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Abstract 

This paper discusses issues and solutions for 
supporting multiple overlapping classifications in 
database systems. These classifications are commonly 
found in science, although they are often ignored in 
computing applications for scientific data, and 
inappropriate solutions adopted as their replacement. 
Known database models and classification techniques 
offer some degree of support for multiple overlapping 
classifications, but do not fully support the basic features 
we have identified as necessary: trees/graphs, 
traceability, semantics of classifications, independence of 
classification and data, and identity of classifications.  

The approach to the problem adopted by the 
Prometheus project, based on an extended object-oriented 
database model and the independence of classification 
schemes from classified data, is presented and discussed. 

 
 
1. Introduction 
 
Classification is a widespread concept that helps 

categorise, and therefore simplify data or objects in order 
to facilitate their understanding and manipulation. 
Through representing the relationships between classified 
things, classifications may provide new insights into the 
things being classified, e.g. discovering that two groups 
thought to be independent are in fact related in some way 
or deducing from relationships between groups that they 
have similar properties. They also allow automatic 
reasoning, e.g. propagation of attributes in computing 
models [32] [15] or support user interactions, e.g. 
simplification of searches.  

Examples of familiar classifications include library 
catalogues where books are placed into categories (e.g. 
genre) in order to ease access and simplify their 
management. Medical classification mechanisms, such as 
the International Classification of Diseases (ICD), which 
catalogues and relates diseases in order to make 
prevention, diagnosis, and cure possible. Classification of 

living organisms as found in for example plant and animal 
taxonomy and virology. 

In order to model and support classifications, we need 
to understand how they work. Two aspects of 
classifications can be distinguished: the way objects are 
grouped into classes of equivalence, and the way classes 
of equivalence relate to each other and form hierarchies. 

Classes of equivalence 
In classifications, collections of objects are gathered 

and classes of equivalence are created within the 
collection (Figure 1 a-d) via an equivalence function. The 
equivalence function results in objects being instances of 
their class(es) and not of others. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Creation of classes of equivalence 

 
The equivalence function that partitions an application 

domain dictates how the set of objects to be classified will 
be clustered. The application of that function may result in 
the creation of distinct groupings without overlap. This is 
the case when the equivalence function offers exclusive 
partitioning. For example, eye colour offers an exclusively 
partitioning function: people normally have only one eye 
colour. Applying this equ ivalence function to a group of 
objects will result in several distinct sets as shown in 
Figure 1-b where each set represents a class of 
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equivalence containing people with a particular eye 
colour. 

In other cases, the partitioning function doesn’t 
provide a clean clustering and objects may belong to 
several classes of equivalence. For example, the attribute 
genre of a library classification may have values “fiction”, 
“crime”, “drama”, and “historical ”. This equivalence 
function may lead to non-exclusive partitioning of the 
domain because its values are not exclusive. For example, 
a novel may be of genre “crime” and “historical” at the 
same time as shown in Figure 1-c. Therefore a book may 
belong to more than one category simultaneously. It may 
be argued that this shows a bad choice of equivalence 
function, but the fact is that these classifications do exist, 
are seen to be useful and therefore cannot be ignored. 

The complexity of the equivalence function may als o 
lead to non-exclusive partitioning of the domain. When 
the equivalence function is composite, i.e. it is made of 
several equivalence functions applied simultaneously (the 
classification is said to be polythetic, it is monothetic 
when only one function is used), objects to which the 
function is applied may fulfil the requirements of several 
classes simultaneously. For example, a book partitioning 
that takes into account the genre, the period, and the place 
of origin of the author of books will lead to a partitioning 
where a book may appear in, say, XXth century writing, 
crime, and Scottish writing (Figure 1-d). 

Class hierarchies 
In addition to gathering objects, classes of equivalence 

can be related to each other via the classification scheme. 
The mechanism underlying all classification schemes is 
membership. Indeed, all classification hierarchies imply 
that lower level classes are members of higher classes. 
They also imply that objects that are instances of lower 
classes of equivalence are also, through transivity of the 
classification function, instances of higher classes of 
equivalence (Figure 2). 

