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Abstract Hadoop is an open source from Apache with a distributed file sys-
tem and MapReduce distributed computing framework. The current Apache
2.0 license agreement supports on-demand payment by consumers for cloud
platform services, helping users leverage their respective different hardware to
provides cloud services. In cloud-based environment, there is a need to bal-
ance the resource requirements of workloads, optimize load performance, and
the cloud compute costs to manage. When the processing power of clustered
machines varies widely, such as when hardware is aging or overloaded, Hadoop
offers a speculative execution (SE) optimization strategy, by monitoring task
progress in real time, in the starting identical backup tasks on different nodes
when multiple tasks under a job are not running at the same speed, providing
the first to go. The completed calculations maintain the overall progress of
the job. At present, the SE strategy’s incorrect selection of backup nodes and
resource constraints may result in poor Hadoop performance, and subsequent
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tasks cannot be completed execution and other problems. This paper propos-
es an SE optimization strategy based on near data prediction, which analyzes
the prediction of real-time task execution information to predict the required
running time, select backup nodes based on actual requirements and approxi-
mate data to make the SE strategy achieve the best performance. Experiments
prove that in a heterogeneous Hadoop environment, the optimization strategy
can effectively improve the effectiveness and accuracy of various tasks and en-
hance the performance of cloud computing. Platform performance can benefits
consumers better than before.

Keywords Distributed Systems - Hadoop - Speculative Execution - Locally
Weighted Regression - Near Data Prediction

1 Introduction

With the development of IoT transmission efficiency, in recent years, the user-
centric private cloud server due to the flexibility, high performance and sta-
bility of the features have also shown explosive growth [26], and their under-
lying architecture is roughly the same. It is equipped with different physical
structures and features depending on its application [10]. Users can elastical-
ly expand and pay for according to their needs[5]. Existing cloud computing
platforms include Spark, Hadoop, and Apache Storm[15].

In the cloud computing framework, Hadoop due to high reliability, scal-
ability, fault tolerance and efficiency in distributed data, search, storage and
computing fields are widely used [13]. To address the big data storage and
analysis failures caused by the master/slave cluster architecture model, there
are a variety of distributed cluster strategies resolve cluster crashes against
failures [3]. However, Hadoop still suffers from the resource allocation problem
of job scheduling [7].

In a distributed clustered environment on a cloud platform, it is easy for a
program error, unbalanced load, or uneven distribution of resources to cause
the same multiple tasks run under job to improve the speed is inconsistent,
slowing down the overall execution of the progress of JobTracker [17]. It is
difficult to predict the total time required to complete each task, how to coor-
dinate tasks and JobTracker becomes a pressing problem. The most effective
optimization strategy is Speculative Execution (SE), which trades space for
time [33]. The first results are used to improve the computation speed, but this
method consumes more resources, and the problem that needs to be solved is
shortage of cluster resources. However, this approach will consume more re-
sources and needs to address the problem of proper allocation of time and
resources for large job calculations in case of cluster resource shortage [32].

We propose a locally weighted prediction algorithm called LWR-SE in the
taskcollecting task information in real time during execution and using a max-
imum cost consumption model combined with appropriate task strategies for
back-up node selection to improve the resource allocation efficiency for optimal
strategy. In section 2, we cite current research on user-centric cloud computing
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environments and strategies for Hadoop-based performance optimization. Our
proposed LWR-SE method is presented in section 3. In section 4, we designed
multiple sets of comparative experiments to verify the usability of the algo-
rithm. Section 5 conclude the work of this paper and proposes future work to
be done.

