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ABSTRACT Objective: Classification of sleep-wake states using multichannel electroencephalography
(EEG) data that reliably work for neonates. Methods: A deep multilayer perceptron (MLP) neural network
is developed to classify sleep-wake states using multichannel bipolar EEG signals, which takes an input
vector of size 108 containing the joint features of 9 channels. The network avoids any post-processing step
in order to work as a full-fledged real-time application. For training and testing the model, EEG recordings
of 3525 30-second segments from 19 neonates (postmenstrual age of 37 £ 05 weeks) are used. Results: For
sleep-wake classification, mean Cohen’s kappa between the network estimate and the ground truth annotation
by human experts is 0.62. The maximum mean accuracy can reach up to 83% which, to date, is the highest
accuracy for sleep-wake classification.

INDEX TERMS Neonatal sleep staging, electroencephalogram, classification, multilayer perceptron, neural
network.

I. INTRODUCTION which EEG is considered as the most reliable signal for both

Sleep is an important human function, which is identified by
the sequence of brain alterations. For neonates, they spend
most of their time resting in a sleep state. Sleep ontogenesis is
an active process for brain maturation and the central nervous
system. Clinically, sleep-wake cycling (SWC) is the main
hallmark of brain development in neonates [1], [2]. In partic-
ular, in a neonatal intensive care unit (NICU), neonatal sleep
should be protected and promoted.

Polysomnography (PSG) is considered as the gold standard
to monitor sleep and diagnose sleep disorders [3]. In the past
decade, many studies have demonstrated the feasibility of
automated sleep staging algorithms with PSG signals, among
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adults [4]-[6] and infants [7]-[9].

Hans Berger recorded the first EEG of humans
in 1924 [10]. Brain’s electrical activity takes place via
electrical impulses and can be measured from the scalp of
the patient. Electrodes are placed as per the international
10-20 system for electrode placement [11]. Neurologists have
established clear EEG patterns in SWC from 30 weeks post-
menstrual age [12]. In 1937, Loomis et al. proposed the first
application of EEG based study of human sleep patterns [16].
After the novel research of Loomis, multiple algorithms have
been proposed for adult sleep staging using machine [17-20]
and deep learning. Deep learning algorithms for sleep staging
include convolutional neural network (CNN) [21], recurrent
neural network (RNN) [22], the combination of CNN or
RNN [23-24]and Long Short-Term Memory (LSTM) [25,26].
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TABLE 1. Bio-insights neonatal sleep and wake stage.

Sleep Stage

EEG pattern

AASM Manual Definition

Description

Sleep (Quiet
Sleep)

Trace Alternant
(TA)

> 3 runs of high voltage (50-150 pV)
bursts of 1-3 Hz delta activity
alternating with periods of lower
amplitude (25-50 pV) 4-7 Hz theta
activity

Inter-burst intervals (IBIs) appear. Amplitude of
IBIs increases with increasing age.

predominantly theta activity.

Sleep (Quiet | high voltage | Continuous high voltage (100—150 pV) Development of autonomous nervous system
Sleep) slow (HVS) 1-3 Hz delta activity, which often has an (ANS) during quiet sleep (QS).
occipital or central predominance.
Wake/ rarely | Mixed (M) Both HVS and LV polyrhythmic Continuous low amplitude (< 50 uV) 5-7 Hz theta
Active Sleep components intermingled with little intermixed with (> 100 pV) 2-4 Hz slow waves.
periodicity. M typically seen in sleep after period of Wake.
Endogenous neuronal activation occurs
during active sleep (AS).
Wake/ low  voltage | Continuous low voltage Continuous irregular (25-50 uV) 4-7 Hz activity
Active Sleep | irregular (LVI) mixed-frequency activity with delta and intermixed with 1-3 Hz delta of similarly low

amplitude
Development of central nervous system (CNS)
during active sleep (AS).

Contrasting EEG patterns have been observed for neonates
and adults. The neonatal EEG pattern exhibits a smaller mag-
nitude, as compared to the grown-ups. Multiple maturation
changes occur within the first three years [27]. For this pur-
pose, multiple automatic neonatal sleep staging algorithms
based on EEG have been proposed. To the best of our knowl-
edge, most existing algorithms described in previous studies
lack in characterizing ‘wake’ as a distinct state. Other algo-
rithms classified sleep stages based on different characteris-
tics of EEG signals i.e. low voltage irregular (LVI), Active
Sleep I (AS II), high voltage slow (HVS) and Trace Alternant
(TA)/Trace Discontinue (TD) [9], [13]-[15]. The brain matu-
ration process initiates during AS and wake, whereas within
the existing set of frameworks, amalgamation of ‘AS’ and
‘wake’ into LVI state. The bio-insights of sleep and awake
stage is illustrated in Table 1.

