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Abstract—Due to tremendous growth in multimedia applications
and services, people can easily create, distribute, broadcast and
store information. The fact that multimedia content can be
easily copied and tampered has motivated a large number of
researchers to work upon devising content and image veri-
fication techniques using Perceptual Image Hashing (PIH). In
PIH, essential features of an image are extracted and a hash
is calculated which is used for image verification. A PIH scheme
should be resilient to non-malicious manipulations and capable
to detect minute level tampering. In this paper, a PIH technique
using Laplacian pyramid is devised. Laplacian pyramids are
multi-scale representations of an image and can be used to
extract stable features. In the proposed scheme, two different
pyramids are generated by using filters of different diameters.
The difference of Laplacian is calculated to get a unique and
robust hash. A number of experiments have been carried out to
gauge the effectiveness of the proposed scheme. The results reveal
that the proposed technique is robust against non-malicious
manipulations and can detect minute level tampering.

I. INTRODUCTION

Due to tremendous growth in multimedia technologies,
there has been a widespread increase in digital multimedia
applications and services. People can create, distribute,
broadcast and store information effortlessly and can share
it over social media networks such as Facebook, Instagram,
Youtube, Snapchat, etc., as per their desire. Due to digitization
and easy to copy nature, digital data can be easily tampered.
Hence multimedia content authentication has become an
important factor. Multimedia content authentication means
deciding whether the given object matches the original object
or not and whether it is authentic or not [1]. Multimedia data
is a bit stream with exact data values whereas multimedia
content refers to the meaning or semantic of the data [2].
Multimedia object such as an image can be effected by two
types of distortions; malicious and non-malicious as shown
in Figs. 1 and 2. Malicious distortions are those in which
pixels value are changed such that the content of an image is
altered whereas non-malicious manipulations are those which
changes the pixel values, but keep the meaning or semantic
of an image intact [3]. For example in Fig. 1(b) the upper
portion of the lens has been altered. This is an example of
malicious manipulation. An image can have multiple digital
representations that all look same to human perception. These
different digital representations can occur due to different
image processing operations such as compression, histogram
equalization, etc.

(a) Cameraman Image (b) Tampered Image (tampering is
shown inside the circle)

Fig. 1: Original image and its maliciously tampered version.

To ensure authenticity and verification of content integrity, a
number of image hashing techniques have been proposed. [3]–
[5]. An image hash converts the input image into a short string
that is also called image digest [6]–[10]. For visually identical
images, it produces same or closely related hash values.
For images having different contents, it generates different
hashes. Image hashing is different from image stenography
in which data is hidden in an image [11] , [12] and the
hidden information can be used to authenticate the input
image. Traditionally, data verification issues were addressed by
cryptographic hashes such as SHA1 and MD5 [13] which are
sensitive to every bit of an input message. As a result, integrity
of the content could be validated only when each and every bit
of the input message is unchanged. Multimedia data, like dig-
ital images often undergoes content preserving operations or
non-malicious distortions like compression, filtering, etc., that
changes the value of pixels but generally keeps the semantic
of an image intact. For example, Fig. 2 shows the Cameraman
image processed through several non-malicious distortions.
These operations change the pixel value but generally keep the
semantic of an image intact. Therefore, bit by bit verification
using traditional cryptographic hash functions for such images
is not suitable for multimedia authentication and identification.
For authentication of digital images, perceptual hash functions
have been proposed to establish “perceptual equality” of
multimedia content [14].
In perceptual image hashing, robust, unique and stable fea-
tures of multimedia image are extracted and a hash value is
calculated using these features [14]. In order to authenticate
an image, hash value of an original image is compared with
the image to be authenticated using specific hash functions.
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(a) JPEG compression (b) Gaussian noise

(c) Speckle noise (d) Average blurring

(e) Gaussian blurring (f) Motion blurring

(g) Image sharpening (h) Gamma correction

Fig. 2: Illustration of Cameraman image and its non-
maliciously distorted versions.