2 Related Work
2.1 User-Centric Cloud System

The acceleration of the development process in both electronics and traditional
industries has led to an increasing number of research directions towards user-
centric cloud services. Sanchez’s team researched IDM architecture based on
user privacy protection, based on user-centric cloud the dynamic and heteroge-
neous nature of the platform proposes dynamic federated identity management
to provide security for the consumer cloud computing paradigm [24]. Kalyam-
pudi et al. present sending estimates to validate load balancing methods to
optimize service continuity issues between different devices [11]. By comparing
the analysis of the user-centric cloud computing domain, Abolfazli’s team pro-
poses a cloud-based mobile enhancement model, optimizing computing power
[1]. Fu’s team proposes a multi-keyword ranked search model for the cloud
computing paradigm of the consumer-centric per-use billing, in which the en-
crypted Support for synonymous queries in the cloud [4]. Xu et al. for intensive
data a network topology and non-genetic algorithm based on minimizing man-
ufacturing cycles and optimizing load balancing [37]. Hamdanis team proposed
a load balancing model based on cloud server weights by fuzzy logic express-
es the weights of different nodes to improve load balancing performance of
the cloud platform and improve the overall performance of user-centric clouds
[8]. High-speed and stable wireless communication has also greatly affected
high-tech fields such as medical robots [28]. Due to the large differences in the
types of big data in cloud platforms, Xu’s team proposed a data-control-based
offloading method called COM that restricts the dynamic scheduling of tasks
by confirm the data offload model [38]. For data privacy issues, a recommend-
ed domain algorithm combining QoS and LSH is proposed, and it effectively
solves the problem of protecting sensitive information [23]. A mobile crowd-
sourcing technology [21] applied to dynamic environments and a distributed
privacy service that introduces local sensitive hashing (LSH) technology are
proposed to ensure privacy in multi-dimensional data [6]. Xu et al. proposed
an EN resource optimization scheme that balances the load and protects priva-
cy [36]. An architecture for HAR is proposed for de-noising, normalizing, and
segmenting data signals to extract feature vectors [29]. Lee’s team has pro-
posed a consumer-centric, cloud-based smart home management system that
uses building automation devices and home networks deepen the integration
of communities and environments and optimize modules for energy efficiency,
scenarios and safety information [12]. Cao et al. use SDN-based UARP ap-
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proach to reduce energy consumption and address execution uncertainty [40].
A cross-platform SR-Amplified algorithm based on LSH can maintain a bal-
ance between efficiency and users [2], a cross-cloud platform service based on
collaborative filtering can ensure the scalability of choice decisions while ensur-
ing data accuracy [41]. An energy-saving QoS-aware VM scheduling method
called QVMS can effectively solve the VM migration and overuse of resources
caused by explosive cloud expansion problems [22].

2.2 Fault Tolerance in Hadoop

Currently there are three main types of failures in Hadoop: DN node fail-
ures, network failures, and data corruptions, and fault tolerance mechanisms
through the It is based on the MapReduce scheduling strategy and speculation,
and can be used to restore a failed task, effectively shorten the execution time
of tasks and ensure system stability.. The main approaches are MapReduce-
based task scheduling strategy and speculation. execution (SE) strategy[18].
Current jobs for cloud clusters can be executed quickly, but efficient use
of computing resources and fault tolerance remains a challenge. Liu’s team
proposed a dynamic SE strategy based on real-time cluster management for
consumer-centric heterogeneous cloud environments, combined with a mul-
ticomponent, multicomponent, multicomponent, and multicomponent cloud
management. Objective optimization algorithms improve the efficiency of time
and space [19]. Xin et al. Man proposes an optimized SE strategy for the slow-
running straggler task in Hadoop by using the Linear relationship model as
a dynamic load-aware strategy (ERUL) and time and scaling cost (exMCP)
for task information make improvements to overcome the misleading LATE
algorithm, reduce job runtime and improve cloud computing efficiency [9].
The MCP(Maximize Cost Performanee) strategy is a strategy that is imple-
mented in the It is based on LATE and is improved by a phased approach using
EWMA prediction algorithm predicts the execution speed of each stage and
calculates the task’s Remaining completion time to accurately select dropped
tasks and build a cost-benefit model to improve system performance at mini-
mal cost. Wu’s team proposes an MCP-based optimization algorithm that con-
siders the impact of dynamic load on the system, improves the accuracy of task
remaining time estimation, and reduces job runtime. [31]. An LBBD-based op-
timization framework to solve multi-node periodic tasks in asynchronous buffer
communication [43], a schedulability analysis integrating PTS and MCS can
reduce program space requirements [44]. Different optimization strategies have
been proposed, and Liu’s team proposed a node ranking strategy based on user
hardware performance to optimize tasks execution method [16]. Wang’s team
proposed an SE-based task checkpoint model PSE to eliminate duplicate data
processing costs and improve MapReduce performance [30]. Li’s team proposed
a decision tree based speculative execution strategy SECDT[14], which calcu-
lates the time required to complete a task through a decision tree, improves the
accuracy of time estimates. Tang’s team uses the DynamicMR model to pre-
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determine slot assignment constraint task mappings, solve data localization
problems, balance job performance, and optimize resource allocation maps.
[25]. A two-stage offloading optimization strategy UTO was proposed to max-
imize ECU resource utilization and minimize implementation time costs [34].
An strategy named ATAS can improve the Hadoops expandability by increas-
ing the accuracy of estimating the time required for the task optimize user-
centric cloud data scalability by improving the accuracy of backup job time
estimates of backing-up tasks [42]. An improved FasterRCNN framework can
improve the accuracy of data detection and guarantee real-time transmission
[27]. The user-centric smart home is also able to extract features by optimizing
the data sampling model and optimizing the cloud using the cloud adaptive
distribution algorithm [20]. Xu’s team proposed an offloading model based on
blockchain technology to ensure data integrity by using blockchain technology
in edge computing [39]. Due to the time-consuming nature of backbone data
propagation in cloud-based data centers, users who are sensitive to latency
performance have proposed edge computing nodes. The team at Xu is target-
ing alternative solutions to the Edge Computing Nodes (ECNS). Dense tasks
are deployed at edge nodes using a non-dominant ordering genetic algorithm
to shorten tasks using decision makers and weight selection Unload time for
multi-objective optimization [35].