In this paper, we present a sleep-wake classification algo-
rithm based on multilayer perceptron (MLP) neural network.
It attempts to resolve the intermixing of different sleep stages
by classifying wake and sleep as un-identical states. Our
work is mainly divided into two parts: Feature extraction
and Classification. Twelve features were extracted from mul-
tichannel EEG and subsequently the MLP was applied for
training and testing the neural network. The remaining part
of the proposed paper is arranged in the following man-
ner: Section II introduces related work. Section III presents
the materials and methods. Sleep-wake classification results
using the proposed method are reported and discussed in
Section IV and V, respectively. Finally, Section VI concludes
the study.

Il. RELATED WORK
For EEG-based neonatal sleep stage classification, different
features have been proposed to measure, for example, EEG
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(dis)continuity [8], frequency content [28], proportional dura-
tion of bursts [29], and the frequency content of bursts [30].
Some maturational abnormalities in the neonatal brain are
only apparent in QS, reflecting more alterations in brain
function [32]-[36]. Turnbull et al. [37] detected a specific dis-
continuous EEG pattern, known as TA as mentioned before.
While proving reliable for TA detection, this was shown to be
not sufficient to infer QS over a wide age range, as QS also
contains HVS signals.

DeWel et al. [38] proposed a supervised algorithm for
sleep state classification across a wide range of neonates
(27-42 postmenstrual age), using an LS-SVM classifier and
multi-scale entropy features. Firstly, the proposed algorithm
estimates the postmenstrual age (PMA) using four complex-
ity features. Then, a sleep state classifier was developed
using these features to identify quiet sleep from neona-
tal EEG data. In 2017, Dereymacker et al. [7] proposed
CLuster-based Adaptive Sleep Staging (CLASS) to auto-
matically detect quiet sleep (QS) [7]. They highlighted the
benefit of QS detection in brain maturation. Another algo-
rithm based on SVM with radial basis function was pro-
posed by Koolen ef al. [8], which can detect QS with an
accuracy of 85%.

To classify all stages of neonate sleep, Pillay er al. [9]
proposed an algorithm based on a generative modeling
approach. Hidden Markov models (HMMs) and Gaussian
mixture models (GMMs) were trained using EEG features
extracted from 16 EEG recordings. For four stages (LVI,
TA/TD, AS 11, HVS), HMMs were showed to be superior with
a Cohen’s kappa of 0.62. Recently, a CNN-based algorithm
outclasses the state-of-the-art sleep stage classification algo-
rithms with a kappa ranged from 0.66 to 0.70 [39]. However,
none of these algorithms considered wake as a separate state
in neonates.
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FIGURE 1. Block diagram of the proposed scheme.
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FIGURE 2. Experimental setup.

As stated before, the current method for sleep-wake
classification in neonates is limited. Fraiwan and Lwseey [31]
proposed an algorithm based on auto-encoders to classify
neonatal sleep stages. It explained two main steps: fea-
ture extraction and classification. Twelve EEG features were
extracted from neonatal EEG for training and testing, yet its
accuracy to detect wake state was restricted to merely 17%.

Ill. MATERIALS AND METHODS

In this section, we present the complete description of the
proposed MLP neural network. Figure 1. shows the block
diagram of the proposed algorithm.

A. DATASET
Video EEG (VEEG) recordings from 19 neonates were used
for testing and training the network [40]. EEG recordings
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were obtained from a NICU at Children’s hospital affili-
ated to Fudan University, Shanghai, China. Approval of the
study was issued by the Research Ethics Committee of the
Children’s Hospital affiliated to Fudan University (Approval
No. (2017) 89). Figure 2. shows the experimental setup
for neonatal sleep monitoring. On average, 120 minutes of
data was obtained from each neonate, in which at least one
sleep cycle was observed. The full 10-20 system for elec-
trode placement includes “Fpl - 2, “F3 - 4,” “F7 - 8,”
“C3-4,) “P3-4 “T3-4, “T5-6,” “O1 -2” and “Cz”
(17 electrodes). Among the 19 EEG recordings we recorded,
15 include all the given electrodes except “T5 - 6,” “F7 - 8”
and “Ol - 2 (11 electrodes). In the remaining 4 recordings
“T5-6,” “F7 -8, “Cz” and “Ol1 - 2” were not recorded,
leading to 10 electrodes included. NicoletOne EEG system
was used to extract multichannel EEG for this study.
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B. VISUAL SLEEP SCORING