These functions calculate either distance or similarity between
the two perceptual hashes. The result depends upon the chosen
threshold. A perceptual hash is also known as a fingerprint, a
passive fingerprint, a perceptual checksum, a robust hash, or a
soft hash. Perceptual hash is called passive fingerprint because
the multimedia content itself does not change as hash does not
embed any watermark. However, hash needs to be transmitted
before or after the image that adds an additional overhead
during transmission. Given an image I from a database D and
its perceptually similar copy with small perturbations It , the
image hash is given by h which may additionally depend upon
a secret key k. To make the notation general, the symbol hk is
used to represent a perceptual hash function when it depends
upon the secret key k [15], [16].
Lin and Chang [5] used mean value of Discrete Coefficient
Transform (DCT) to propose a hashing algorithm. The
scheme is resilient to non-malicious modifications, however,
it is sensitive to malicious distortions. Sun and Chang [17]
proposed an algorithm using cryptographic hash function to
embed a watermark for image authentication. Swaminathan
et al. [4] presented a robust and secure image hashing
technique using Fourier transform features and controlled
randomization. The technique is robust against non-malicious
manipulations and secure against malicious manipulations
such as estimation and forgery attacks. Ouyang et al.
[18] used Quaternion Discrete Fourier Transform (QDFT)
and generated a hash which is robust against rotation and
commom image preserving operations. Bhattacharjee and
Kutter [19] presented a model in which Discrete Wavelet
Transform (DWT) is used for extracting the feature points.
This scheme is resistant to malicious manipulations, however,
it shows some errors in detecting the correct location of
the feature points due to wrap around effect of wavelet
transform. Monga and Evans [20] proposed a wavelet-based
iterative feature detection algorithm. This scheme is robust
against face morphing, noise and object addition. However,
the feature points generated are not effective enough to cover
the background, which makes its performance vague under
small tampering. Zhao and Wei [21] used property of rotation
invariance of magnitudes and phases of Zernike moments to
generate a robust image hashing technique. This technique
is efficient in detecting image forgery involving structural
modifications. Zhao et al. [22] combined Zernike moments
and Local features and proposed an image hashing scheme
that can identify image forgery and its location. However,
performance of the proposed scheme highly depends upon
the accuracy of saliency detection. Tang et al. [23] used ring
partitioning and Non-negative Matrix Factorization (NMF) to
generate a rotation invariant hash.

Two important requirements of image hashing is robustness
to non-malicious distortions and ability to detect tampering.
Features that are used to generate an image hash plays a pivotal
role to achieve these properties. Though most of the state-
of-the-art image hashing algorithm possesses high robustness,
however, it is not clear that along with high robustness, how
much minute level of tampering could be detected by their
schemes. This paper attempts to fill this gap by devising an
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image hashing scheme which besides being robust to non-
malicious distortions can also detect minute level of tampering.
In this paper, Laplacian pyramids are used to generate image
hash. A Laplacian pyramid decomposes an image into multiple
scales. This property is used to devise a new PIH scheme
which is both robust to content preserving operations and
sensitive to detect minute level tampering. Following are the
main contributions of this paper:

1) A robust PIH scheme using Laplacian pyramid decom-
position has been proposed along with detailed experi-
mental results.

2) The receiver operating characteristic analysis is per-
formed which reveals that the proposed scheme provides
high robustness against non-malicious manipulations
and can detect minute level of malicious modifications.

The rest of paper is organized as follows: Section 2 illustrates
the proposed scheme. Experimental results are presented in
Section 3. Finally, the paper is concluded in Section 4.

II. THE PROPOSED SCHEME

In this paper, a new method to construct robust image hash
using Laplacian pyramid is proposed. Laplacian pyramids
are filter based, multi-scale representations and can be
effectively used in image hashing. It provides information
regarding edges; hence it is widely used for image analysis
by decomposing images into multi-scales. Construction of
Laplacian decomposition pyramid is not complex as it can
be implemented using successive image resizing operations.
This feature makes it suitable for image hashing. The
lower levels of the Laplacian pyramid contain coefficients
exhibiting detailed representation of the input image, whereas
at higher levels, less detail is available. However at higher
levels, the pyramid coefficients are generally more robust to
non-malicious manipulations like compression, filtering, etc.
Robustness increases as the decomposition level increases
whereas discrimination capability decreases. There is a
trade-off between robustness and discrimination. If robustness
is to be increased by choosing a higher level in the pyramid
for hash construction, then the generated hash will not be
very sensitive to detect minute level tampering. Another
important aspect of using Laplacian pyramid is the size of
the hash. As the level of a pyramid is increased, the size
of hash decreases. For example, if the input image is of
size 256× 256 pixels and level 2 is used, then size of the
hash will be 128× 128. The hash will contain 16384 data
points. At this level, the hash will have more discriminative
capability to detect malicious tampering but will be less robust
to withstand non-malicious distortions. In case Laplacian
pyramid level 4 is used, the hash size will be 32× 32; the
hash will contain only 1024 entries. At this level, the feature
coefficients obtained to generate the hash will be more
robust to withstand non-malicious distortions; however, their
capability to detect minute level tampering will be less as
compared to hash features obtained using level 2 Laplacian
pyramid decomposition. Level 5 contains only 256 features,
but exhibit very poor discrimination capability to detect
malicious tampering. After doing a number of experiments,

Laplacian pyramid level 4 was found to be the best in terms
of robustness, tamper detection and size of hash.