 
 
 
 
 
 
 
 
 

Figure 2: Two views of a classification hierarchy 

 
We can identify at least three main kinds of 

classification semantics (the classification function): 
subsumption classifications (is -a), decomposition 
classifications (part-of), and similarity classifications. 

Is-a classifications are based on the concept of 
specialisation/generalisation. Classes of equivalence are 
organised into a directed acyclic graph (DAG) where their 

semantics are specialised in a top down fashion. An 
example of an is -a classification is the concept of object 
class hierarchy in computing, where objects are grouped 
into classes according to their structure and classes 
arranged into a specialisation/generalisation hierarchy 
based on e.g. attribute and structure. Another example is 
library information management, where the classification 
scheme may be based on genre. Books are placed into 
categories as shown in Figure 3. The 
generalisation/specialisation hierarchy places most 
specific classes at the bottom and more general ones at the 
top.  

 
 
 
 
 
 
 
 
 

Figure 3: Is-a classification 

 
Part -of classifications are based on the concept of 

decomposition of objects into smaller objects. Each object 
is related to its parent (whole) via a part-of relationship. 
These classifications form an abstract to concrete 
classification where higher concepts are transitively made 
of lower concepts. The semantics of part-of relationships 
have been extensively studied and include functional 
relationships, topological relationships, and homeomeric 
relationships [29]. An example of part-of classification is 
the International Classification of Diseases (ICD), where 
one classification is based on topology, i.e. it decomposes 
the human body into sub-parts in order to describe the 
illnesses that may affect each of them (Figure 4). 

Similarity classifications, as other classifications, are 
based on the concept of membership. The classification 
function clusters classes of equivalence by similarity. 
They are related to is -a classifications, that also group 
classes by similarity (attribute structure) but do not imply 
the subsumption rules is -a classifications exhibit. An 
example of similarity classification is plant taxonomy 
where taxonomists create classifications based on 
similarity of specimens or taxa1 (the classes of 
equivalence) according to phenotypic descriptions. Figure 
5 shows an extract from a taxonomic classification built 
on similarity. The classification shows that “Caucalideae” 
and “Coriandreae” are similar in some respect and 
therefore belong to the same higher group, 
“Multiiudatae”. 

 

                                                                 
1 Group of specimens or other taxa 
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Fiction Non-fiction 

Crime Historical Biography

Is-a 
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Figure 4: part-of classification 

 
 
 
 
 
 
 
 

Figure 5: similarity classification 

 
Other classification semantics are possible, as long as 

the classification function is transitive and a partitioning 
function for the domain is available. 

Plant taxonomy 
Plant classification is called a taxonomy because 

classes appear only once and in one place in each 
individual classification. Figure 3 shows a non-taxonomic 
classification because the class “historical” appears both 
in classes “Fiction” and “Non-fiction”. 

Plant taxonomy classifications exhibit additional 
peculiar properties. Plant taxonomy can be called a 
population-based classification mechanism. Theoretically 
[18], taxonomic classifications consist of one-level 
classifications where specimens are put into piles (classes) 
according to their characteristics. The classes (taxa) are in 
addition objects in their own right that are published when 
a name is assigned to them by application of nomenclature 
rules [18]. 

However, for practical reasons, i.e. it is hard to handle 
thousands or more specimens at once, these one-level 
classifications are merged into n-level classifications 
where elements of each level are instances of elements of 
the next higher level, i.e. taxa are made members of 
higher taxa. Specimens are members of all higher taxa by 
transitivity of the inclusion relationship. 

This leads to classes that are both classes of 
equivalence that gather objects that fulfil certain 
requirements (e.g. they look similar), and act as surrogate 
objects for the objects they recursively contain, therefore 
are in turn classified. 

