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ABSTRACT 18 

Numerous road safety studies have been dedicated to the estimation of crash frequency and injury 19 
severity models. However, previous research has shown that different factors may influence the 20 
occurrence of crashes of different types. In this study, a dataset including information from crashes 21 
occurred at segments and intersections of urban roads in Bari, Italy was used to estimate the likelihood 22 
of occurrence of various crash types. The crash types considered are: single-vehicle, angle, rear-end and 23 
sideswipe. Models were estimated through a mixed logit structure considering various crash types as 24 
outcomes of the dependent variable and several traffic, geometric and context-related factors as 25 
explanatory variables (both site- and crash-specific). To account for systematic, unobserved variations 26 
among the crashes occurred on the same segment or intersection, the grouped random parameters 27 
approach was employed. The latter allows the estimation of segment- or intersection-specific 28 
parameters for the variables resulting in random parameters. This approach allows assessing the 29 
variability of results across the observations for individual segments/intersections. 30 

Segment type and the presence of bus lanes were included as explanatory variables in the model of 31 
crash types for segments. Traffic volume per entering lane, total entering lanes, total number of zebra 32 
crossings and the balance between major and minor traffic volumes at intersections were included as 33 
explanatory variables in the model of crash types for intersections. Area type was included in both 34 
segment and intersection models. The typical traffic at the moment of the crash (from on-line traffic 35 
prediction tools) and the period of the day were associated with different crash type likelihoods for both 36 
segments and intersections. Significant variations in the effect of several predictors across different 37 
segments or intersections were identified. The applicability of the study framework is demonstrated, in 38 
terms of identifying roadway sites with anomalous tendencies or high-risk sites with respect to specific 39 
crash types. 40 

 41 

Keywords: road safety; crash types; grouped random parameters; multinomial logit; urban segments; 42 
urban intersections. 43 
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1. Introduction 45 

Urban road crashes result in about 15,000 deaths per year in the European Union only (EU-28: 1999–46 
2014 Eurostat data). A recent study (Bauer et al., 2016) has pointed out that urban road fatalities are 47 
decreasing over time in the EU, but their percentage among all crashes is nearly stable (actually, it is 48 
slightly increasing). Moreover, in some South/Eastern European countries and Portugal (see Bauer et 49 
al., 2016) fatalities caused by urban crashes account for more than half of the total fatalities. In the 50 
United States, the number of urban fatalities is even increasing, on average, considering a 10-year trend 51 
until 2017, and they have exceeded the number of rural fatalities over the recent years (NHTSA, 2019). 52 
Since the crash involvement rate of vulnerable road users is notable in urban environments (especially 53 
in serious-injury crashes, see Aarts et al., 2016), the need for safer cities (in particular for vulnerable 54 
road users) requires thorough understanding of the generation mechanism of severe urban crashes. 55 

There is a considerable amount of research in the field of crash frequency modelling for urban road 56 
segments and intersections (Sayed and Rodriguez, 1999; Lord and Persaud, 2000; Persaud et al.; 2002; 57 
Harwood et al., 2007). However, as highlighted in Colonna et al. (2019a), most of them concern urban 58 
roads in the U.S., which may be significantly different than European urban environments. 59 
Transferability issues of models from the U.S. to European contexts (and even within the same country) 60 
were already raised indeed (Sacchi et al., 2012; Colonna et al., 2018). Some instances of European 61 
urban crash prediction models are anyway present in literature (e.g. Greibe, 2003; Gomes et al., 2012; 62 
Intini et al., 2019a). As well as crash frequency modelling, there is a considerable amount of research 63 
concerning injury severity modelling with different techniques (see e.g., Kockelman and Kweon, 2002; 64 
Abdel-Aty, 2003; Malyshkina and Mannering, 2009; Savolainen et al., 2011; Yasmin and Eluru, 2013; 65 
Russo et al., 2014; Yasmin et al., 2014; Fountas and Anastasopoulos, 2017; Fountas et al., 2018a, 66 
Behnood and Mannering, 2019). However, also in the case of severity models, most studies were 67 
conducted with data from the U.S. and by considering the rural or mixed urban/rural environment.  68 

Besides modelling crash frequency and crash severity, previous research (Kim et al., 2006, 2007; 69 
Jonsson et al., 2007, 2009) has shown the importance of differentiating crashes into crash types, in order 70 
to highlight variations in the influence of traditional predictors. However, the latter aspect is often 71 
overlooked in crash frequency and crash severity analyses, especially in urban environments. For 72 
instance, all the above cited studies (Kim et al., 2006, 2007; Jonsson et al., 2007, 2009) refer to rural 73 
intersections. The importance of differentiating crashes considering crash types and studying 74 
differences between influential predictors is also crucial for identifying specific countermeasures, which 75 
can be effective for a given crash type (see e.g., Retting et al., 1995). In fact, some countermeasures can 76 
generally improve safety performances, e.g., those aimed at reducing speeds leading, in turn, to crash 77 
reduction (Aarts and Van Schagen, 2006; Elvik, 2013). However, some other are specifically targeted 78 
at addressing some specific crash types. For example, if there is a significant amount of angle crashes 79 
at signalized intersections, then traffic light systems could be improved (e.g., by implementing 80 
dedicated turn signals, depending on the prevailing traffic flow and the intersection-specific crash 81 
patterns). This evidence could not emerge from a traditional crash frequency model or an injury severity 82 
analysis. 83 

Hence, this study is focused on the analysis of the predictors of specific urban road crash types. Using 84 
a dataset of urban crashes and related site-specific and crash-specific explanatory variables, the 85 
probability of a crash of a given type to occur (conditional on a crash having occurred and recorded 86 
through a crash report) is modelled. This problem is typically addressed through a multinomial logit 87 
structure, in case of non-binary crash outcomes. Multinomial logit structures were extensively used in 88 
previous research concerning injury severity analysis (see e.g., Shankar and Mannering, 1996; Tay et 89 
al., 2011; Celik and Oktay, 2014), in their standard formulation or with some modifications (e.g., 90 
Savolainen and Mannering, 2007; Chen et al., 2015; Wali et al., 2018; Alnawmasi and Mannering, 91 
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2019). In some instances, they were also used for predicting different crash type outcomes (Geedipally 92 
et al., 2010; Bham et al., 2011; Chen et al., 2016), such as in the present work. 93 

In predictions made through multinomial logit structures, the observational unit is the individual crash. 94 
However, multiple crashes can occur on the same segment or intersection. A mixed logit model structure 95 
was implemented to capture unobserved heterogeneity, i.e. the effect of the influential factors that are 96 
not apparent to the analyst (Mannering et al., 2016). Treating the crash observations individually 97 
regardless of the roadway segment or intersection where they crashes occurred could lead to biased 98 
predictors as commonly shared variations across crashes occurred on the same segment or intersection 99 
cannot be effectively captured (Mannering et al., 2016; Sarwar et al., 2017; Fountas et al., 2018b; Cai 100 
et al., 2018). In this study, to address the aforementioned limitation, the model parameters are allowed 101 
to vary across groups of segment- or intersection-specific crashes through the estimation of grouped 102 
random parameters. Such an approach, used in previous research (Sarwar et al., 2017; Cai et al., 2018, 103 
Eker et al., 2019; Heydari et al., 2019, Pantangi et al., 2019), also paves the way for site-specific 104 
evaluation of crash risk considering various crash types. Mixed logit models have been consistently 105 
applied in accident research, with some individual differences between studies, for injury severity 106 
analyses (Milton et al., 2008; Kim et al., 2013; Wu et al., 2014; see Savolainen et al., 2011 for an early 107 
review). However, to the authors’ knowledge, no previous study has applied the grouped random 108 
parameter multinomial logit structure for predicting crash types. As previously discussed, highlighting 109 
the specific influence of the considered predictor at the segment/intersection-level may reveal local 110 
patterns, which is useful for practical purposes (i.e. selecting specific countermeasures). 111 

The study answers the following main research questions: 112 

• What are the main geometric and traffic-related predictors of crash types on urban segments 113 
and intersections? 114 

• Is it possible to associate crash-specific variables (i.e. context variables, not directly related to 115 
the geometry of segments and intersections) to different urban crash types? 116 

• Does the influence of predictors on crash types vary considerably across segments or 117 
intersections? 118 

Research questions are addressed by analysing a dataset from an Italian city. Considering the 119 
aforementioned gaps in previous research, this study, which is exploratory in its nature, expand the 120 
existing knowledge in several ways: a) conducting safety analysis disaggregated for different crash 121 
types, b) deepening knowledge related to urban road safety predictions, c) highlighting results from the 122 
application of a grouped random parameter multinomial logit structure to crash type prediction, d) using 123 
a dataset from an European city, considering the impact of urban spatial setting on traffic safety. 124 

The remainder of the paper is structured as follows. Methods used for data analysis are described in 125 
detail in the next section. Then the modelling results are presented and discussed, in light of previous 126 
relevant research. The applicability of the results is shown in practice, by highlighting specific high-127 
risk sites based on the modelling results. Finally, the main conclusions from the study are drawn. 128 