Speculative execution strategy is currently widely used for fast backups of
tasks. However, there are still great difficulties in accurately identifying strag-
glers in tasks and maintaining efficient processing of local tasks. In general,
how to achieve the highest local prediction accuracy while ensuring the balance
of tasks and job execution schedule in the cloud system is a pressing issue.

3 Model and Algorithm
3.1 Identification of Straggler Candidates

Collection of Features for Real-time Tasks. To confirm the current s-
tragglers by collecting information such as real-time task status and MapTask
report. It also collects raw data from HDFS, task progress and timestamps to
confirm features and make predictions. To optimize the time complexity, the
data pairs are converted to (progress, time of execution):

Figure 1 and 2 show the execution duration information when running
the Wordcount dataset and Sort dataset examples. The data is collected in a
Hadoop cluster environment.

A Learning Model Based on Local Weighting Algorithms. As
shown in Tab.1, the trends in the execution information collected by the run-
ning task cannot be fitted using a linear model, and we designed a model based
on local non-parametric learning model of the weighted regression algorithm,
defining the contribution of the regression coefficients by weights, designing
the kernel parameter matrix to make the objective function minimize and op-
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Table 1 Algorithm for Task Data Collection

Collection of Features for Real-time Tasks : Data Collection

Input:

MapTask report (MR),Job status (JS),ID of task(IT),
Task context (TC), Progress of running task (P),
Running task attempt(RT), Execution time (ET).

Steps:
Get the JS from JobClient
Traverse the JS
Get the MRs from Jobld
For
Each MR in the MRs
Get the RTs from MR

Get the collection containing the IT

Get P from TC
If
P has changed

‘Write the P and ET to the file named with IT

End If
End For
End Data Collection
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Fig. 1 Implementation data collected by running the Wordcount dataset
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timize the linear model under fit problem. Input dataset is D = {(p;, ;)| =

1,2,...,n}, the prediction result model is:

t

= he(p) = _0ipi=0"p
i=0

(1)

The execution of different tasks is defined as n, as the number of training
set samples, and each set needs to be relearned for each training session, retain
the training set sample. p is an n+1 dimensional data representing the current
progress of the task. ¢ is the time of execution. 6 is used as the non-linear model
regression parameters are used to minimize the squared difference between real
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Fig. 2 Implementation data collected by running the Sort dataset

data and predicted data so that the training results satisfy the prediction as
shown in Equation(2) and (3).