Multiple classifications 
In some application domains, revision of 

classifications is regular or common. For example, the 
ICD is revised by the World Health Organization every 10 
years approximately and updated every year for minor 

changes. Each revision creates a new classification of 
diseases that replaces older ones, and each new version 
shows the history of classes (e.g. two new classes may 
correspond to a single class in an older version of the 
ICD). 

In plant taxonomy, revisions are common as they are 
made when new data, new techniques, or new opinions 
appear and may lead to a different understanding of the 
world (e.g. DNA sequencing in the last few years). Unlike 
for the ICD, new revisions do not replace older ones 
therefore all classifications ever published are valid. These 
classifications also form the basis of new classifications 
through revision. This leads to a large number of 
classifications (hierarchies of taxa) of the same specimens 
or taxa as overlapping groups of specimens (i.e. groups 
sharing specimens). Figure 6 shows an example of 
multiple classification in plant taxonomy. The first 
classification (top), Berchtold & Presl 1820, is highlighted 
and all the classes that appear in that classification are 
highlighted in two subsequent classifications, Koch 1824 
and De Candolle 1830. It is apparent that groups are 
moved around and are classified differently over time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Multiple classifications 

 
As we have seen, classifications are not always the 

straightforward unambiguous tree structures shown in 
Figure 2. We have seen that the objects that are classified 
may appear in many classes of equivalence when the 
partition function allows it. We have also seen that classes 
of equivalence can be related in several ways (one of 
which is is -a) and may appear in several higher classes 
(non-taxonomic classifications). We have also seen that 
some application domains generate several classifications 
overlapping in terms of classified objects and classes (e.g. 
plant taxonomy, ICD). 

Because of the complexity of dealing with these 
multiple overlapping classifications, they are generally 
ignored in both biology (e.g. in plant taxonomy where 
consensus classifications are forced upon taxonomists 
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[36]) and computing (e.g. where classifications are 
declared suitable for biological classifications [28] when 
they only handle single classifications). 

This paper first discusses the issues associated with 
supporting multiple overlapping classifications such as 
those found in plant taxonomy [36]. Then the ability of the 
major existing families of database models to handle 
multiple overlapping classifications is discussed. Our 
approach (Prometheus) to dealing with the issues is 
presented in section 4, and we conclude in section 5. A 
full survey and specification of Prometheus can be found 
in [37]. 

 
2. Issues 
 
There are several issues associated with the handling 

of multiple overlapping classifications, which were 
identified during work on the Prometheus project [35]. 
Although raised in the context of plant  taxonomy they 
apply to classification schemes in general. The first issue 
is the handling of single classifications, which includes the 
semantic of the classification mechanism, traceability of 
decisions and independence of things from their 
classification. The second is dealing with multiple 
overlapping classifications including identity of individual 
classifications and their interconnection. 

In order to support multiple overlapping 
classifications, single classifications must be handled in a 
fashion that allows the recording of all the information 
necessary to describe the classification. Classifications in 
which the things can belong to only one category are tree 
structured, whereas those where the things appear in 
several categories are graph based. In addition the 
semantics of the classification relationships vary amongst 
classifications: is-a classifications, (e.g. classification of 
object-oriented programming language classes or library 
catalogues); similarity classifications (e.g. plant 
taxonomy); part-of (e.g. component-part classifications); 
other types of classifications, where the relationships 
between classes can be anything, e.g. a path that described 
costs of medical procedures [7], or ontologies. Therefore 
the selection of the appropriate classification 
representation for a given domain is important and the 
implementation of the chosen representation is not trivial, 
as will be seen in section 3. As a consequence of 
classification, traceability becomes fundamental. 
Traceability allows the explanation, in the data, of the 
motivation for a particular classification. For example, a 
plant taxonomist should be able to explain why a 
particular taxon has been placed in another. The ICD 
assigns unique numbers to diseases and operations based 
on their path in the classification (each branch of the 
classification carries a number). If classes appear in 
several placed in classifications, it is not sensible to make 
that unique number part of the class definition (one class 

may have several numbers depending on the path used to 
reach it). 