2. Methods  129 

The methods used in this article are described as follows, starting with the crash dataset and the 130 
predictors that were used for the statistical analysis of crash types. Next, the statistical methods used 131 
for model estimation are presented in detail. 132 

2.1 Database 133 

The study is part of a larger National research project (“Scientific Park for Road Safety”, funded by the 134 
Italian Ministry of Transport and Infrastructures, leading agency: Municipality of Bari, Italy). In this 135 
project, evidence from local urban road safety studies is used to infer possible policies and strategies, 136 



5 
 

which may help reduce urban crashes at a higher level (e.g., at a national level). In the context of this 137 
research project,  data about crashes occurred on the road network of the Municipality of Bari between 138 
2012 and 2016 were collected and put together with some possible influential variables, which may be 139 
related to crashes. The City of Bari is a medium-sized Southern Italian city, with a population of about 140 
320,000 inhabitants, and an area of about 120 km2.  141 

Crash data were provided by ASSET (http://asset.regione.puglia.it/), the local agency that manages 142 
these data in collaboration with the National Institute of Statistics (ISTAT). In addition to publicly 143 
available crash data, the exact localisation of the crash (GPS position) is included in the dataset 144 
provided. Note that the crash dataset provided, according to the European state-of-practice, includes 145 
only fatal+injury crashes, which are locally collected and standardized by the National Institute of 146 
Statistics (ISTAT). The crash dataset includes information about the day, hour, crash type, the involved 147 
vehicles and users, the contributory factors and the boundary conditions (i.e., weather, pavement, etc.). 148 
Other information was manually matched with crash data instead, such as road geometric data and 149 
traffic volumes (more details are provided in: Intini et al., 2019b; Colonna et al., 2019b). 150 

Based on localisation, crash data were assigned to the road segments or intersections. In cases where 151 
inaccuracies in the data localisation did not allow to identify the crash site precisely, the records were 152 
removed from the initial dataset. Give-way/stop lines and zebra crossings (included in the intersection 153 
area if close to the intersections) were initially used as preliminary thresholds for intersection-related 154 
crashes. However, given the high probability of misclassification of crashes (into intersection- or 155 
segment-related crashes) when the classification is based on fixed thresholds (e.g., distance from the 156 
intersection centre or stop lines/crossings position), crash locations, types, circumstances and related 157 
features were manually explored, to distinguish the intersection-related crashes from the segment-158 
related crashes. This further level of preliminary analysis was necessary given that this study is focused 159 
on crash types, separately assessed for segments and intersections. Moreover, segments were divided 160 
into homogeneous sections on the basis of their internal geometric characteristics (e.g., a different 161 
number of lanes, or the presence of medians). In other words, if notable macro-differences were 162 
identified among different sections of the same segment located between two major intersections 163 
(excluding driveways and intersections with minor roads), that segment was split into two or more 164 
homogeneous sections (AASHTO, 2010). For this reason, the word “segment” is henceforth referred to 165 
as homogeneous sections. Descriptive statistics about crash data are reported as follows, differentiated 166 
for segments and intersections of the urban road network. 167 

The study is focused on crash types, and then information about crash types were retrieved from the 168 
database. The most disaggregate classes found for crash types are: run-off-road, fixed object, pedestrian 169 
hit, fallen from vehicle, angle, head-on, sideswipe (not further classified by vehicle directions), rear-170 
end. Since some of these categories were significantly under-represented in the sample (e.g., the fallen 171 
from vehicle crash: only 2 crashes), then crash types were grouped into broader categories. Run-off-172 
road, fixed-object, pedestrian hit and fallen from vehicle crashes were grouped into a “single-vehicle” 173 
crash type, given that only one vehicle was involved. Moreover, head-on crashes account for only about 174 
3% of the total sample (29 out of 1036). However, to avoid grouping head-on crashes with other multi-175 
vehicle crash types with significantly different mechanisms, head-on crashes were discharged from the 176 
dataset. In the final dataset used for model estimates, there are on average 3.20 fatal+injury crashes per 177 
segment (st.dev.: 3.27) and 4.96 fatal+injury crashes per intersection (st.dev.: 4.70).  178 

As far as the site-specific explanatory variables are concerned, segment and intersection types include 179 
different combinations of one-way/two-way, single/multilane, undivided/divided segments and 180 
signalized/unsignalized, three/four-legged intersections. In this case too, classes of segments and 181 
intersections were appropriately formed in order to avoid having classes with very few elements (such 182 
as three-legged signalized intersection that comprise only 4 % of all signalized intersections). Average 183 
annual daily traffic per lane was used as a measure of traffic exposure. In case of intersections, it should 184 

http://asset.regione.puglia.it/
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be interpreted as number of vehicles per day per lane entering into the intersection (scaled down by 185 
using the unit of measurement: hundreds of vehicles per day per lane for modelling purposes). The ratio 186 
between the traffic volume on the major road and the traffic volume on the minor road was computed 187 
to capture the balance between the two volumes; the latter has been previously found to be associated 188 
with safety issues at intersections (Gomes et al., 2012; Intini et al., 2019b). Other site-specific variables 189 
included in the dataset were: segment length, total entering lanes in the intersection, number of zebra 190 
crossings (at both segments and intersections), presence of bike paths and bus lanes (on segments), area 191 
type, presence of nearby public attractors (i.e., schools; hospitals; governmental buildings; etc.). A 192 
continuous measure representing the number of entering lanes was preferred against an indicator 193 
variable such as e.g., more or less than four entering lanes, because the latter classification was deemed 194 
to assume a higher degree of arbitrariness in the threshold lanes with respect to the continuous variation. 195 
However, the authors are not interested here in specifically assessing the effects of each one entering 196 
lane increase, but the number of entering lanes was rather used in this study as a proxy measure for the 197 
complexity of the intersection. In fact, it is assumed that the complexity can have an influence on 198 
different crash type outcomes. 199 

Area type was defined with regard to different city areas, as shown in Fig. 1. The speed limit was 200 
consistently equal to 50 km/h for all the sites during the observation period. However, the configuration 201 
of the segments and intersections is largely different between the city centre (typically consisting of 202 
short segments with several major intersections with low spacing between them) and the rural-to-urban 203 
transition areas (typically consisting of long segments with intersections spaced with a notable 204 
distance), while neighbourhoods of the city centre are in an intermediate condition. This may 205 
significantly affect speed and driving behaviour (Silvano and Bang, 2015; Colonna et al., 2019a), with 206 
city centre areas reflecting operating speeds significantly lower than 50 km/h and transition areas 207 
reflecting operating speeds significantly higher than 50 km/h. To capture this difference, the area type 208 
variable was introduced in the analysis. Segments in sparsely populated areas, which lead to the main 209 
beltway connecting to the rural network were assigned to the “transition area” category as well as the 210 
intersections lying on them. Moreover, the transition area variable is also used as a surrogate measure 211 
of parking, since on most of the sample sites included in this area there is no on-street parking, contrary 212 
to the roads belonging to the other area types (city centre and neighbourhoods). 213 

Crash-specific explanatory variables were obtained from the crash dataset. They include basic 214 
information such as crash date and hour and pavement conditions at the moment of the crash. Based on 215 
this information, the following variables were defined: season, type of day (weekday or 216 
weekday/holidays), period of the day (6 a.m.-6 p.m. or 6 p.m.-6 a.m., henceforth referred to as, namely, 217 
“day” or “night”), pavement conditions (dry or wet/slippery/icy). Moreover, a qualitative, crash-specific 218 
measure of the traffic volume that was present at the moment of the crash was inferred from the online 219 
Google Maps® tool for typical traffic at given hours and given days of the week, based on a colour scale 220 
(ranging from green labelled as “fast”, to dark red: “slow”). Hence, in this study, three classes were 221 
defined aggregating information inferred from the colour scale: no delays expected (green colour), some 222 
delays expected (orange colour), delayed/congested traffic (red/dark red colours, colours grouped 223 
together since there are very few situations in which the dark red colour is observable on the inquired 224 
road network). It should be noted that the measure is highly qualitative, since no numerical thresholds 225 
were considered and it is based on visual exploration of on-line sources. However, it was deemed as an 226 
interesting potential measure for capturing real-time traffic conditions, which are otherwise very hard 227 
to obtain (while they are generally useful for safety modelling, see Christoforou et al., 2011; Shi and 228 
Abdel-Aty, 2015). 229 

  230 
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Table 1. Descriptive statistics of crash data and related information collected for the sample of 231 
urban road segments and intersections. 232 

Variables 
Segments (n=119) Intersections (n=129) 
Mean (S.D.)1/ 
Count (%)1 

Min.-Max. Mean (S.D.)1/ 
Count (%)1 

Min.-Max. 