To obtain hash of an image, two different Laplacian pyramids
are generated up to level 4 by using disk filters of different
diameters. The difference of Laplacian is then calculated at
level 4 and the difference is used as a hash of the image.
The initial experiments also revealed that disk filter with
radii 0.8 and 6 give best results in terms of robustness
and minute level tamper detection. Figure 3 illustrates the
idea of using difference of Laplacian decomposition for the
generation of image hash. The proposed scheme consists
of two modules which are explained in the following sections.

A. Hash Generation Module

The block diagram of hash generation module is given in Fig.
4 and the steps are mentioned below.

1) Firstly, an arbitrary input image I of size M×N pixels
is preprocessed. It is converted into a gray scale image
and then standardized to 256×256 pixels. In this step,
Io is obtained as given by Eq 1.

I→ Io (1)

2) The processed image Io is then subjected to Level 4
Laplacian pyramid decomposition to get N1. To obtain
Laplacian of the input image, the input image is down-
sampled then upsampled and finally it is subtracted from
the original image. Let I0 be the original image, I1, I2,
I3 and I4 are the downsampled and blurred versions of
the original image, I′1,I′2, I′3 and I′4 are the upsampled
and blurred versions of I1, I2, I3 and I4, respectively. If
L1, L2, L3 and L4 are the first, second, third and fourth
level Laplacian, then Laplacian pyramid at Level 4 is
calculated as:

L1 = I0− I′1, (2)

L2 = I1− I′2, (3)

L3 = I2− I′3, (4)

L4 = I3− I′4. (5)

The filter used for blurring in this step is a disk filter,
which is a circular averaging filter. The radius of the
disk filter is taken as 0.8. Let the fourth level Laplacian
be represented by

N1 = L4. (6)

3) The image Io is again subjected to Level 4 Laplacian
decomposition to obtain N2, but this time, the radius of
the disk filter used for blurring is taken as 6 instead of
0.8. Laplacian decomposition for this step is given as
follows:

L′1 = I0− Ī′1. (7)

L′2 = Ī1− Ī′2. (8)

L′3 = Ī2− Ī′3. (9)

L′4 = Ī3− Ī′4. (10)
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Fig. 4: Flow chart of hash generation module.

N2 = L′4, (11)

where L′1, L′2, L′3 and L′4 are the first, second, third and
fourth level Laplacian, respectively. Ī1, Ī2, Ī3 and Ī4 are
the down-sampled and blurred versions of the original
image. Ī′1, Ī′2, Ī′3 and Ī′4 are the up-sampled and blurred
versions of Ī1, Ī2, Ī3 and Ī4, respectively.

4) Finally N1 and N2 are subtracted from each other and
their absolute value is taken. This absolute value is the
final hash h as given below.

h = |N1−N2|. (12)

Level 5 Laplacian decomposition can also be applied in Steps
2 and 3. The size of Level 5 decomposition is 16× 16 for
a 256×256 input image. Although this decreases the size of

hash, but it also decreases the capability of tamper detection.
For Level 4 Laplacian, the final size of image hash is 32×32
and hash formation is illustrated in Fig. 5. As discussed earlier,
disk filter with radii 0.8 and 6 yield best results. The disk filter
of radius 0.8 causes less blurring. When radius is increased to
6, the blurring effect of the disk averaging filter increases.
This helps to get robust features that are also sensitive to
tamper detection. This difference in two Laplacian of Level
4 to generate image hash is the key idea in this paper.

B. Hash Verification Module

1) The received image is subjected to Level 4 Laplacian
pyramid decomposition and hash H ′ is calculated using
Eqs. 6, 11 and 12.
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Fig. 5: Formation of final hash.

2) A difference matrix d is calculated as follows:

d = |H−H ′|, (13)

where H is the received hash and H ′ is the calculated
hash of the received hash.

3) In the final step, each element of the difference matrix d
is compared with a chosen threshold, tr. If any element
of d is greater than tr, then the corresponding spatial
area of the image would be considered as tampered.