EEG segments were visually annoted by two trained doctors.
The primary rater (CL) labelled the start and end time of
each stage i.e. wake, sleep and the artifactual region where
clear sleep stage cannot be classified. Whereas the secondary
rater (LW) verified the regions annoted by the primary rater.
Also, LW annoted the regions where CL were not agreed
on. Sleep and wake stage were identified using both EEG
and non-cerebral characteristics. Videos of the NICU were
also considered during annotation. The annoted regions were
divided into three main categories: wake, sleep and artifacts.

C. PRE-PROCESSING

During recording and processing, EEG recordings got con-
taminated with noise and artifacts. EEG recordings were pro-
cessed on their original frequency of 500 Hz. Before further
processing, these artifacts and noises should be removed from
the EEG recordings. Our pre-processing is divided into three
parts:

1) Filtering the EEG signal using a FIR filter [41].

2) Segmenting the multichannel EEG into 30 sec epochs
and assigning a label to each epoch.

3) Post segmentation, artifacts were removed from the
EEG recordings, in case, if it constitutes 20% of the
artifact. Artifacts were removed based on the annota-
tion provided by the professional doctors. After elim-
inating artifacts, we were left with 3525 segments for
training and testing.

D. FEATURE EXTRACTION

After the pre-processing, we extracted 12 potential features
from each EEG channel and combined them to form an input
vector of size 108. The feature set includes 8 time and 4 fre-
quency domain features. Frequency domain features were
extracted by taking the Fast Fourier Transform (FFT) of the
EEG segments. After FFT, mean frequencies were extracted
from each band (alpha, delta, theta, and beta). Table 2. shows
the list of the extracted features.

E. MULTILAYER PERCEPTION NEURAL NETWORK
MLP neural network has advantageous properties such as,
smaller training set requirements [42], [43], easy implemen-
tation and fast operation. It consists of three primary layers:
an input layer, hidden layer(s), and an output layer. The hid-
den layers are responsible for processing and transmitting the
input information to the output layer. An MLP is a mapping
between two Euclidean spaces (RR"'nl, R"?).

The mapping is defined as a sequence of Euclidean spaces
R™, R™ ... R™ and the mapping (F) connecting them:

Fi:R" > R",Fp):R" - R" ... F_| :R"" — R",

where L are the total number of MLP layers. In the MLP
neural network, each neuron j in the hidden layer sums its
input signals x; after multiplying them by the strengths of the
respective connection weights w;; and computes its output y;
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TABLE 2. Features (per 30-s epoch) extracted from each EEG channel.

Mean

Median

Time Domain Standard Deviation

Variance

Kurtosis

Skewness

Minimum

Maximum

Frequency Domain Delta Band (0.5-3 Hz)

(Mean amplitudes)

Theta Band (3-8 Hz)

Alpha Band (8-12 Hz)

Beta Band (12-30 Hz)

as a function of the sum. Mathematically,

i =1 wijx0) (1

Here w are the weights and are updated according to the
gradient descent algorithm whereas O symbolizes the hidden
layers.

F. GRADIENT DESCENT ALGORITHM

For a neural network, efficiency of learning is important. One
of the efficient algorithms to train the neural network is the
standard gradient descent algorithm (GDA) [44]. GDA works
by taking the derivative of the error function with respect to
the weights at a specific position on the loss function and then
updating the weights towards a negative gradient.

Initially, the weights for the GDA are selected ran-
domly. Once the maximum number of iterations are reached,
the training algorithm stops immediately. The main objective
of the gradient descent algorithm is to minimize the loss
function. The loss function is given as:

N
1
E=N§:||qm—ym||2 2
m=1

N is the total number of iterations, whereas g, and y,, are the
expected and desired value, respectively.