General frequency variables     
Fatal+injury crashes 379 - 628 - 
Fatal+injury crashes/site 3.19 (3.22) 1-18 4.87 (4.67) 1-29 
Differentiated by crash type     
Single vehicle crashes/site 1.04 (1.50) 0-11 0.95 (1.21) 0-7 
Angle crashes/site 0.71 (1.22) 0-8 2.37 (2.70) 0-13 
Rear-end crashes/site 0.84 (1.40) 0-10 0.75 (1.34) 0-8 
Sideswipe crashes/site 0.60 (0.87) 0-5 0.85 (1.35) 0-7 
Dependent variable: crash type     
Crash type: Single-vehicle 124 (0.33) - 119 (0.19) - 
Crash type: Angle 84 (0.22) - 323 (0.51) - 
Crash type: Rear-end 100 (0.26) - 83 (0.13) - 
Crash type: Sideswipe 71 (0.19) - 103 (0.16) - 
Explanatory variables: site-specific     
Segment type: One-lane 50 (0.13) - - - 
Segment type: Undivided 1-way 2+ lanes 42 (0.11) - - - 
Segment type: Undivided 2-way 2-lanes 115 (0.31) - - - 
Segment type: Undivided 2-way 4-lanes 90 (0.24) - - - 
Segment type: Divided 2-way 82 (0.22) - - - 
Intersection type: Unsignalized 3 legs - - 118 (0.19) - 
Intersection type: Unsignalized 4 legs - - 141 (0.22) - 
Intersection type: Signalized - - 369 (0.59) - 
Segment length (m) 194.4 (169.4) 34-862 - - 
Average traffic per lane [vehicles/day] 4410.7 (2200.6) 250-11460 4002.3 (2196.7) 500-15570 
% Ratio: minor to major traffic volume - - 47.1 (30.2) 0.0-100.0 
Total entering lanes - - 4.7 (2.6) 1-11 
Number of zebra crossings 0.6 (0.8) 0-3 2.9 (1.3) 0-5 
Presence of bus lanes: No 342 (0.90) - - - 
Presence of bus lanes: Yes 37 (0.10) - - - 
Presence of bike paths: No 344 (0.91) - - - 
Presence of bike paths: Yes 35 (0.09) - - - 
Area type: Neighbourhood 230 (0.61) - 401 (0.64) - 
Area type: City Centre 100 (0.26) - 144 (0.23) - 
Area type: Transition area 49 (0.13) - 83 (0.13) - 
Presence of nearby public attractors: No 213 (0.56) - 338 (0.54) - 
Presence of nearby public attractors: Yes 166 (0.44) - 290 (0.46) - 
Explanatory variables: crash-specific     
Season: Winter 88 (0.23) - 172 (0.27) - 
Season: Spring 112 (0.30) - 172 (0.27) - 
Season: Summer 98 (0.26) - 146 (0.23) - 
Season: Autumn 81 (0.21) - 138 (0.22) - 
Type of day: Weekday 304 (0.80) - 468 (0.75) - 
Type of day: Weekend/public holiday 75 (0.20) - 160 (0.25) - 
Period of the day: Day (6 a.m.-6 p.m.) 272 (0.72) - 392 (0.62) - 
Period of the day: Night (6 p.m.-6 a.m.) 107 (0.28) - 236 (0.38) - 
Typical traffic at crash: No delays 107 (0.28) - 134 (0.21) - 
Typical traffic at crash: Some delays 
expected 

214 (0.56) - 336 (0.54) - 

Typical traffic at crash: Delayed 21 (0.06) - 47 (0.07) - 
Typical traffic at crash: No available data 37 (0.10) - 111 (0.18) - 
Pavement conditions: Dry 336 (0.89) - 544 (0.87) - 
Pavement conditions: Other 43 (0.11) - 84 (0.13) - 

1Depending on the variable being numerical or categorical, namely means (with standard deviations S.D. in parenthesis) or counts (with 233 
percentages among the total % in parenthesis) are presented. 234 
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 235 
Figure 1. Considered area types in the city of Bari, Italy (source image from OpenStreetMap) 236 

2.2 Statistical methods 237 

In this study, a multinomial logit structure was used to predict the likelihood of different crash types 238 
(with four possible outcomes: single-vehicle, angle, rear-end, sideswipe). The most disaggregate 239 
observational unit used for modelling is the individual crash in the dataset. Site-specific and crash-240 
specific explanatory variables are used to predict the likelihood of different crash types. Note that, based 241 
on the data availability and sample size, the crash type outcome was chosen as dependent variable, 242 
rather than crash frequency by crash type (with road sites as observational units, see Mothafer et al., 243 
2016; Bhowmik et al., 2019) or proportion of crashes (applied at a macro-level by Lee et al., 2018). 244 

Two separate models were developed for the segment and intersection datasets. Instead of the standard 245 
multinomial logit approach (previously used for similar purposes by Geedipally et al., 2010; Bham et 246 
al., 2011; Chen et al., 2016), a mixed (random-parameter) logit structure was preferred. In fact, this 247 
approach enables the model parameters to vary across the different units (Washington et al., 2020; 248 
Mannering et al., 2016). In this specific case, the parameters are allowed to vary across the segments or 249 
intersection. As such, rather than having a single parameter estimate for each individual crash, the 250 
parameters were grouped for each set of crashes corresponding to each individual segment or 251 
intersection. In this way, it may be possible to capture some specific unobserved characteristics 252 
(Mannering et al., 2016; Fountas et al., 2018b) of segments and intersections, which could be unfeasible 253 
with fixed parameter estimates (i.e., the same coefficient for all segments and intersections). 254 

Let assume the systematic component 𝑉𝑉𝑐𝑐𝑐𝑐,𝑐𝑐 of the likelihood of a given crash type t for a crash 255 
observation c as a linear combination of a given set of predictors, in which some of the coefficients may 256 
be fixed and some other may be site-specific (segment or intersection-specific): 257 

 𝑉𝑉𝑡𝑡,𝑐𝑐 = 𝜷𝜷𝒊𝒊 𝑿𝑿𝒕𝒕,𝒄𝒄 + 𝜷𝜷𝒊𝒊,𝒔𝒔 𝒁𝒁𝒕𝒕,𝒄𝒄           (1) 258 

Where: 259 
𝜷𝜷𝒊𝒊,𝜷𝜷𝒊𝒊,𝒔𝒔 = vectors of coefficient estimates associated to the i-th predictor which are, namely, fixed and 260 
specific to the given site s; 261 
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𝑿𝑿𝒕𝒕,𝒄𝒄,𝒁𝒁𝒕𝒕,𝒄𝒄 = vectors of predictors of a given crash type t likelihood associated to, namely, fixed and site-262 
specific coefficient estimates. 263 
 264 
In this case, the probability of observing a crash type outcome t estimated through a mixed logit model 265 
structure can be defined as follows (adapted from Milton et al., 2008; Washington et al., 2020): 266 

𝑃𝑃𝑐𝑐(𝑡𝑡) = ∫ exp�𝜷𝜷𝒕𝒕𝑿𝑿𝒕𝒕,𝒄𝒄�
∑ exp�𝜷𝜷𝒕𝒕𝑿𝑿𝒕𝒕,𝒄𝒄�𝑇𝑇

 𝑓𝑓(𝜷𝜷|𝜽𝜽) 𝑑𝑑𝜷𝜷𝑿𝑿                                                         (2) 267 

Where: 268 
𝑃𝑃𝑐𝑐(𝑡𝑡) = probability of observing the crash type outcome t (among the set of crash type outcomes T) for 269 
the crash unit c; 270 
𝜷𝜷𝒕𝒕 = vector of estimated parameters for the different crash types t; 271 
𝑿𝑿𝒕𝒕,𝒄𝒄 = vector of explanatory variables for different crash types t, for the crash unit c; 272 
𝑓𝑓(𝜷𝜷|𝜽𝜽) = probability density function assumed for 𝜷𝜷, 𝜽𝜽 is the vector of parameters of the function. 273 
 274 
In this study, a grouped random parameter approach (Sarwar et al., 2017; Cai et al., 2018) was used: 275 
individual parameters β are estimated for each group of crashes occurred at each segment or 276 
intersection. Moreover, a normal distribution was assumed for the density function 𝑓𝑓(𝜷𝜷|𝜽𝜽), in line with 277 
results from previous research (e.g., Milton et al., 2008; Moore et al., 2011). Note that several of the 278 
explanatory variables are categorical (see Table 1). Thus, in this case, binary dummy variables were 279 
generated (1 - presence of the given attribute, 0 - absence of the given attribute, e.g., for winter season: 280 
1 - winter, 0 - other seasons). 281 
 282 
The mixlogit command implemented in the STATA® software (based on Hole, 2007) was used for 283 
estimating the mixed logit models. The underlying software algorithm, based on a mathematical 284 
transformation from the standard mixed logit structure, estimates the logarithm of the odds of a given 285 
outcome with respect to a reference outcome (StataCorp, 2015) in the set, as follows: 286 
 287 

ln � 𝑃𝑃𝑐𝑐(𝑡𝑡)
𝑃𝑃𝑐𝑐(𝑡𝑡0)

� = 𝛽𝛽0,𝑠𝑠 + ∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑡𝑡,𝑐𝑐
𝑿𝑿𝒕𝒕
𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖,𝑠𝑠𝑍𝑍𝑡𝑡,𝑐𝑐