III. EXPERIMENTAL RESULTS

The evaluation of the proposed scheme by illustrating results
of all malicious and non-malicious modifications is presented
in the subsequent sections. Robustness and tamper detection
results are discussed. All the experiments, i.e., robustness and
tamper detection tests are applied on eight test images shown
in Fig. 6. These images are selected to encompass variations
in image contrast and texture.

A. Tamper Detection

In order to evaluate the capability of tamper detection, hashes
of test images (Fig. 6) are compared with their tampered
versions (Fig. 8), respectively. For all the images, tampered
area has been encircled. Firstly, hash of original image is
calculated, then hash of tampered image is calculated and
finally maximum of absolute difference (dmax) is calculated
between the two hashes. The results are tabulated in Table I.
It is pertinent to mention that the ratio of tampered area with
respect to total area of the image is less than 2% in all cases
which is very small if compared with the tampering generally
shown in the literature [20], [22] and [24]. As shown in Table I,
the minimum absolute difference values for tamper detection
is 28. This means that the value of threshold tr should be
less than dmax. Hence tr should be less than 28 in order to
detect minute level tampering of approximately 2% for the
sample images taken into consideration. To further show how

TABLE I: Value of dmax when original image hash is compared
with the hash of its maliciously tampered version.

Tampered images Maximum of absolute difference

Cameraman image 28
Window image 38

Track image 31
Lena image 45
Bird image 39
Leaf image 100

Baboon image 32
Lion image 45

(a) Cameraman Image (b) Window Image

(c) Track Image (d) Lena Image

(e) Bird Image (f) Leaf Image

(g) Baboon Image (h) Lion Image

Fig. 6: Test Images.
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Fig. 7: Difference matrix between original and tampered
Cameraman image.

the proposed scheme works, an example is now presented
using the Cameraman image and its tampered version. These
two images are shown in Figs 6a and 8a, respectively. In this
example, for the ease of illustration, level 5 Laplacian pyramid
is used to obtain the hash coefficients. Therefore, the hash
size is 16× 16 for a 256× 256 input image. Figure 7 shows
the difference matrix d obtained by calculating the absolute
difference between the hash of the original Cameraman image
and its tampered version. If the system threshold is selected
as 7, then the number 10 encircled in Figure 7 would be
a potential case of tamper detection as it is greater than 7.
The element 10 is at position (5, 11). Each element of the
difference matrix d represents 16× 16 spatial area of the
original image. This means that the corresponding tampered
area in the original image is at the spatial position (64, 160)
to (80,176). This 16×16 area can be highlighted in the input
image to identify the detected tampering.

B. Robustness

In order to demonstrate robustness of the proposed scheme,
hash of the original image was compared with the hash
of manipulated versions of the same image. A number of
content preserving distortions were applied such as noise,
blurring, luminance changes, geometric attacks and filtering.
The parameters such as variance (σ ) of Gaussian noise, quality
factor (Q) of JPEG compression, radius (r) of average blurring,
etc., were varied. Maximum of absolute difference (dmax)
between original image hash and distorted image hash was
calculated for all the images. Graphs are plotted for dmax vs
changing parameters as shown in Fig. 9. For example, JPEG
compression at different quality factors was applied to all the
test images and the maximum value of absolute difference was
observed. Similarly, the test images were subjected to other
non-malicious distortions such as Gaussian noise, Gaussian
blur, etc. The idea is to thoroughly test robustness of the
proposed hashing scheme under the effect of different non-
malicious distortions. Table II shows different types of non-
malicious distortions along with their range. The graphs shown
in Fig. 9 reveal that there is a gradual increase in the value of
dmax when the intensity of non-malicious distortions increases.
Speckle noise shows abrupt behaviour after noise variance,

(a) Tampered Cameraman Image. (b) Tampered Window Image.

(c) Tampered Track Image. (d) Tampered Lena Image.

(e) Tampered Bird Image. (f) Tampered Leaf Image.

(g) Tampered Baboon Image. (h) Tampered Lion Image.

Fig. 8: Tampered versions of test images.(Tampering is shown
inside the circles.)
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TABLE II: Range of non-malicious distortion parameters.

Distortion type Control parameter Range

Gaussian Noise Variance (v) v = 0.005 to 0.05
Speckle Noise Noise Variance (Nv) Nv= 0.006 to 0.06

Gaussian Blurring Standard Deviation (σ ) σ = 0.2 to 2
Motion Blurring Linear Motion by pixel(L) L=1 to 10
Average Blurring Radius r r = 1 to 10

Gamma Correction Gamma (γ) γ = 0.2 to 2
Image Sharpening Sharpening amount Fh Fh = 0.3 to 0.3

JPEG Compression Quality factor (Q) Q = 10 to 100

Nv=0.04. Average blurring and motion blurring change signif-
icantly by changing the radius and linear motion respectively.
In case of gamma correction, the curve is more steep when
gamma value is less than 1.