G. PROPOSED MLP NEURAL NETWORK ARCHITECTURE

In this study, an efficient yet simple deep MLP neural net-
work is proposed. The deep MLP has a densely connected
architecture with an input layer of size 256, 3 hidden layers of
size 256-128-64 and an output layer with sigmoid activation
function, resulting in a total of 5-layer MLP neural network.
RMSProp algorithm [45] was used for training the neural
network with a learning rate of 0.001. Two other deep neural
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TABLE 3. Deep neural network structures used in this study for
performance comparison in neonatal sleep-wake classification.

Network Input Hidden Output Epochs
layer layer layer
MLP 256 256-128- 1 5
64 (Sigmoid)
CNN 1*9*1 | Conv 1 30
(Convoluti | 2 (50)- (Sigmoid)
onal Neural maxpool-
Network) conv (30)-
maxpool-
conv (30)-
maxpool-
MLP
RNN 108 13 1 20
(Random (Sigmoid)
Neural
Network)

network algorithms including CNN and RNN were imple-
mented for performance comparison. The network parame-
ters for all the other networks were well tuned and the one
giving best accuracy are reported for comparison. MLPs are
universal function approximators [46] therefore they can be
used for creating mathematical models by regression analy-
sis. This is the main reason behind the success of MLP neural
network in this particular case. The network parameters of
different neural networks implemented are shown in Table 3.
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FIGURE 3. MLP neural network architecture with input size 108. The MLP
network architecture is 256+256%128+x64x1.

Figure 3 shows the proposed MLP neural network archi-
tecture. The input is a combination of features extracted
from the 9 bipolar EEG channels. A total of 12 features
are extracted from each bipolar EEG recording, consisting
of 8-time domain features and 4-spatial domain features as
described in Table 2 of the feature extraction subsection. The
learning parameters of the proposed MLP neural network are
shown in Table 4.
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TABLE 4. Learning algorithm parameters for MLP neural network.

Parameters
Learning algorithm RMSProp
Epochs 5

Moving average parameters | 0.9
Learning rate 0.001

H. EVALUATION

To access the performance of the proposed scheme, multiple
performance matrices have been used. These matrices are
mean accuracy, mean Cohen’s kappa, sensitivity and speci-
ficity. For comparison between different NNs, we reported
mean kappa and accuracy. Mathematically, these perfor-
mance parameters are given as:

TP + TN
Accuracy =
TP+ TN + FP + FN

e P
Sensitivity = ———
TP + FN

Specificity = TN
pecificity = TN + FP

where TP are true positives, TN are true negatives, FP are
false positives and FN are false negatives. In addition to these,
the confusion matrix is also reported.

In order to validate the proposed algorithm during the
design process, the neonatal sleep data was split into 4 folds.
The dataset is divided into 4 subsets and holdout method is
repeated 4 times. Each time, one of the 4 subsets is used as
the test set and the other 3 subsets are put together to form
a training set. Then the average error across all 4 trials is
computed. The advantage of this method is that it matters less
how the data gets divided. 3525 segments were used from
19 subjects for training and testing the neural network. The
final results were obtained by taking the mean of the stratified
4-fold permutation =+ standard deviation.

Learning rate, also known as step size, is one of the
most important tuning parameters in an optimization algo-
rithm. Usually, the learning rate has a small value within the
range 0-1. It determines the step size of every iteration while
moving towards the minimum of the loss function. For this
purpose, different learning rates were used to evaluate the per-
formance of the proposed algorithm. Processing time is also
an important parameter to access the quality of the proposed
algorithm. Computational cost is directly proportional to the
processing time. We also calculated and analyzed the time
used for training and testing the neural network.

As per our assiduous research, there is only one proposed
algorithm which classifies awake as a separate state [31].
For this reason, we applied different machine learning and
deep neural network algorithms on our dataset and compared
the results accordingly. It is pertinent to mention that the
same training and testing datasets were used for each reported
algorithm. Also, same features were used as an input for each
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reported network. This helps us to have a fair comparison
between different algorithms.

IV. RESULTS

All the networks are trained and tested on Intel Core 15-8400,
RAM 16GB with GTX 1050ti. The proposed neural network
was implemented using Keras and TensorFlow. The features
were obtained using MATLAB 2019b. The testing results
give the highest accuracy of 82.53 £ 1.63% (standard error =
0.82) for sleep-wake classification using 5-layer MLP neural
network. Table 5. Shows the confusion matrix for sleep-wake
classification using MLP neural network.

TABLE 8. Results of MLP neural network with different learning rates.