𝒁𝒁𝒕𝒕
𝑖𝑖=1      (3) 288 

Where: 289 
𝑃𝑃𝑐𝑐(𝑡𝑡0) = probability of observing the reference crash type 𝑡𝑡0 (among the set T) for the crash unit c; 290 
all other terms were previously defined for Equations 1 and 2. Note that the estimate 𝛽𝛽0,𝑠𝑠 for the 291 
intercept may eventually be site-specific as well, or fixed (𝛽𝛽0). 292 
 293 
This approach was previously applied for similar purposes (i.e., crash types as outcomes) in a standard 294 
multinomial logit structure (Geedipally et al., 2010; Bham et al., 2011; Chen et al., 2016). Based on Eq. 295 
3, and considering that the sum of the observed probabilities of all outcomes should be equal to 1, the 296 
probability of observing each crash type outcome t can be computed. In this case, using the above 297 
explained transformation for the model application leads to estimating three functions, by selecting the 298 
single-vehicle crash type as a reference.  299 
 300 
According to literature, the mixed logit model was developed using a maximum likelihood estimation 301 
approach coupled with the Halton draws sampling technique (Halton, 1960). The models presented in 302 
this study were generated using 1000 Halton draws, in line with numbers effectively used in previous 303 
research (Milton et al., 2008; Moore et al., 2011; Kim et al., 2013; Wu et al., 2014). The model selection 304 
process was conducted by trying to simultaneously include only predictors for which the estimated 305 
coefficients are statistically significant at the 10 % level, given the small dataset and the exploratory 306 
nature of this study. Moreover, the Akaike Information Criterion (AIC) was also computed and 307 
evaluated to compare different models. 308 
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To assess the impact of each predictor included in the model functions on the outcome probabilities, 309 
elasticities were computed. Depending on the results from the model, different predictors can be 310 
included in one or more functions related to different crash types. For this reason, both direct and cross 311 
point elasticities were computed for each crash unit, starting from the initial dataset. For a one percent 312 
change in the predictor, the point elasticities represent the percentage difference in the outcome 313 
probability (Washington et al., 2020), defined as follows: 314 

𝐸𝐸𝑋𝑋𝑡𝑡=𝑖𝑖,𝑐𝑐
𝑃𝑃(𝑡𝑡=𝑖𝑖) =  ∆𝑃𝑃(𝑡𝑡=𝑖𝑖)

𝑃𝑃(𝑡𝑡=𝑖𝑖)
∗ 100 (%)      (4) 315 

𝐸𝐸𝑋𝑋𝑡𝑡=𝑖𝑖,𝑐𝑐
𝑃𝑃(𝑡𝑡=𝑗𝑗) =  ∆𝑃𝑃(𝑡𝑡=𝑗𝑗)

𝑃𝑃(𝑡𝑡=𝑗𝑗)
∗ 100 (%)      (5) 316 

Where: 317 
𝐸𝐸𝑋𝑋𝑡𝑡=𝑖𝑖,𝑐𝑐
𝑃𝑃(𝑡𝑡=𝑖𝑖)= direct elasticity, percent change in the probability 𝑃𝑃(𝑡𝑡 = 𝑖𝑖) of observing the crash type i, for 318 

a one percent increase in the predictor 𝑋𝑋𝑡𝑡=𝑖𝑖,𝑐𝑐, included in the function associated to the crash type i. 319 

𝐸𝐸𝑋𝑋𝑡𝑡=𝑖𝑖,𝑐𝑐
𝑃𝑃(𝑡𝑡=𝑗𝑗)= cross elasticity, percent change in the probability 𝑃𝑃(𝑡𝑡 = 𝑗𝑗) of observing the crash type j, for a 320 

one percent increase in the predictor 𝑋𝑋𝑡𝑡=𝑖𝑖,𝑐𝑐, included in the function associated to the crash type i. 321 
 322 
Elasticities were computed by applying the model functions and the estimated set of individual 323 
parameters for each segment and intersection, in case of random parameters; and the mean estimate in 324 
case of fixed parameters. In case of binary predictors, pseudo-elasticities were computed (Washington 325 
et al., 2020). The formulation of pseudo-elasticities is similar to the previous equations; instead of the 326 
effect of a one percent change, the effect of a change in the dummy variable from 0 to 1 is estimated 327 
for all the observations. Once elasticities and pseudo-elasticities are estimated for each crash unit, 328 
average elasticities are computed among the observations, to represent an overall effect. 329 
 330 

3. Results 331 

The results for the separate sub-sets of segment- and intersection-related crashes are reported in this 332 
section and discussed in the following one. 333 

3.1 Model for segment crashes 334 

The predictors and the related estimated coefficients associated to different crash types likelihood on 335 
segments (with respect to single-vehicle crashes) are presented in Table 2. 336 

Table 2. Estimated model for segment crashes 337 
Explanatory variables Coefficient 

(st. dev.)* 
St. error^ 
 

p-value^ Lower value 
95 % C.I. ^ 

Upper value 
95 % C.I. ^ 

Reference crash type: Single vehicle crashes 
Crash type: Angle 
Undivided 2-way 4-lane segment  1.048 0.305 0.001  0.450  1.645 
Area type – City centre -1.296 0.363 <0.001 -2.008 -0.584 
Typical traffic – Some delays expected -0.377 0.197 0.055 -0.763  0.008 
Crash type: Rear-end 
Area type – Transition area  1.910 0.321 <0.001  1.281  2.538 
Night (6 p.m.-6 a.m.) -0.750 0.260 0.004 -1.260 -0.239 
Crash type: Sideswipe 
Presence of bus lanes -1.545 0.676 0.022 -2.869 -0.221 
Night (6 p.m.-6 a.m.) -2.200 (2.741) 1.272 (1.475) 0.084 (0.063) -4.692(-0.149)  0.246 (5.632) 
Goodness-of-fit      
AIC = 983.44, LL(β) = -483.72 
Wald test: χ2(7) = 59.88, p <0.001. 
Likelihood Ratio Test (comparison with the correspondent fixed parameters model): χ2(1) = 7.01, p = 0.008. 
In-sample predictions 
Crash type outcome for each crash in the dataset, correct choices+: 276 (73%), incorrect choices: 103 (27%) 
Most frequent crash type for each segment (aggregated choices), correct+: 100 (84%), incorrect: 19 (16%) 



11 
 

*Values in parenthesis are the estimated standard deviations of coefficients in case of estimated random parameters. 338 
^Values in parenthesis are computed for the estimated standard deviations of coefficients in case of random parameters. 339 
+A correct choice was assumed if the predicted outcome matched the observed outcome (the most frequent outcome, even 340 
paired with other equiprobable outcomes). 341 
 342 
Predictors included in the model are: the segment type (undivided 2-way 4-lane segments in case of 343 
angle crashes), the area type (city centre in case of angle crashes, transition areas in case of rear-end 344 
crashes), the typical traffic (some delays expected in case of angle crashes), the day period (in case of 345 
both rear-end and sideswipe crashes). Traffic volume and segment length were not included as 346 
predictors in the model, due to the lack of statistically significant estimates, as well as several other 347 
segment-specific and crash-specific variables.  348 

The coefficient for the period of the day (night: 6 p.m.-6 a.m.) in the function of sideswipe crashes 349 
likelihood (with respect to single vehicle crashes) was estimated as a random parameter across the 350 
segments. This means that, given the approach selected, a specific coefficient estimate is calculated for 351 
each segment. The grouped random parameter approach leads to a statistically significant improvement 352 
with respect to the correspondent fixed parameters model (i.e., considering a fixed parameter for the 353 
period-of-the-day variable in the function of sideswipe crashes), as based on the Likelihood Ratio Test 354 
(LRT - see Table 2); the latter reveals an overall significance for the estimated standard deviation (Hole, 355 
2007). Moreover, the Wald test confirms that the selected predictors included in the model significantly 356 
improve the fit. 357 

Based on the estimates presented in Table 2, elasticities are computed in Table 3. Given that all the 358 
predictors included in the segment model are indicators, then pseudo-elasticities are computed. 359 

Table 3. Pseudo-elasticities computed for all crash type outcomes T (Single-Vehicle: SV, Angle: 360 
AN, Rear-end: RE, Sideswipe: SS) – segment model 361 
Explanatory variables Percentage change in Probability of each crash type (%) 

Single Vehicle (SV) Angle (AN) Rear-end (RE) Sideswipe (SS) 
Undivided 2-way 4-lane segment -24.4* 115.7 -24.4* -24.4* 
Presence of bus lanes  19.5*  19.5*  19.5* -66.8 
Area type – City centre  27.6* -65.1  27.6*  27.6* 
Area type – Transition area -57.5* -57.5* 186.7 -57.5* 
Typical traffic – Some delays expected    9.0* -17.6     9.0*    9.0* 
Night (6 p.m.-6 a.m.)  51.3*  51.3*  -28.5 -60.1 