The handling of multiple overlapping classifications 
requires mechanisms that are not necessary when only 
single classifications are supported. Firstly we need to be 
able to identify each classification within the system. If 
the multiple overlapping classifications result from the 
repeated classification of the same things then overlaps 
occur in the classifications and it is necessary to be able to 
identify those overlaps.  

An important feature of classification is that things 
should be independent from their classification. In the real 
world anything can be classified, not only things deemed 
classifiable. It would make no sense to design things so 
that they can be classified and need to maintain 
information about their classifications. Moreover, mixing 
the description of things with their ability to be classified 
would increase their complexity and reduce reuse and 
maintainability. This situation is exacerbated when things 
are multiply classified. It is therefore important that the 
objects that are classified do not participate directly in the 
classification process. This makes the management of 
basic data and the activity of classifying independent 
processes. 

In summary, the requirements of a computer system to 
support multiple overlapping classifications are: 

- support for trees/graphs  
- support for semantic relationships 
- support for traceability 
- identification of distinct overlapping 

classifications 
- orthogonality of classification and data 
 
3. Supporting classifications with 

existing technology 
 
There are many ways classifications could be handled 

in the main families of database models, however from the 
previous section it is clear that there are several 
requirements of the database to handle the range of 
classifications described above.  In summary, for the 
simplest scenario of a single classification with no specific 
semantics, no overlap in categories nor traceability, they 
need to be able to represent and manipulate basic trees. 
For the more complex scenario of mu ltiple overlapping 
classifications with specific semantics where traceability 
is required, they will require to represent and manipulate 
graphs with differing types of relationship with attributes 
to record their raison d'être.  

This section examines the ability of relational, object-
oriented, graph-based, and extended object-oriented 
models to support these requirements and discusses some 
specific techniques2. 

 
                                                                 
2 Full details can be found in [37]. 



3.1. Representing single classifications 
 
3.1.1. Trees and Graphs 
 
The way classifications (trees or graphs) can be 

handled depends greatly on the structure of the database 
model. Relational models in general do not represent 
classifications easily, as they were originally designed for 
the manipulation of simple, flat data [10]. Extensions to 
the original relational model (extended model, in Third 
Manifesto [13]; object-relational models, e.g. Postgres 
[44], Oracle [30]) offer additional features such as 
extensible types or nesting that can be of use to describe 
more complex information. These models could handle 
graphs as relations, however these relations would have to 
play both the roles of nodes and edges in graphs, therefore 
their manipulation would need to be handled by user 
applications. Figure 7 shows a relation “Person” that could 
be related to its parents via the relation “Parents” playing 
the role of a relationship in a genealogy classification. 

 
 
 
 
 

Figure 7: relation as relationship 

 
Nested models could represent graphs via nesting, but 

this representation would still be simplistic as more 
complex graphs, e.g. weighted graphs, could not be 
captured. Finally, as all these options are too simple to 
accurately represent trees/graphs, they lead to complex 
processes/manipulations and possibly integrity constraint 
problems. These complex processes would have a 
negative impact on the efficiency of the overall system.  

Object-oriented databases can support the definition of 
directed graphs (cyclic or not) using objects and 
references. However, only the simplest graphs (e.g. not 
weighted graphs) can be represented, as edges show only 
the existence of a link between two nodes (as a reference), 
without any additional information, which would be 
necessary for e.g. weighted graphs. An alternative 
approach would be the representation of graph edges by 
normal objects that user applications would recognise as 
edges. Figure 8 shows a class diagram where a class is 
used as relat ionship (with weight) to relate books to their 
class (category). 