IV. SYSTEM THRESHOLD

In the proposed scheme, the size of image hash is 32×32. If
two images are identical, then ideally all the values of the d
matrix will be zero and would increase when the perceptual
similarity between two images decreases. Hence a suitable
threshold needs to be identified in order to differentiate ma-
licious tampered images from non-malicious images. Let di j
be the ith row and jth column of the difference matrix. If v is
used for verification of image, ‘1’ represents authentic image
and ‘0’ represents non-authentic image, then the relation of v,
d and tr is given by Eq 14.

v =
{

1 i f di j 6 tr f or all i, j.
0 i f di j > tr f or all i, j. (14)

It has always been a challenge to determine a suitable
threshold because robustness and discrimination capability
have inverse relationship. There is a trade-off between
robustness and tamper detection capability. From the tamper
detection results shown in Table I, it is evident that the
smallest value of dmax is 28. If for example, tr is chosen as
28, this means that it is necessary that the value of dmax for
all the non-maliciously distorted images should be less than
28. The result of non-malicious distortions in Fig. 9 shows a
range of distortion parameters and the corresponding value
of dmax. In fact, the maximum distortion parameter could be
higher than what is shown in Fig. 9. An obvious question
which comes in mind is that what should be the maximum
value of non-malicious distortion parameter to gauge the
robustness of the proposed scheme. A small value would
make the scheme to appear more robust; but this would be a
biased selection.

To solve this problem, a simple experiment was performed.
The Cameraman image was selected as a test case and
different non-malicious distortions with high value of
distortion parameters was applied. The reason for selecting
the Cameraman image is that it contains a lot of low texture
regions thus making the distortions visibly prominent. For the
purpose of illustration, results of several distortions are shown
in Fig. 10. From the results, it is clear that such excessive
distortions severely destroy the semantic of the image. We

(a) Gaussian Noise (b) Speckle Noise

(c) Gaussian Blurring (d) Motion Blurring

(e) Average Blurring (f) Gamma Correction

(g) Image Sharpening (h) JPEG Compression

Fig. 9: Plots of maximum of absolute difference vs changing
parameter for different non-malicious distortions.
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(a) Gaussian Noise v=0.045 (b) Speckle Noise Nv=0.06

(c) JPEG Compression Q=5 (d) Average Blurring r=4

(e) Motion Blurring L=7.5

Fig. 10: Illustration of extreme level distorted versions of
Cameraman image.

feel that choosing a threshold which allows such high non-
malicious distortion is practically not correct. Table III shows
the value of non-malicious distortion parameters chosen after
doing a number of experiments. The distorted versions of the
Cameraman image after applying non-malicious distortions
with parameters enlisted in Table III are shown in Fig. 11.

The chosen distortion parameters are very much consistent
with the ones reported in literature, for example, [22], and
[25]. Interestingly, the corresponding value of dmax is smaller
than 28 for the chosen distortion parameters. This result is
very encouraging as it shows that the proposed scheme can
detect minute level tampering along with good robustness
capability. The parameters shown in Table III are subsequently
used for ROC analysis of the proposed scheme. The results
of non-malicious manipulations when applied on all test
images are tabulated in the Table IV. To get a more general
idea as to how the proposed scheme reacts to non-malicious
distortions, tests were also applied on a set of 100 images
whose results are tabulated in Table V.

(a) Gaussian Noise (b) Speckle Noise

(c) Gaussian Blurring (d) Motion Blurring

(e) Average Blurring (f) Gamma Correction

(g) Image Sharpening (h) JPEG Compression

Fig. 11: Non-malicious distorted versions of Cameraman im-
age taken into considerations.
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The highest value of dmax obtained is 10. Hence, considering
these results, it is concluded that if an image needs to be
authenticated positively for the type of distortions considered,
the value of threshold tr should be taken as 20. With this
threshold, the proposed algorithm would be highly robust
towards non-malicious manipulations and detect minute level
tampering.

V. THE RECEIVER OPERATING CHARACTERISTICS CURVE

The performance of the proposed scheme is evaluated using
the Receiver Operating Characteristics Curves (ROC). The
ROC curve is plotted between False Acceptance Rate (FAR)
and False Re jection Rate (FRR) w.r.t to changing threshold.
Equations 15 and 16 define FAR and FRR.