*Cross elasticities. If a given variable is included in only some functions related to specific crash types, then elasticities are 362 
computed for these crash types only. Since the sum of choice probabilities should be equal to 1, the probabilities related to the 363 
other crash types for which the given variable is not included in the respective functions will decrease/increase of the same 364 
quantity accordingly, given the definition of cross-elasticity itself. 365 
 366 
Based on the computed pseudo-elasticities, the effects of several variables are further highlighted. There 367 
is a significant increase (+116%) in the probability of observing angle crashes on undivided 2-way 4-368 
lane segments. There is also a notable increase (+187%) in the probability of observing rear-end crashes 369 
in transition areas. The presence of bus lanes on segments is associated with a decrease (-67%) in the 370 
probability of sideswipe crashes, while there is a notable decrease (-65%) in the probability of angle 371 
crashes in the city centre. The night period leads to a decrease in the probability of observing sideswipe 372 
(-60%) and rear-end (-29%) crashes, while an increase in both probabilities of single vehicle and angle 373 
crashes. Minor effects can be noted for the influence of typical traffic with some delays expected on 374 
angle crash likelihood (-18%). 375 

3.2 Model for intersection crashes 376 

The predictors and the estimated coefficients associated to the likelihood of different crash types on 377 
intersections (with respect to single-vehicle crashes) are presented in Table 4. 378 

  379 
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Table 4. Estimated model for intersection crashes 380 

Explanatory variables Coefficient 
(st. dev.)* 

St. error^ 
 

p-value^ Lower value 
95 % C.I. ^ 

Upper value 
95 % C.I. ^ 

Reference crash type: Single vehicle crashes 
Crash type: Angle 
Traffic volume per entering lane  0.011 (-0.011) 0.004 (0.004) 0.011 (0.013)  0.002 (-0.019) 0.019 (-0.002) 
% Ratio minor-to-major traffic  0.010 0.003 <0.001  0.004  0.015 
Typical traffic – Some delays expected -0.497 0.195 0.011 -0.879 -0.116 
Typical traffic – Delayed -1.356  0.384 <0.001 -2.109 -0.604 
Area type – Transition area  2.723 0.745 <0.001  1.262  4.183 
Night (6 p.m.-6 a.m.)  0.583 0.197 0.003  0.197  0.970 
Crash type: Rear-end 
% Ratio minor-to-major traffic -0.013 0.003 <0.001 -0.020 -0.007 
Area type – Transition area  2.999 0.750 <0.001  1.530  4.468 
Night (6 p.m.-6 a.m.) -1.104 (1.158) 0.597 (0.575) 0.065 (0.044) -2.274 (-2.285) 0.067 (-0.031) 
Crash type: Sideswipe 
Traffic volume per entering lane -0.008 0.004 0.070 -0.017  0.001 
Total entering lanes  0.133 0.044 0.002  0.047  0.219 
Area type – Transition area  1.590 0.786 0.043  0.050  3.130 
Total zebra crossings -0.197 0.087 0.024 -0.368 -0.026 
Goodness-of-fit      
AIC = 1451.86, LL(β) = -710.93 
Wald test: χ2(13) = 174.71, p <0.001. 
Likelihood Ratio Test (comparison with the correspondent fixed parameters model): χ2(2) = 7.14, p = 0.028. 
In-sample prediction 
Crash type outcome for each crash in the dataset, correct+ choices: 338 (54%), incorrect choices: 290 (46%) 
Most frequent crash type for each segment (aggregated choices), correct+: 94 (73%), incorrect: 35 (27%) 

*Values in parenthesis are the estimated standard deviations of coefficients in case of estimated random parameters. 381 
^Values in parenthesis are computed for the estimated standard deviations of coefficients in case of random parameters. 382 
+A correct choice was assumed if the predicted outcome matched the observed outcome (the most frequent outcome, even 383 
paired with other equiprobable outcomes). 384 
 385 
Predictors included in the model are: the traffic volume per entering lane (in case of both angle and 386 
sideswipe crashes), the ratio of the minor to the major traffic volumes (for both angle  and rear-end 387 
crashes), the total number of entering lanes (for sideswipe crashes), the total number of zebra crossings 388 
(for sideswipe crashes), the typical traffic (both some delays expected and delayed traffic in case of 389 
sideswipe crashes), the area type (transition areas for all crash types), the day period (in case of both 390 
angle and rear-end crashes). In this case, some intersection-related, traffic and geometric variables are 391 
included in the selected model. However, the intersection type (with respect to traffic signals and legs) 392 
is not included, while the total number of entering lanes, which reflects the degree of complexity of the 393 
intersection, is a predictor of SS crash likelihood (compared to single vehicle crashes).  394 

The coefficients for traffic volume per entering lane (in the angle function) and for day period (in the 395 
rear-end function) were estimated as random parameters across the intersections. Given the approach 396 
selected, a single coefficient estimate for the two above listed predictors is then obtained for each 397 
intersection. The grouped random parameter approach leads to a statistically significant improvement 398 
with respect to the correspondent fixed parameters model, as based on the LRT test (see Table 4) which 399 
reveals an overall significance for the estimated standard deviations (Hole, 2007). Moreover, the Wald 400 
test confirms that the selected predictors included in the model significantly improve the fit. 401 

Based on the estimates presented in Table 4, elasticities are computed in Table 5. In this case, some 402 
predictors included in the model are indicator variables and some other predictors are numerical 403 
variables. Hence, both elasticities and pseudo-elasticities are computed. 404 

  405 
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Table 5. Elasticities and pseudo-elasticities computed for all crash type outcomes T (Single-406 
Vehicle: SV, Angle: AN, Rear-end: RE, Sideswipe: SS) – intersection model 407 

Explanatory variables Percentage change in Probability of each crash type (%) 
Single vehicle (SV) Angle (AN) Rear-end (RE) Sideswipe (SS) 

Elasticities 
Traffic volume per entering lane -0.2*  0.2 -0.2* -0.5 
% Ratio minor-to-major traffic -0.2*  0.3 -0.8 -0.2* 
Total entering lanes -0.1* -0.1* -0.1*  0.5 
Total zebra crossings  0.1*  0.1*  0.1* -0.5 
Pseudo-elasticities 
Area type – Transition area -90.5*  45.3  91.5 -53.2 
Typical traffic – Some delays expected  29.3* -21.3  29.3*  29.3* 
Typical traffic – Delayed  71.5* -55.8  71.5*  71.5* 
Night (6 p.m.-6 a.m.) -19.0*  45.1 -66.9 -19.0* 

*Cross elasticities. If a given variable is included in only some functions related to specific crash types, then elasticities are 408 
computed for these crash types only. Since the sum of choice probabilities should be equal to 1, the probabilities related to the 409 
other crash types for which the given variable is not included in the respective functions will decrease/increase of the same 410 
quantity accordingly, given the definition of cross-elasticity itself, 411 

The effects of variables can be appreciated by considering elasticities and pseudo-elasticities. As far as 412 
the numerical variables are concerned, all the relative changes in the outcome probabilities can be 413 
considered inelastic (i.e., less than 1% change, see Washington et al., 2020). The most notable effect is 414 
the decrease of rear-end crash likelihood in case of consistent traffic volumes across the intersecting 415 
legs. The increase in the traffic volume per entering lane is associated with a decrease in the sideswipe 416 
crash likelihood and a minor increase in the angle crash likelihood. The sideswipe crash likelihood 417 
increases with the total number of entering lanes and slightly decreases with the total number of zebra 418 
crossings. Focusing on the indicator variables, there is a notable increase (+92%) in the rear-end crash 419 
likelihood for intersections in transition areas, while the single vehicle crash likelihood notably 420 
decreases (-91%) as well as the sideswipe crash likelihood, but to a minor extent (-53%). The delayed 421 
typical traffic is associated with a decrease in the angle crash likelihood and a notable increase (+72%) 422 
in all other crash type likelihoods. The night period leads to a significant decrease (-67%) in the 423 
probability of observing rear-end crashes and to an increase in the angle crash likelihood. The effect of 424 
a one-unit change of the variable representing typical traffic with some delays expected is minor, 425 
resulting in a small decrease in the angle crash likelihood and a correspondent increase in all other crash 426 
type likelihoods. 427 
 428 

4. Discussion 429 

Herein, the results presented in the previous section are discussed, by following the order of the research 430 
questions: a) exploratory analysis of geometric and traffic-related predictors of crash types at urban 431 
segments and intersections, b) association of crash-specific variables to urban crash types, c) possible 432 
site-specific influential characteristics of given individual segments or intersections. 433 