 
 
 
 

Figure 8: object as relationship 

 

This has the advantage of providing a means to capture 
complex graphs such as weighted graphs. However, this 
would be limited in the sense that edge objects would not 
be recognised as relationships or references by the 
database system. Therefore, the insertion of an additional 
level of indirection would make user applications more 
complex and may lead to integrity proble ms (updating an 
object edge is more complicated than updating a 
reference). In addition, writing queries would be made 
harder by the additional level of indirection and the 
necessity to select these edge objects explicitly if they are 
required in the query result. Another approach could be to 
use the classification offered by some object-oriented 
models: classification of types by distinguishing types 
from classes [27] [22] [20]. However, changes to the 
classes may lead to important class reorganisation 
problems such as schema evolution (e.g. [4] [12]). They 
would also lead to very large schemas that could become 
unmanageable (a schema for a plant taxonomy flora 
would contain hundreds of thousands of classes).  

In graph-based models, everything is represented by 
sets of nodes and edges that represent interaction between 
nodes. These models inherently support the description of 
trees/graphs, with various degrees of information: node-
based models (e.g. TSIMMIS [9], Lore [25] , GOOD [17]) 
have a weak representation of edges, and edge-based 
models (BDS95 [8]) limit the possibility to distinguish 
objects and interactions between objects. Models that 
support both kinds of features extensively (PROGRES 
[43], Telos [26], ConceptBase [21], [47], [46], Gram [3]), 
and in particular those that support nesting (Hyperlog 
[33], [49]), provide more freedom to choose the 
representation of information. By explicitly modelling 
nodes and edges of a graph, they allow the representation 
of any kind of graph, including weighted graphs or cyclic 
graphs.  

Extended object-oriented models can represent graph 
structures as they are based on object-oriented models 
with first-class relationships. Their degree of support for 
graph structures varies: some support  the definition of 
explicit but simple graphs (e.g. SORAC [16]); others 
support the definition of more complex graphs such as 
weighted graphs (e.g. GraphDB [19], ADAM [15], 
Albano [2]). In all cases, these graphs explicitly represent 
both nodes (objects for GraphDB and SORAC, or unary 
collections for OMS and Albano) and edges (specific 
relationship objects for GraphDB and SORAC, or 
binary/n-ary collections for OMS and Albano). 

 
3.1.2. Semantics 
 
Semantics of classifications is also an issue that is not 

handled well by most models. Relational models propose 
relations as the basic entity. These relations do not 
represent is-a, similarity, or part-of relationships in a 
system understandable manner, therefore relational 
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key    key  

Book Class Relationship 
 

weight 



models would be unable to capture these kinds of 
classifications naturally. All classifications in a relational 
database would be generic classifications, which can lead 
to problems interpreting their semantics (once again 
captured by user applications). 

Object-oriented models could only model two kinds of 
classifications: is-a (inheritance) and another generic kind 
of classification (reference). Is-a and generic 
classifications may not be appropriate to all classification 
schemes (e.g. part-of classifications as in the ICD), and no 
other specific kind of classification (e.g. part-of) may be 
defined. 

Graph-based models generally only support one kind 
of relationship between nodes. Only a few support 
relationship classes and is -a classifications (e.g. Hyperlog 
[33]). If relationships are sub-classed, then it is possible to 
create classifications that are of the required type. The 
limitation of graph-based models is that they do not 
interpret the semantics of relationships. Therefore it is 
possible to describe generic classifications, but the system 
would not be able to interpret their meaning. For example 
is -a edges may be created in models that support the 
extension of edge types, but they would only be called “is -
a” edges and inheritance rules would not be enforced. 

By defining different kinds of relationships and using 
them to capture classifications, extended object-oriented 
models make it possible to define classifications that are 
not is-a or part-of classifications. This can be done by 
creating new kinds of relationships, with their semantics 
(e.g. as constraints or rules), and linking objects together. 
However, for the models that do not support semantic 
relationships, similarity and part-of classifications are 
impossible. 