E=hy () — (2)

mein = ZwiEg = Zwi [he (p’) — ti]2 (3)
i=0 i=0

Where E represents the error, (p’,t') is the number of sample, w; is the
weight of the local prediction region near the point to be measured, the size of
which was determined by prediction point. We optimized it by transforming
it into the kernel function matrix, as shown in Equation (4).

min = (X0 -Y)TW (X6 -Y) (4)

X is used as a matrix, where the training data is m rows. pg, p1 till py,,
pr being set to 2. W is a matrix as the Equation (5) shows.

(.L)lLL 0
Mw, L M
M MO M (5)
0 L Lw,

The loss function with 6 as the weight parameter updating the equation
so that LWR-SE minimizes the loss function when predicting the value of q.

n i i12 T

Afterwards, the least squares method is used as the updating equation for
the regression parameter 6 to calculate the parameter 6 corresponding to the
point to be measured, and finally bring the parameter values into Eq. (1) to
solve for the predicted execution time, as in Equation (7) and (8) shown..
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ag(ea) = XTWwxe - XTWy =0 (7)

6= (X"Wx) XTWY 8)

The goal of the LWR-SE algorithm is find the 6 value that minimizes the
loss function, so the weights need to be taking full account of the distances be-
tween the predicted points and other points, the weight function is calculated
as follows:

Step 1: Calculating Distance. Calculate the distance between the point to
be measured and nearby points by Euler distance, as shown in equation (9):

n

d= |3 (p@ - p®)? (9)

i=1

Step 2: Calculating Weight. Where p(?) is the prediction point, p{ is all
the points near the prediction point, and - determines the size of the weights
of nearby points. The larger the value of ~y, the smaller the effect of increasing
distance on decreasing weights, v is set to 0.08 in experiments. Equation (10)
uses the Gaussian nuclear function:

2 n(pla) — p(0)?
w(d) = exp (—d> = exp (— Yim (P ) ) (10)

22 2~2

Among the cluster’s tasks, calculate the resource consumption and benefits
to the cluster from the choice between starting a backup task and not starting
a backup task via equation (11):

pTOfitbackup =aX (trem - tbackup) -2 X 5 X tbackup (11)

profitnotibackup = —f X thackup (12)

In equation (11), (12), alpha denotes the benefit weight of starting the
backup task, and beta represents the cost of the required cluster. When the
following equation is satisfied, the identified backup task of straggler that
maximizes efficiency is automatically started.

trem 2
N +2p

profitbackup > plrofitnot,back:up e tbackup a+ 5 (13)
Here we let (replacef/a, equation(13) can be simplified as follows:
. . trem _ 142
prof”backup > profltnot,backup g tbackup 1+ g (14)
C _ loadfactor _ NUMpending_tasks (15)

MumMm free_slots
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In the above equation, tpqckup represents the runtime required for the s-
traggler backup task, ¢ represents task queue ratio to idle resources in the
cluster as the cluster’s current load factor.

4 Results and Evaluation

In this section, we design performance tests with the aforementioned LWR-SE
algorithm in heterogeneous cloud with three settings based on the linear pre-
diction and actual value comparison of LWR-SE optimization strategies with
LATE, MCP and Hadoop-None conduct comparative testing and evaluation.

4.1 Experimental Operating Environment

Experiments were conducted using Hadoop-2.6.0 with 64-bit Ubuntu Server
operating system to build a server with 8 Hadoop cluster of 10 virtual nodes,
where each server consists of a 10TB hard disk, 288GB of memory and four
Intel Xeon CPU composition. The details of eight virtual nodes are shown in
Table 2. The experimental load uses the Wordcount and Sort datasets under
the Purdue MapReduce benchmark suite in the Hadoop framework.