4.1 Predictors of urban segment and intersection crash types 434 

Several traffic, geometric and context related factors were investigated as potential predictors of 435 
different urban crash types likelihood. Among these variables, the presented models include: a) for 436 
intersections, the traffic volume per entering lane, the overall number of entering lanes, the total number 437 
of zebra crossings and the balance between major and minor traffic volumes; b) for segments, the 438 
segment type and the presence of bus lanes; c) for both segments and intersections, the area type context 439 
variable. Most of the influential geometric variables are specific to the considered road element (i.e., 440 
segments or intersections) and so, their influence is separately discussed for the two road element 441 
categories. 442 
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For what concerns segments, the undivided 2-way 4-lane segments are associated to an evident increase 443 
in the probability of observing an angle  crash. This could be attributed to two possible mechanisms. 444 
Firstly, speeds may be higher on these urban arterial roads because of the increased road width (as 445 
highlighted, for example, by Silvano and Bang, 2015, for free flow speeds). Secondly, vehicles entering 446 
from/to driveways/minor intersections should cross more than one lane to turn left (regardless of 447 
whether this manoeuvre is allowed, this can occur because they are 2-way multilane roadways not 448 
provided with median). The combination of these two factors may explain the higher percentage of 449 
angle crashes. The presence of bus lanes is found to be related to a notable decrease in the sideswipe 450 
crash likelihood. This can be explained by the lower possibility of lane-changing manoeuvres (which 451 
should be considered in detail in urban environments, see Sun and Elefteriadou, 2012) when driving 452 
next to lanes dedicated to public transport. This may suggest the use of bus lanes as buffer zones in case 453 
of potential sideswipe crashes. Note that the bus lanes in the study area are mostly present on two-lane 454 
undivided roads, and some of them are two-way roadways (i.e. with a contraflow bus lane). 455 

For what concerns intersections, the sideswipe crash type likelihood decreases when the traffic per lane 456 
entering at the intersection and the total number of zebra crossings increase, while it increases with the 457 
number of entering lanes. These results can be explained in parallel. In fact, as the number of entering 458 
lanes increases, the possibility of vehicles approaching the intersection on parallel lanes (which may be 459 
related to sideswipe crashes, as highlighted by Ackeret et al., 1999, in case of complex turning lane 460 
configurations) increases; the latter may increase the probability for lane-changing (e.g., for reaching 461 
dedicated turning lanes) and overtaking manoeuvres. However, in cases where the traffic volume per 462 
lane increases or in the vicinity of zebra crossings, those manoeuvres can be more difficult to undertake, 463 
thus leading to a decrease in the sideswipe crash likelihood. In addition, a decrease in the rear-end crash 464 
likelihood is observed in cases where minor traffic volumes are getting closer to the major volumes. 465 
This could be explained by drivers reducing speeds and adjusting headways when traffic is balanced 466 
among the intersection legs, because of the intrinsic intersection complexity. In fact, it was shown that, 467 
as the intersection complexity decreases, inadequate drivers’ attention allocation can be suggested, 468 
leading to more crashes (Werneke and Vollrath, 2012). Table 5 shows that higher traffic volumes and 469 
greater minor-to-major traffic ratios increase the likelihood of angle crashes at intersections. Both 470 
identified effects can be explained by the increased number of crossing conflicts, which may generate 471 
angle crashes. 472 

Besides of road element-specific geometric variables, there are some variables that were taken into 473 
account for both segment and intersection models. Their association with the likelihood of different 474 
crash types is shown in Table 6, based on the computed elasticities and pseudo-elasticities in Tables 3 475 
and 5. The influence of traffic per entering lane and total zebra crossings was previously discussed. It 476 
is worth to note here that these factors were not found to be influential on the likelihood of different 477 
crash types in the segment-based model. 478 

Table 6. Summary of the association of traffic, geometric and context variables to different urban 479 
crash type T (Single Vehicle = SV, Angle = AN, Rear-End = RE, Sideswipe = SS) likelihood, 480 
common to segments and intersections (S = Segments, I = Intersections) 481 
Common traffic,  
geometric, and context 
variables 

Change in Probability of each crash type* 
Single vehicle (SV) Angle (AN) Rear-end (RE) Sideswipe (SS) 

S I S I S I S I 
Traffic per entering lane^  -  +  -  - 
Total zebra crossings^  +  +  +  - 
Area type – City centre^ +  - -  +  +  
Area type – Transition area^ - - - - - - + + + + + + - - - - 

*The sign “+” reflects a positive effect (i.e., the specific crash type likelihood is increasing), while the sign “–“ reflects a 482 
negative effect (i.e., the specific crash type likelihood is decreasing). 483 
^Numbers of + and - reflect the magnitude of the pseudo-elasticities (+/- for up to ± 50% change, ++/-- for a change included 484 
between ± 50% and ± 100%, +++/--- for more than ± 100% change). 485 
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The likelihood of different crash types changes if segments and intersections are located in the rural-to-486 
urban transition areas. In both segments and intersections, a notable decrease in the single vehicle and 487 
sideswipe crash likelihoods and a notable increase in the rear-end crash likelihood are noted. If the 488 
drivers are not guided in the transition from the rural to the urban environment through appropriate 489 
design measures (see e.g. Lantieri et al., 2015), they may maintain a typically rural-based driving 490 
behaviour (Colonna and Berloco, 2011). In this case, the sub-urban characteristics of these road 491 
segments and intersections may allow drivers to maintain high speeds (see Liu, 2007 in case of 492 
approaching intersections) but also provide the ground for aggressive driving behaviour, possibly due 493 
to the presence of mind wandering and distraction (for further details, see also Fountas et al., 2019). 494 
Such behavioural trends are typically observed in low-demand roadway environments (Lin et al., 2016), 495 
such as e.g., low traffic rural highways. This may explain the increase in the rear-end crash likelihood. 496 
On the other hand, most of the urban single vehicle crashes included in the dataset are pedestrian hit 497 
(73 % of single vehicle crashes). Hence, the decrease in single vehicle crash likelihood can be attributed 498 
to the nature of transition areas, which normally exhibit low pedestrian volumes. Another interesting 499 
aspect of the results arises from the identified differences in the effect on angle crashes for segments 500 
and intersections (namely, notable decrease and increase in angle crash likelihood, respectively). In this 501 
case, the underlying crash mechanisms are most likely different: on transition segments, there is a 502 
considerable decrease in the number of driveways/minor intersections related to angle crashes, while 503 
the causes of angle crashes at intersections are still relevant and their likelihood was actually found to 504 
increase.  505 

The “city centre” area type is influential for segments only and it is mainly related to an evident decrease 506 
in the angle crash likelihood. In this specific dataset, segments in the city centre are considerably short 507 
(i.e., on average, between 50 and 100 m long) and often configured as one-way roadways, in several 508 
cases single lane roadways with on-street parking on both sides. This may prevent reaching high speeds 509 
between two close intersections (see e.g. Silvano and Bang, 2015). Hence, drivers may experience 510 
possible angle conflicts without resulting in angle crashes. 511 

Finally, concerning excluded variables, it is worth to note that the intersection type is not found to have 512 
a statistically significant effect on the likelihood of different crash types. This may seem contrary to 513 
expectations as the driving behaviour may significantly differ in signalized and unsignalized 514 
intersections (Liu, 2007; Li et al., 2019) and angle crashes are generally anticipated to decrease at 515 
intersections treated with traffic signals (see Jensen et al., 2010), even this effect may depend on several 516 
variables such as e.g., traffic volume ranges. However, on one hand, the number of entering lanes 517 
(included in the intersection model) can serve as a proxy variable for the intersection type (likely 518 
presence of traffic signals in case of several entering lanes) and complexity. On the other hand, during 519 
night, some of the traffic control systems may be not active, as such, their presence may not be 520 
influential on the safety performances. Moreover, there are instances where total crash frequencies of 521 
the two intersection types may be comparable for similar ranges of traffic volumes (see, for example, 522 
the models developed by Persaud et al., 2002), or the presence of traffic signals may not be influential 523 
for crash frequency predictions (Gomes et al., 2012). 524 

The traffic volume for segments (contrary to the typical traffic which is significant), the segment length 525 
and the presence of bike paths are other not statistically significant determinants of crash type 526 
likelihood. The scarce influence of segment length may be due to the low variability of lengths in the 527 
dataset (see Table 1) or it may partially be captured by the area type variable. Finally, all bike paths in 528 
the sample are physically separated from the main roadway, thus explaining their scarce influence.  529 

4.2 Associating crash-specific variables to urban crash types 530 

Several crash-specific variables, either extracted from the crash dataset or inferred using the available 531 
data, were modelled to predict different urban crash type likelihoods. Among these variables, the 532 
presented models include: typical traffic and period of the day. A summary of their association to 533 
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different crash type likelihoods is provided in Table 7, as based on the computed pseudo-elasticities in 534 
Tables 3 and 5. 535 

Table 7. Summary of the association of crash-specific variables to different urban crash types T 536 
(Single Vehicle = SV, Angle = AN, Rear-End = RE, Sideswipe = SS) likelihood (S = Segments, I = 537 
Intersections) 538 
Crash-specific variables Change in Probability of each crash type* 

Single vehicle (SV) Angle (AN) Rear-end (RE) Sideswipe (SS) 
S I S I S I S I 

Typical traffic – No delays^         
Typical traffic – Some 
delays expected^ 

+ + - - + + + + 

Typical traffic –Delayed^  + +  - -  + +  + + 
Period of the day – Night^ + + - + + + - - - - - - 