Learning rate Accuracy Kappa
0.1 49.09 0.0
0.01 51.02 0.0
0.001 82.7 0.65
0.0001 73.01 0.48
0.00001 66.21 0.33

TABLE 9. Comparison of MLP neural network with other neural networks
for Sleep-wake classification.

Results for sleep | Accuracy (%) | Kappa | Time (sec)
wake Sleep-wake
TABLE 5. Confusion matrix for Sleep-Wake classification. classification Classification
MLP 82.53 0.65 10.9139
Positive Negative CNN 75.67 0.58 107
Wake (True) 379 78 (Convolutional
Sleep (False) 76 349 Neural Network)
RNN  (Random | 71 0.55 521.489
Table 6. shows the overall test performance alluded by the Neural Network)

confusion matrix. Accuracy, kappa, sensitivity and specificity
are calculated using the confusion matrix shown in Table 5.

TABLE 6. Results for Sleep-Wake classification.

Kappa
MLP 0.65

Accuracy
82.53 %

Sensitivity
83.29 %

Specificity
81.73 %

The results of MLP neural network using different number
of hidden layers are illustrated in Table 7. The proposed
network is optimal with 5 layers having the highest accuracy
of 82.53%, which reduces with increment or decrement in the
number of layers. If we increase the number of layers the net-
work starts overfitting. Whereas by reducing the number of
hidden layers the networks give underfitted results (Table 7).

TABLE 7. Comparison of MLP neural network with different number of
neurons and hidden layers.

Network 1 I I v \Y
Total 3 4 5 6 7
layers

Hidden 1 2 3 4 5
layers

Total 513 641 705 737 752
neurons

Accuracy | 75.6 77 82.53 78 65
(%)

Kappa 0.515 0.52 0.65 0.55 0.317

The accuracy of the neural network changes by changing
the learning rate. Table 8. shows the results of the proposed
MLP neural network using different learning rates. With the
learning rate of 0.001, MLP neural network gives highest
reported accuracy. It is important to note that for learning
rates 0.1 and 0.01, the kappa is zero i.e. the chances are
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TABLE 10. MLP neural network with different number of channels.

Number of | Channel Accuracy Kappa
channels name
1 F4-C4 71% 0.52
4 F4-C4, C4- | 74.7% 0.55
T4, F3-C3,
C3-T3
9 F4-C4, C4- | 82.7% 0.65
T4, F3-C3,
C3-T3, T3-
C3, T4-P4,
P3-F3, P4-
F4, T3-P3

TABLE 11. Comparison of MLP with other machine learning algorithms in
neonatal sleep-wake classification.

Algorithm Accuracy
MLP 82.7%
SVM (Quadratic kernel) 72.2%
Logistic Regression 65.1%
KNN (K=10) 63.1%
Decision Tree (100 splits) | 60.85%

random for sleep-wake classification. Selecting high learn-
ing rate caused undesirable divergent behavior in our loss
function.

The test results of the proposed network architecture
are compared with other neural network architectures. The
results are illustrated in table 9. It is very important to note
that wake and sleep both contain LVI signals, so it is challeng-
ing to distinguish the two stages. Being cognizant of this fact,
the proposed MLP neural network achieved very promising
results to classify sleep-wake cycling with EEG recordings.

VOLUME 8, 2020
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TABLE 12. Overall performance of MLP vs existing algorithms for sleep-wake classification.

Study Year | Database Method Overall Performance Additional information
(wake classification)

Fraiwan et al. | 2017 | University of Pittsburg Deep learning 17% Epoch length=60 sec

[31] recordings autoencoders Sensitivity=46.6%,
Specificity=96%,
Kappa= Random.

This study 2020 | Children hospital Fudan | Multilayer 82.53% Epoch length=30 sec

University recordings perceptron Sensitivity=83.29,

Specificity=81.73,
Kappa= 0.65.

Furthermore, deep neural networks are usually computa-
tionally intensive having high computational cost. In this
regard, the proposed network architecture is simple, effi-
cient and have low computational time (Table 9 ). Therefore,
MLP neural network has potential to be used for real-time
sleep-wake states classification as the network didn’t use any
post-processing process.

Not every NICU is equipped with large amount of EEG
electrodes therefore we also investigated the results of MLP
neural network over a smaller number of EEG electrodes.
For all the cases, we used bipolar EEG recordings. Table 10.
shows the results of MLP neural network using different
number of channels. In the proposed network architecture,
we used 9 bipolar EEG channels. By reducing the number of
channels, the network accuracy decreases. In case of using
4 channels, the accuracy is 74.7% and if using only one
channel, the accuracy drops to 71%.