Table 2 The Details of Eight Virtual Nodes

ID Memory  Core Processors
No. 1 10GB 8
No. 2 8GB 4
No. 3 8GB 1
No. 4 8GB 8
No. 5 4GB 8
No. 6 4GB 4
No. 7 18GB 4
No. 8 12GB 8

4.2 LWR-SE Algorithm Performance Evaluation

Data Prediction Based on LWR-SE Algorithm.As shown in figure 3 and
4, the predictions of the LWR-~-SE model when using the Wordcount data set
and Sort data set, the results are much more accurate than linear regression,
and the red line in the figure represents the prediction error rate. The LWR-SE
model also provides a better fit to the data when the task progress exceeds 80%.
RMES was used experimentally as an evaluation mechanism for prediction
accuracy, as shown in equation (16):

RMSE — M (16)

n
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Fig. 3 LWR-SE model and linear regression model were run using the Wordcount dataset
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Fig. 4 LWR-SE model and linear regression model were run using the Sort dataset

Where p; is prediction and p denotes the real value of the p-point. Tables
3 and 4 show the RMSE values calculated for 15 different tasks, which are de-
rived from Wordcount and Sort dataset were randomly selected. Experiments
showed RMSE values of 1.56 and 1.75 for the Wordcount and Sort datasets.
This is due to contention for finite resources in the Reduce process and the non-
data of copying phrases in the MapReduce. The localization produces some
unusually large outliers. If these anomalies are removed, the average predicted
RMSE for the two is aggregates can be reduced to 0.91 and 0.86.

Table 3 RMSE values for the LWR-SE algorithm based on the Wordcount dataset.

Task 01  Task 02 Task 03  Task 04  Task 05

RMSE(s) 0.89 1.01 0.94 0.48 0.67
Task 06  Task 07 Task 08 Task 09  Task 10
RMSE(s) 0.77 0.85 0.61 0.84 1.15

Task 11  Task 12 Task 13  Task 14  Task 15
RMSE(s) 10.55 1.09 1.74 1.1 0.65




Title Suppressed Due to Excessive Length 11

12
10
o8
06
04
02
00
Viorst Best Average

E m Vot sest ‘werage
(== HadoopNone =2 LATE &= MCP__ 3 LWR'SE (== Hadoopone == LATE == MCP__ =) LWRSSE]

Job Execute Time(s)
Cluster Throughput (job/s)

Fig. 5 The results of running Wordcount jobs under busy load condition.

Table 4 RMSE values for the LWR-SE algorithm based on the Sort dataset.

Task 01  Task 02 Task 03  Task 04  Task 05

RMSE(s) 0.98 0.97 1.31 1.03 1.13
Task 06  Task 07 Task 08 Task 09  Task 10

RMSE(s) 0.16 0.63 0.91 14.2 0.05
Task 11  Task 12 Task 13  Task 14  Task 15

RMSE(s) 0.7 0.96 0.85 1.14 1.34

4.3 Evaluation of LWR-SE

We designed the effect evaluation of the LWR-SE algorithm for three different
load scenarios under clustered work: normal condition, busy condition and
data skew busy condition. The experimental results are divided into three
types: best, average and worst.

Since load scenarios at busy times provide very limited resources to the
cluster, tasks cannot have additional backups, and to ensure inferred execu-
tion. To ensure cluster performance and avoid low accuracy of data due to un-
reasonable usage of cluster resources, we design a simultaneous computation-
intensive and I/O intensive tasks are configured as busy load condition. The
two dataset tasks are set to commit every 150 seconds.

In figure (5) and (6), when running the Sort job under a busy load con-
dition, the LWR- The SE has better performance, with the LWR-SE showing
a 9.7 % improvement in JET average compared to the MCP, LWR-SE com-
parison with LATE shows a 24.9% increase in JET average. LWR-SE and
Hadoop-None, the comparison shows a 30.6 % increase in JET average. When
CT is considered, LWR-SE increases cluster throughput by 9.3% over MCP
and by 36.1% over LATE.

5 Conclusion

Based on the relationship between Hadoop tasks and job progress, this pa-
per proposes the LWR-SE optimization strategy, which has higher local pre-
diction accuracy and ensures the maximum benefit of the user-centric cloud
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Fig. 6 The results of running Sort jobs under busy load condition.

system. Testing of model performance through linear prediction and compari-
son with different strategies in three environments with heterogeneous clouds.
Experimental results show that LWR-SE works better than LATE, MCP and
Hadoop-None.
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