FAR =
IT DA

IT
(15)

FRR =
IADT

IA
(16)

In Eq 15, IT DA represents the total number of tampered images
detected as authentic and IT represents the total number of
images. Similarly in Eq 16, IADT represents the total number
of authentic images detected as tampered and IA represents
total number of authentic images. False acceptance rate is
the probability of a system to detect manipulated images
as authentic images whereas, false rejection rate depicts the
probability of detecting authentic images as manipulated im-
ages. For a system to be efficient, its false acceptance rate
as well as false rejection rate should be small. If a system
has high false acceptance rate then there will be a high risk of
wrong image verification, thus decreasing the tamper detection
capability of a system. On the other hand, high value of false
rejection rate would frequently reject genuine images and will
decrease the robustness of an authentication scheme. There is
always a trade-off between FAR and FRR as they are inversely
proportional to each other. This trade-off quantifies robustness
and tamper detection capability of a scheme. Therefore, it
is required to balance robustness and tamper detection at a
desired value. The operating point of an ROC curve depends
upon application of a hashing system. If a user needs the
hashing system in which any sort of tampering is detected,
then in this case, the false acceptance rate needs to be zero,
which in turn would significantly increase the false rejection
rate.

A. FAR and FRR Estimation

To estimate FAR, a database of 100 images was created. Ten
different images were selected and each image was subjected
to ten different types of tampering. The size of tampering
was kept less than 2% of the total image area. This size
in general is very small if we compare it with the size of
tampering done in several papers, for example [20], [22] and
[24]. The FAR for the system was calculated by comparing
hash of the original image with its ten tampered versions.
Hence, there were 100 comparisons in total. Then number of

Fig. 12: Plot of False Acceptance Rate (FAR) vs Threshold

(a) Gaussian Noise (b) Speckle Noise

(c) Gaussian Blurring

Fig. 13: Plots of False Rejection Rate vs Threshold.

images that were authenticated as positive were noted and the
false acceptance rate was calculated using Eq. 15. The FAR
plot is shown in Fig. 12, when the system threshold was varied
from 1 to 100. FAR increases with the increase in threshold
(tr). FAR is zero at threshold equal to zero. When threshold is
between 1 to 10, the value of FAR varies from 0 to 0.05. At
high threshold, the value of FAR increases mainly due to the
fact that the tampering area considered in the paper is small.
To obtain FRR, 100 different images were taken and non-
malicious distortions were applied to each image. A total of
800 images were used to estimate FRR. The hash of original
image was compared with the hash of the distorted image to
obtain the number of images detected as non-authentic. False
rejection rate was calculated by using Eq. 16 by changing tr
from 1 to 100. Plots of false rejection rate with respect to
threshold are shown in Figs. 13 and 14.
FRR decreases as the threshold increases. In case of Gaussian
noise and speckle noise, FRR remains 1 till threshold tr = 5,
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TABLE III: Non-malicious distortion parameters.

Distortion type Details Control parameters Specifications

Noise Gaussian Noise Mean (m), Variance (v) m = 0,v = 0.01
Speckle Noise Noise Variance (Nv) Nv= 0.02

Blurring Gaussian Blurring Standard Deviation (σ ), σ = 1.6,
Window size (Fs) Fs = [11x11]

Motion Blurring Linear Motion by pixel L=5,
(L), Angle (θ ) θ = 90

Average Blurring Radius r r = 3

Luminance Changes Gamma Correction Gamma (γ) γ = 1.2
Image Sharpening Radius (r), r = 2,

Sharpening amount (Fh) Fh = 1
Geometric Attacks JPEG Compression Quality factor (Q) Q = 10

TABLE IV: Value of dmax for high contrast images.

Non malicious distortions dmax

Cameraman Window Track Lena Bird Leaf Baboon Lion
image image image image image image image image

Gaussian Noise m = 0,v = 0.01 5 8 6 4 3 6 4 5
Speckle Noise Nv= 0.02 4 11 3 5 3 6 4 4

Gaussian Blurring σ = 1.6, Fs = [11x11] 4 15 1 4 2 4 3 5
Motion Blurring L=5, θ = 90 2 12 1 2 1 3 2 3

Average Blurring r=3 4 15 1 4 2 4 3 4
Gamma Correction γ = 1.2 6 6 8 4 4 5 3 5

Image Sharpening r=2, Fh= 1 7 13 5 7 3 6 4 4
JPEG Compression Q = 10 3 5 3 3 3 3 3 4

TABLE V: Value of dmax for a set of 100 images.