*The sign “+” reflects a positive effect (i.e., the specific crash type likelihood is increasing), while the sign “–“ reflects a 539 
negative effect (i.e., the specific crash type likelihood is decreasing). 540 
^Numbers of + and - reflect the magnitude of the pseudo-elasticities (+/- for up to ± 50% change, ++/-- for a change included 541 
between ± 50% and ± 100%, +++/--- for more than ± 100% change). 542 

The typical traffic at the crash day/hour was included in both intersection and segment models, with the 543 
attributes: some delays expected and delayed (only for intersections). In cases in which both delayed 544 
and with some delays expected typical traffic can be associated with different crash types (i.e., at 545 
intersections), their effect is consistent. In fact, for each crash type, changing from some delays expected 546 
to delayed traffic, the same effect is preserved (i.e., positive or negative) and amplified in case of 547 
delayed traffic (i.e., an effect of greater magnitude). In particular, a delayed traffic results in a notable 548 
decrease of the likelihood for angle crashes. This finding could be explained by the expected decrease 549 
of speed in delayed traffic conditions, which may prevent collisions between traffic streams having 550 
conflicting angles at intersections (see e.g., Wang et al., 2009). 551 

The variable representing traffic with “some delays expected” would capture intermediate conditions 552 
in which there is neither free-flow traffic nor congestion. In such conditions, drivers are still likely to 553 
have some freedom in choosing speeds and trajectories according to their desires, but their choices 554 
could be constrained by the presence of other drivers. For intersections, as already stated, traffic with 555 
some delays expected was found to affect different crash type likelihoods similarly to the delayed traffic 556 
variable, even to a minor extent. Moreover, the different effects on crash types found for segments are 557 
similar to those discussed for the intersections.. 558 

Time-of-the-day when the crash occurred, and particularly, night time was also found to affect different 559 
crash type likelihoods at segments and intersections, but with substantial variations. A consistent 560 
reduction of rear-end and sideswipe crashes was identified for both segments and intersections during 561 
night. Rear-end crashes can be associated to high speeds (Islam, 2016), short headways and drivers’ 562 
distraction (Gao and Davis, 2017). Under conditions of reduced visibility (even in the presence of 563 
lighting), it is likely that the driver would compensate for reduced visibility with a more cautious (Bella 564 
et al., 2014) and attentive behaviour. The highly attentive behaviour could result in promptly reacting 565 
to abrupt braking of preceding vehicles. Moreover, the intentions of drivers of the preceding vehicles 566 
can be more clear because of the increased visibility of car lights, compared to the daylight condition. 567 
The reduced likelihood of rear-end crashes at night is more evident at intersections (coherently with 568 
results from Yan et al., 2005), possibly because of even greater drivers’ attention in cases of critical 569 
decision points such as intersections and the reduced number of vehicles with respect to daytime (Yan 570 
et al., 2005). Changing lanes may be particularly associated to segment-related sideswipe crashes (see 571 
Bham et al., 2012), as well as overtaking.. During nights, drivers may be more cautious when 572 
undertaking these types of manoeuvres on segments and, in fact, the reduced likelihood of sideswipe 573 
crashes at night is more evident at segments. An interesting difference stems from the indirect estimated 574 
effect of night-time on single-vehicle crashes: the latter are likely to decrease at intersections, but to 575 
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increase at segments (in consistency with Bham et al., 2012). However, an increase in the angle night 576 
crashes likelihood was noted, which can be linked to lack of visibility for conflicting vehicles. 577 

Seasonal and weekly variations are potentially related to different driving behaviour but also to different 578 
drivers’ population (Intini et al., 2018), but they were not found significant for crash types. The 579 
influence on safety of seasonal and weekly variation may be more evident in rural than in urban areas, 580 
for instance because of the presence of summer/weekend recreational drivers (Intini et al., 2019c). 581 
Moreover, the effect of wet pavements may be more influential in rural rather than in urban 582 
environments (e.g. on run-off-road crashes, see McLaughlin et al., 2009). However, note that in the 583 
study by Bham et al. (2012), in which urban roadways were considered, weekends and wet pavements 584 
were associated to an increase in the single vehicle likelihood compared to other crash types. 585 

4.3 Site-specific variability of estimated parameters 586 

The random parameter model structure used in this study allows the identification of the variable effect 587 
of some predictors across the sites, based on the model estimates. As far as these predictors are 588 
concerned, the grouped random parameter structure enables the computation of a separate parameter 589 
estimate (β) corresponding to each individual segment/intersection. The variables that were found to 590 
have statistically significant grouped random parameters, and for which, segment- or intersection-591 
specific parameters were estimated are (see also Tables 2 and 4): 592 

• Period of the day (night: 6 p.m.-6 a.m.), in the sideswipe crash likelihood function for segments; 593 
• Period of the day (night: 6 p.m.-6 a.m.), in the rear-end crash likelihood function for 594 

intersections; 595 
• Traffic volume per entering lane, in the angle crash likelihood function for intersections. 596 

Boxplots of the distribution of the three sets of parameters individually estimated for each site are 597 
reported in the next Figure for the sake of a thorough discussion about their variability. The distributions 598 
of the individually estimated parameters were taken into account, rather than the computed distributions 599 
based on the estimated means and standard deviations, as the former lead to higher forecasting accuracy 600 
according to previous research (Anastasopoulos, 2016: Fountas and Anastasopoulos, 2017; Fountas et 601 
al., 2018b). 602 

a) b)  c) 603 

Figure 2. Boxplots of the distributions of the three grouped random parameters (with boxes 604 
delimiting the interquartile range IQR = Q3,75th – Q1,25th, whiskers at 1.5 times the IQR in both 605 
directions and solid lines indicating the 0 value). Parameter distributions from left to right: a) 606 
period of the day (night), sideswipe crashes - segment model; b) period of the day (night), rear-607 
end crashes - intersection model; c) traffic per lane, angle crashes - intersection model. 608 
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The distribution of coefficients varies depending on the associated explanatory variable; specifically, 609 
the boxplots show a considerably broad range for the night variable, especially for segments, and a 610 
small range of variation for the traffic variable. All the distributions of estimated parameters in Figure 611 
2 have some “outliers” (conventionally identified as above or below 1.5 times the interquartile range of 612 
the distribution). However, it is crucial to note that the effect of a given variable is generally 613 
positive/negative for all the segments/intersections, except for some of these outliers, where the effect 614 
is reversed. Those cases are discussed in the following.1 615 

For what concerns the night effect in the segment model, it is directly related to a decrease in the 616 
sideswipe crash likelihood for 110 segments (92 % of the population). However, for 9 segments (8 % 617 
of the population), positive parameters were estimated. An investigation of the characteristics of these 618 
segments has revealed that most of them are undivided roads with parked vehicles on both sides (in 619 
some cases coupled with narrow lanes and one-way traffic). The mechanism of sideswipe crashes can 620 
be eased by the presence of side parking on narrow roads or in cases of roads with more-than-one lanes, 621 
by possible lane change and overtaking manoeuvres, especially at night. These situations are actually 622 
likely to occur in most of the highlighted sites showing positive parameter estimates. 623 

In contrast, the night effect in the intersection model is directly related to a decrease in the rear-end 624 
crashes for 125 intersections (97 % of the population). However, for 4 intersections (3 % of the 625 
population), the parameter estimates were found to be positive. Two out of these four intersections 626 
consist of a major arterial road, which intersect a minor road. The presence of a high-volume road may 627 
foster rear-end crashes, because high speeds are operated and abrupt braking may occur at intersections, 628 
especially in low visibility conditions. On the other hand, the other two intersections are four-legged 629 
signalized intersections with unbalanced traffic between the major and the minor road (especially in 630 
one case). In these cases, it is possible that with the lower night-time traffic, drivers on the main road 631 
may operate higher speeds as well, fostering the same mechanism of abrupt braking at the signalized 632 
intersection with the minor road (whether it is normally working or with flashing lights at night) and 633 
the related rear-end mechanism. 634 

For what concerns the effect of traffic volume in the intersection model, an increase in the mean traffic 635 
volume per entering lane is directly related to an increase in the likelihood of angle crashes on 126 636 
intersections (98 % of the population), likely due to the increased angular conflicts. However, there are 637 
three intersections (2 % of the sample) for which the traffic volume parameter estimate is negative. In 638 
one intersection, there is one major two-way two-lane road and a one-way minor road, on which the 639 
traffic from the major road can only enter into. Hence, in this case, angle crashes could be only caused 640 
by the left-turn manoeuvre from the major to the minor road. As the traffic volume increases, drivers 641 
may be more cautious while negotiating the left-turn manoeuvre; the risk compensating behaviour of 642 
drivers in such cases may explain the reduction in the angle crash likelihood. In another case, the 643 
intersection is between an entering one-way road and a major two-lane road, having an angle greater 644 
than 90°. In this case, the vehicle flow from the minor road (give-way regulated) enters almost parallel 645 
to the direction of vehicles on the main road. In fact, half crashes on this site are sideswipe crashes. 646 
Hence, in this case, the effect of traffic on angle crashes is not influential. The third case is a four-legged 647 
signalized intersection with highly unbalanced traffic between the major and the minor road. In this 648 
case, angular conflicts are largely independent on the average traffic per lane (mainly governed by the 649 
main road traffic). The most frequent crash type on this intersection is the rear-end crash indeed. 650 