Mostly, Machine learning algorithms like, SVM, K Nearest
Neighbors (KNN), and Decision Tree give better results while
using handcrafted features. For this purpose, we compared the
results of MLP neural network with machine learning algo-
rithms. Table 11 gives the comparison table of MLP neural
network vs machine learning algorithms. It has been noticed
that MLP neural network performs better as compared to
machine learning algorithms. For each reported algorithm,
results are shown with the parameters giving the best possible
results. Also, itis very important to note that the same training
and testing data were used for every algorithm.

V. DISCUSSION

MLP is proven to be a very successful classifier for different
applications, but to the best of our knowledge this is the first
time MLP has been used for sleep staging. There are number
of algorithms which classified neonatal sleep stages but none
of those algorithms classify wake as a separate sleep stage.
Mostly, wake is combined with AS I to form an LVI stage.
This results in the intermixing of two sleep stages. In this
paper, we classified sleep and wake as distinct stages with
an accuracy of 82.53.

We extracted 12 EEG features from each 30 sec EEG
segment. They are divided into two categories: time domain
and frequency domain. These features were selected because
we noticed highest accuracy with these features. If we change
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the number of features, the accuracy decreases gradually. The
most prominent features are the frequency domain features.
These features are calculated by taking the Fourier transform
of the EEG segment. After applying Fourier transform, we
calculated the mean amplitude of the given bands i.e. alpha,
beta, theta and delta. By adding these features, the accuracy
increases by 15%.

Mostly, CNN method outperforms other neural networks.
To the best of our knowledge, CNN works well with raw
data which has a spatial relationship to extract its own fea-
tures. While, in our case, we engineered our own features
which were best suited for sleep-wake classification. The
engineered features do not possess any spatial relationship,
which a convolutional kernel in a CNN assumes. The use of
different weights for each feature compared to same weights
of a convolutional kernel assumes no spatial relation, which
is truly the case for our features and hence provides better
classification performance.

To report the overall performance of the proposed study
along with the existing algorithm for sleep-wake classifi-
cation. Table 12. Provides the complete evaluation for the
metrices discussed in section III-H. In addition, Table 12. pro-
vides the additional information related to the epoch length
selection and other evaluation metrices. From this, we can
conclude that MLP performs better as compared to the exist-
ing algorithm i.e. deep learning autoencoders.

There are two main limitations of this study that should
be taken into consideration: first, the data used in this study
consists of 19 subjects which is very small. A larger dataset
is likely to increase the performance and concreteness of the
proposed algorithm. Second, there is no algorithm with which
we can compare our proposed algorithm. For this purpose,
we applied different machine and deep learning algorithms
on our dataset and compared the results with MLP neural
network. MLP neural network outclasses all algorithms.

In the proposed study, artifacts were not considered and
were removed manually during preprocessing. These arti-
facts, in the NICU, can contaminate the EEG recordings and
decrease the network performance. It would be advantageous
if we have an automatic method for artifact removal so that
the proposed study can be used directly in an NICU.

As a future work, we aim to classify further sleep stages:
AS, QS, IS and wake. In addition, more data will be used in
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the future study to increase the performance. More consider-
ations will be taken during training and testing to improve the
performance with a smaller number of EEG channels, as this
may help in practical usage.

VI. CONCLUSION

In this study, we proposed a low cost, efficient, and sim-
ple deep MLP neural network for sleep wake classification
using multichannel EEG signals. 8-time domain and 4-spatial
domain features were extracted from neonatal EEG record-
ings and combined to form an input to the neural network
of size 108. This is the first reported automatic sleep wake
classification algorithm. The proposed neural network didn’t
use any post-processing technique which strengthen its candi-
dature to be used for real-time sleep-wake classification. For
comparison, different neural networks were applied on the
same dataset. It is evident from the results that the proposed
MLP neural network shows better results for sleep wake
classification. To conclude, we can say that properties like
real-time processing, low computational cost and easy imple-
mentation makes MLP neural network feasible for neonatal
sleep staging. More importantly, this network can help to
quantify the abnormalities in neonatal brain development.
The future work aims to develop a neural network algorithm
for the classification of more sleep stages.
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