(% relative abundance) 

Pre (0) 

Post (8) 

1.1 ± 0.7 

0.5 ± 0.4*† 

0.9 ± 0.6 

0.7 ± 0.2 

Time = 0.376 

Arm = 0.014 

Interaction = 0.164 

* denotes a significant difference from the pre-supplementation (day 0). 621 

† denotes a greater change from the pre-supplementation value compared to the placebo arm. 622 

  623 
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Table 2: Levels of nitric oxide metabolites pre- and post-supplementation in each study arm.  624 

Parameter 
Time 

(Day) 
Nitrate Placebo ANOVA (P Value) 

Plasma nitrite (nM) 
Pre (0) 

Post (8) 

150 ± 84 

252 ± 165* 

174 ± 111 

220 ± 112 

Time = 0.001 

Arm = 0.898 

Interaction = 0.290 

Plasma nitrate (µM) 
Pre (0) 

Post (8) 

52 ± 24 

201 ± 104*† 

69 ± 64 

57 ± 36 

Time < 0.001 

Arm < 0.001 

Interaction = 0.001 

Salivary nitrite (µM) 
Pre (0) 

Post (8) 

415 ± 420 

1397 ± 1151*† 

365 ± 301 

367 ± 297 

Time = 0.01 

Arm = 0.002 

Interaction = 0.015 

Salivary nitrate (µM) 
Pre (0) 

Post (8) 

810 ± 404 

6801 ± 3956*† 

746 ± 388 

875 ± 589 

Time = 0.001 

Arm < 0.001 

Interaction = 0.001 

* denotes a significant difference from the pre-supplementation (day 0). 625 

† denotes a greater change from the pre-supplementation value compared to the placebo arm. 626 

 627 

  628 
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Table 3: Cardiovascular variables pre- and post-supplementation in each study arm.  629 

Parameter 
Time 

(Day) 
Nitrate Placebo ANOVA (P Value) 

Systolic blood  

pressure (mmHg) 

Pre (0) 

Post (8) 

122 ± 10 

122 ± 6 

124 ± 6 

127 ± 8 

Time = 0.196 

Arm = 0.325 

Interaction = 0.290 

Diastolic blood  

pressure (mmHg) 

Pre (0) 

Post (8) 

67 ± 7 

66 ± 5 

68 ± 7 

65 ± 6 

Time = 0.141 

Arm = 0.771 

Interaction = 0.215 

Mean arterial 

pressure (mmHg) 

Pre (0) 

Post (8) 

85 ± 8 

86 ± 5 

89 ± 6 

91 ± 6 

Time = 0.311 

Arm = 0.043 

Interaction = 0.581 

Resting heart rate  

(beat·min-1) 

Pre (0) 

Post (8) 

55 ± 7 

56 ± 8 

55 ± 5 

55 ± 6 

Time = 0.973 

Arm = 0.631 

Interaction = 0.459 

Flow mediated  

dilation (%) 

Pre (0) 

Post (8) 

10.46 ± 3.76 

12.03 ± 5.09 

12.1 ± 5.25 

14.05 ± 6.18 

Time = 0.021 

Arm = 0.221 

Interaction = 0.854 

 630 

  631 
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 827 

Supplementary Fig. 1 Bacterial species that made up > 1% of the dataset displayed in ascending order of abundance. 828 
Prevotella melaninogenica was the most abundant species. * indicates those which were significantly altered.  829 
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 832 

Supplementary Fig. 2 The proportions of the five main phyla on the tongue dorsum at the four measurement time 833 
points, Pre nitrate, Post nitrate, Pre placebo, and Post placebo. * indicates a significant increase in Proteobacteria 834 
from Pre to Post nitrate.  835 