 651 

 
1 Due to the five-year period of the crash data, there exists the possibility that some of the unobserved effects 

captured by the random parameters may stem from the temporal instability of factors affecting the crash types. 
The effect of temporal instability on statistical modelling of crash data has been extensively discussed by 
Mannering, 2018; Almawasi and Mannering, 2019; Behnood and Mannering, 2019.  
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5. Practical application of results 652 

The estimated models can be used in practice to highlight high-risk sites with respect to a given crash 653 
type. In fact, based on the models and the dataset, individual probabilities of occurrence of crash type 654 
outcomes can be assessed. In the estimated models (for segments and intersections), some site-specific 655 
(segment- or intersection-related) and crash-specific variables were included (see Fig. 3). 656 

In this case, the high-risk sites identification should be aimed at highlighting sites having a very high 657 
probability of a specific crash type to occur. This procedure is carried out for particular combinations 658 
of crash-specific variables (which can be seen as crash contributing factors), leading to different 659 
possible scenarios. The criteria used to generate scenarios for both segments and intersections are shown 660 
in Fig. 3. 661 

662 
Figure 3. Generation of the different scenarios for the high-risk sites identification, based on 663 
combinations of specific contributing factors 664 

In detail, the probabilities associated to different crash types were computed in four different scenarios 665 
for segments, and six different scenarios for intersections, as indicated in Figure 3. The four segment 666 
scenarios are: traffic with some delays expected/day, traffic with some delays expected/night, other 667 
traffic conditions different than some delays expected/night, other traffic conditions different than some 668 
delays expected/day. The six intersection scenarios are: delayed traffic/night, delayed traffic/day, traffic 669 
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with some delays expected/night, traffic with some delays expected/day, no delays expected (or 670 
unavailable data for typical traffic)/night, no delays expected (or unavailable data for typical 671 
traffic)/day. The practical meaning of the identified scenarios lies in the possibility of computing 672 
different crash type likelihoods for different conditions. For instance, different likelihoods are 673 
associated with the delayed traffic in both the day and night periods, which may reflect, namely, the 674 
morning peak hour, and the afternoon peak hour. Some examples of the crash type probability 675 
distributions are provided in Figure 4 for both segments and intersections. 676 

a) 677 

b) 678 

Figure 4. a) Examples of crash type T (Single Vehicle = SV, Angle = AN, Rear-End = RE, 679 
Sideswipe = SS) probability p distribution for the samples of segments (in the example scenario 680 
1: night-traffic with some delays expected). b) Examples of crash type T probability distribution 681 
p for the samples of intersections (in the example scenario 6: night-delayed traffic). Sub-sets of 30 682 
sites only are used for illustrative purposes in both plots. 683 

Based on this approach, high-risk sites having high likelihood of a given crash type to occur, can be 684 
identified in the different scenarios for both segments and intersections, by setting given thresholds 685 
depending on the scope of  high-risk sites analysis. For example, starting from the population of all the 686 
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computed probabilities of different crash types for all sites (segments or intersections), it is possible to 687 
define some threshold percentiles (e.g., 85th, 90th or 95th percentile). The definition of thresholds may 688 
depend on the scope of the analysis (exploratory purposes, network screening, inspection planning, 689 
etc.). Once thresholds are defined, the sites showing percentages of crashes of a given type exceeding 690 
the thresholds, can be identified as “high-risk sites” for that crash type. This detailed analysis may result 691 
in selecting countermeasures specifically related to given crash types. 692 

6. Conclusions 693 

In this study, a dataset of urban segments and intersections was used to identify the factors influencing 694 
the likelihood of different crash types (single-vehicle, angle, rear-end and sideswipe). A multinomial 695 
logit approach, with different crash types serving as outcomes and several traffic, geometric and 696 
context-related variables serving as possible explanatory variables, was implemented. In detail, the 697 
mixed model structure was used to account for the variability of estimates across the crash observations. 698 
Parameter estimates were grouped per road site (segment/intersection), in order to account for 699 
unobserved effects and assess the influence of predictors on crash types at the individual site level, 700 
which is a research novelty for crash type modelling to the authors’ knowledge, especially for urban 701 
crashes. The main aim of this study was to explore: a) the influence of geometric and traffic-related 702 
predictors on different urban crash types (both at segments and intersections); b) the association of 703 
crash-specific variables to urban crash types, c) the possible variability of results across the crash 704 
observations for individual segments and intersections. 705 

The results show that the segment type and the presence of bus lanes are predictors of different types 706 
of crash occurring on road segments. Traffic volume per entering lane, total number of entering lanes, 707 
total number of zebra crossings and the ratio between major and minor traffic volumes at intersections 708 
influence different crash types at intersections. The context variable: area type is a predictor of different 709 
crash types for both urban segments and intersections.  710 

The crash-specific variables, which were significantly associated with different crash types (for both 711 
segments and intersections), are the typical traffic at the moment of the crash and the period of the day. 712 
However, no significant seasonal and weekly variations were noted, as well as no influence of different 713 
pavement conditions. It is important to note that a measure of the traffic conditions at the moment of 714 
the crash (even if inferred from online sources) was statistically associated with different crash types. 715 
Hence, the use of similar variables is encouraged for future research. 716 

For the predictors associated to statistically significant grouped random parameters (period of the day 717 
for both segments and intersections, traffic volume per entering lane), substantial variability of their 718 
effect was identified across the crash observations. Occasionally, the direction of the effects of some 719 
variables is the opposite of what holds to all the other elements in the population. In these cases, the 720 
further analyses conducted on these particular sites have revealed the influence of some local factors on 721 
the estimation of the parameters with different sign. The disclosure of possible local relationships 722 
constitutes a direct implication of the grouped random parameter approach and corroborates the choice 723 
of such approach. In fact, differently than in the conventional mixed logit, the grouped random 724 
parameter approach can capture not only unobserved effects varying across the crash population, but 725 
also systematic variations arising from the unobserved interaction between the geometric or traffic 726 
characteristics of these sites and the drivers’ behavioural response against them (Fountas et al., 2018b). 727 
In addition, the estimation of individual parameters can help better identify the potential sources of 728 
these unobserved interactions at a segment or intersection level.  729 

Hence, this study contributes to the existing body of research since it is the first to show, to the authors’ 730 
knowledge, how the grouped random parameter multinomial logit structure can be implemented to 731 
account for unobserved and grouped heterogeneity in crash type prediction. The introduction of the 732 
grouped random parameters to the multinomial logit formulation constitutes a significant comparative 733 
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advantage of the presented models relative to state-of-practice approaches. In fact, the presented 734 
approach allows for capturing the impact of unobserved factors that may vary across the 735 
segments/intersections (i.e., unobserved heterogeneity) as well as grouped effects arising from the 736 
presence of multiple crash observations per segment or intersection.  Over the last few years, the impact 737 
of segment- or intersection-specific grouped heterogeneity has been recognized in various safety 738 
dimensions, such as the accident occurrence (Fountas et al. 2018b) or the injury severity (Fountas et al., 739 
2018a); however, the implications of grouped heterogeneity on crash type probability have not been 740 
thoroughly explored to date. It should be noted that the formulations of SPFs or other state-of-practice 741 
modeling approaches do not typically take into account unobserved or grouped heterogeneity, hence 742 
resulting in less accurate parameter estimates and statistical inferences (Washington et al., 2020).  743 

Moreover, the results from the empirical analysis can be practically used to highlight high-risk segments 744 
or intersections with specific regard to given crash type outcomes, differentiated by particular scenarios 745 
(obtained as combinations of contributing factors, as for example, specific time of the day or traffic 746 
conditions). This can be considered as a step forward for the selection of appropriate and individual 747 
countermeasures at sites, based on their predicted crash type outcomes and considering other influential 748 
conditions. 749 

The present study is not without limitations. Firstly, as most of research in road safety, the transferability 750 
of the estimated models to other contexts requires further investigation. Secondly, the sample size used 751 
for this study was deemed large enough for the exploratory purposes of this research, but it should be 752 
enlarged for prediction purposes. Moreover, several other variables (i.e., related to human factors or the 753 
role of vulnerable road users) may affect the crash types. However, the employed grouped random 754 
parameter approach can account for this limitation to a reasonable extent (Mannering et al., 2016). Note 755 
that even incorporating year specific effects in the discrete outcome models may add further value to 756 
this modelling approach, which could be considered for further research. Nevertheless, since the 757 
grouped random parameters follow pre-determined distributions, the practical application of these 758 
models is not as straightforward as in cases of more parsimonious models (such as the SPFs), where the 759 
parameter estimates have fixed values regardless of the characteristics of the segment/intersection. 760 
However, this limitation of the grouped random parameters models stems from their generalized 761 
formulation, which has been set to account for various layers of heterogeneity. As a concluding note, 762 
given the exploratory nature of this study, further research should deepen these findings, by possibly 763 
using larger datasets and different contexts, in order to compare results. 764 
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