Non malicious distortions dmax for a set of 100 images

Gaussian Noise m = 0,v = 0.01 9
Speckle Noise Nv= 0.02 6

Gaussian Blurring σ = 1.6, Fs = [11x11] 7
Motion Blurring L=5, θ = 90 4

Average Blurring r=3 6
Gamma Correction γ = 1.2 10

Image Sharpening r=2, Fh =1 10
JPEG Compression Q = 10 5

which means that most of the genuine samples will be rejected.
For Gaussian blurring and average blurring, FRR becomes 0
at tr = 5. This indicates that after threshold tr=5, no genuine
image will be rejected. For gamma correction and Gaussian
noise, FRR becomes 0 at tr=10. Hence, the scheme is robust
against non-malicious manipulations. There is a rapid decrease
in FRR for image sharpening and highpass filtering and it
becomes 0 at tr=10. The proposed scheme is highly robust
against JPEG compression as FRR becomes 0 at tr=4.

B. ROC Curves

Figures 15, 16 and 17 shows the Receiver Operating
Characteristic (ROC) curves for several non-malicious
distortions like Gaussian noise, speckle noise, motion
blurring, etc. These curves are obtained by plotting FAR on
the x-axis and FRR on the y-axis. The values of FAR and FRR
were calculated using Equations (15) and (16), respectively.
To estimate FAR, a database of 100 images was created. Ten
different images were selected and each image was subjected

to ten different types tampering. The size of tampering was
less than 2% of the total image area. Hence, there were
100 comparisons in total. By changing the threshold from
1 to 100, the values of FAR were calculated using Equation 15.

To obtain FRR, 100 different images were taken and
were subjected to 8 different types of non-malicious
manipulations mentioned in Table III, thus creating a
database of 800 images for FRR estimation. Each image
was compared with its eight distorted versions to calculate
FRR using Equation 16 by varying the threshold from 0
to 100. For each value of threshold, the corresponding
values of FAR and FRR were plotted to obtain the ROC
curve. For each ROC curve shown in Figs. 15, 16 and
17, a specific non-malicious distortion was chosen to obtain
FRR while all 100 tampered images were used to obtain FAR.

At low value of FAR, the value of FRR is high, exhibiting
the fact that if the system is required to be extremely
sensitive to detect malicious tampering, then it will reject
genuine samples of the same image that were subjected to
non-malicious distortions. For example, in case of image
sharpening, Fig. 17a, the value of FRR is 0.5, in case if the
required FAR is to be kept close to 0. This implies that if the
threshold is kept such that the system is sensitive it should
be sensitive to detect minute level tampering, then it would
reject around 50% of the genuine images. On the other hand,
if the system is to be made robust to withstand non-malicious
distortions, then it will lose its tamper detection capability
and may positively authenticate tampered version of the input
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(a) Motion Blurring (b) Average Blurring

(c) Gamma Correction (d) Image Sharpening

(e) JPEG Compression

Fig. 14: Plots of False Rejection Rate vs Threshold.

TABLE VI: Value FAR and FRR for non-malicious distortions.

Non malicious distortions FAR FRR

Gaussian Noise m = 0,v = 0.01 0.02 0.06
Speckle Noise Nv= 0.02 0.01 0.06

Gaussian Blurring σ = 1.6, Fs = [11x11] 0.02 0.01
Motion Blurring L=5, θ = 90 0.01 0.05

Average Blurring r=3 0.01 0.02
Gamma Correction γ = 1.2 0.02 0.08

Image Sharpening r=2, Fh= 1 0.02 0.1
JPEG Compression Q = 10 0.01 0

images. For example, in case of image sharpening, to obtain
a low value of FRR like 0.01, the value of FAR is 0.04. To
obtain a balance between robustness and tamper detection
capability, the threshold should be adjusted such that both
FAR and FRR are low. For the purpose of illustration, suitable
values of FAR and FRR are encircled in Figs. 15, 16 and 17
for each case of non-malicious distortion. It is promising to
note that low false acceptance and false rejection rates can
be obtained simultaneously. The values of FAR and FRR are
tabulated in Table VI.

(a) Gaussian Noise (b) Speckle Noise

(c) Gaussian Blurring

Fig. 15: Receiver Operating Curves.

TABLE VII: Equal Error Rate for Non-malicious Distortions.

Non-malicious Distortions Equal Error Rate (ERR) Threshold

Gaussian Noise m = 0,v = 0.01 0.03 8
Speckle Noise Nv= 0.02 0.03 9

Gaussian Blurring σ = 1.6 0.02 6
Motion Blurring L=5, θ = 90 0.01 5

Average Blurring r=3 0.01 5
Gamma Correction γ = 1.2 0.03 8

Image Sharpening r=2, Fh= 1 0.03 8
JPEG Compression Q = 10 0.01 5

C. Equal Error Rate (ERR)

Equal Error Rate (EER) is a point where FRR is equal
to FAR. EER helps the user to choose a suitable threshold.
Since FRR and FAR have inverse relation, hence if one
increases, the other decreases. If the threshold is increased, the
FAR increases and FRR decreases. Hence robustness increases
with the increase in threshold and tamper detection capability
decreases. For finding out EER, FAR and FRR are ploted
against threshold and the point of their intersection is noted.
EER for different non-malicious manipulations is tabulated in
Table VII.
All the distortions have different thresholds, where FAR is
equal to FRR. Choosing the threshold accordingly makes the
algorithm robust for the particular non-malicious distortion.
For example, if threshold of value 4 is chosen, then the
proposed algorithm will become highly robust against motion
blurring. However, robustness against rest of the distortions
will decrease at the given value of ERR.

D. Comparison of ROC Curves with Other Schemes

The results of proposed scheme are compared with the ROC
curve results of three papers, [4], [20] and [26]. The first two
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papers are among the most cited papers in image hashing and
the third one is a recent paper. Although tampering in these
papers is greater than the tampering used in this work, yet the
proposed scheme shows very good results. FAR and FRR of
the under consideration papers and of the proposed scheme
are mentioned in Table VIII. In these papers, the result of
non-malicious distortions were not shown separately rather
the cumulative effect of all distortions was used to find FRR
and FAR.

From the results mentioned in Table VIII, it is observed that
for Gaussian blurring, average blurring and JPEG compres-
sion, the proposed scheme gives better FAR and FRR values
than the schemes mentioned in [20] and [4], whereas JPEG
compression outperforms all the schemes mentioned in Table
VIII. For other non-malicious distortions, the results are quite
close to the one reported in [20], [4] and [26].

VI. CONCLUSION

In this paper, a robust PIH scheme is presented using Laplacian
pyramid decomposition. The proposed scheme uses fourth
level Laplacian pyramid decomposition to generate a hash
of size 32× 32. A detailed analysis of the scheme has been
carried out from two aspects; (i) perceptual robustness and (ii)
tamper detection. For robustness analysis, a number of non-
malicious distortions were used and their respective parameters
were varied. The parameters upon which the scheme yields
best results were suggested. It becomes very easy to select a
suitable threshold under the defined parameters because there
is sufficient gap between dmax of non-malicious and malicious
modifications. ROC curves were plotted to analyze false de-
tection and false rejection capability of the proposed scheme,
when malicious and non-malicious manipulations are applied
on the input images. ROC curves yield good results and low
FRR and FAR were obtained. Thus, the proposed scheme is
robust and can successfully detect tampering as small as 2%
of the total image area. Comparison of the proposed scheme
with some well known image hashing schemes also showed
promising results. The proposed PIH scheme is however
not rotational invariant. This limitation can be addressed by
applying Fourier-Mellin transform in future work.

TABLE VIII: Value FAR and FRR for non-malicious distor-
tions.

Other Schemes FAR FRR
Monga [20] 0.02 0.03

Swaminathan [4] 0.05 0.05
Qiang Ma [26] 0.06 0

Proposed Scheme FAR FRR
Gaussian Noise m = 0,v = 0.01 0.02 0.06

Speckle Noise Nv= 0.02 0.01 0.06
Gaussian Blurring σ = 1.6, Fs = [11x11] 0.02 0.01

Motion Blurring L=5, θ = 90 0.01 0.05
Average Blurring r=3 0.01 0.02

Gamma Correction γ = 1.2 0.02 0.08
Image Sharpening r=2, Fh= 1 0.02 0.1

JPEG Compression Q = 10 0.01 0

(a) Motion Blurring (b) Average Blurring

(c) Gamma Correction

Fig. 16: Receiver Operating Curves.

(a) Image Sharpening (b) JPEG Compression

Fig. 17: Receiver Operating Curves. a) ROC curve b) Enlarged
view of ROC curve.
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