 
3.1.3. Traceability 
 
Traceability offers the ability to record the motivation 

behind the building of classifications. Depending on the 
approach chosen for representing classifcations, 
traceability may be supported by relational models. For 
example, if relations are used to represent edges (instead 
of nodes), then these edges can contain information that 
can capture classification motivation, therefore 
traceability. If nesting is used, then no traceability 
information can be recorded. 

Traceability is an unresolved issue in object-oriented 
and graph-based models. Indeed, if it is decided that 
traceability should be part of edges/relationships, only 
models that allow the definition of edges/relationships 
with weights may provide a solution. However, as the 
previous section explains, this approach is not practical 
with object-oriented models (where references cannot 
contain values, and normal objects used as relationships 
introduce problems) and graph-based models offer 
relationships of a too simple kind to handle attributes. 

Some of the extended object-oriented models support 
attributes on relationships (Albano, GraphDB, ADAM), 
others allow the combinations of relationships as 
relationships (attributes) of relationships (e.g. OMS), 
therefore these classification relationships could also 
record the motivations for classifications as attributes of 
relationships forming a graph. 

 
3.2. Representing multiple overlapping 

classifications 
 
Identity is the main issue associated with multiple 

overlapping classifications. Indeed, the fact that several 
classifications may share elements means that it is 
important to be able to make a distinction between all the 
classifications involved. One feature offered by most 
relational systems, views [11], may be of interest as  they 
would allow the filtering of relations according to specific 
criteria in order to present a partial view of the 
information to the user, e.g. a single or several 
classifications at a time. The idea is seductive but practical 
problems arise: the definition of views may be very 
complex, as a single classification contains a high number 
of different concepts (e.g. composite entities). The 
selection of all these concepts would require an inordinate 
number of queries (at least one for each table of interes t), 
which would not only be hard to express (new relations 
may need to be created), but would be extremely 
expensive to compute. 

In object-oriented databases, view mechanisms allow 
the definition of different appearances for objects and 
classes [42] [38] [6] [41]. The view mechanism can 
maintain a global schema [38] [5] [23] that contains all 
classifications, and extracts individual classifications to 
present them to the user. Figure 9 shows a mechanism by 
which views (top plane) are extracted from a global 
schema (bottom plane). Views are more flexible than 
schema-based approaches, as they can be created with the 
query language [14] or a view definition language [40], 
and some view mechanisms allow reorganisation and 
possibly automatic class integration in existing schemas 
and views [39]. However, the cost of creating and 
modifying views, even if they are materialised [24], may 
be too high to allow dynamic classifications. For example 
conflicts must be detected and resolved, and mistakes 
(especially in taxonomic work) might not allow this. 

 
 
 
 
 
 
 

Figure 9: view as filtering mechanism  
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Views may also offer a way to express alternative 
classifications over graph-based models. View 
mechanisms have been proposed in the context of graph-
based databases [49] [48] and semistructured databases 
[45] [1]. Graph views are essentially filtering mechanisms 
where sets of nodes and edges are selected. These 
proposals are all limited to specific aspects of graph 
databases: [49] only extracts views as sets of objects; [48] 
does not deal with updates and deletions; [45] only works 
with join-free queries and insert statements. Only [1] 
proposes a generic view mechanism that takes into 
account the specificity of graphs, and supports all 
operations. This view mechanism may allow the 
extraction of sub graphs from a general graph as 
classifications extracted from an overlapping larger 
classification. 

Extended object-oriented models do not intrinsically 
support interconnected classifications. They only support 
the definition of unspecialised graphs. Additional 
mechanisms, at the model and/or at the query language 
level, would need to be developed in order to support 
multiple overlapping classifications. Unlike object-
oriented and many graph-based models, no view 
mechanism is available for these approaches. In many 
cases, they are built from scratch in order to support 
uncommon features (e.g. GraphDB, SORAC, Albano) or 
are built on top of existing database systems that do not 
support views (e.g. ADAM). As a consequence, the 
representation of multiple overlapping classifications as 
views of a single larger classification is impossible. 

 
4. Classification in context 
 
The previous section has shown why existing 

technology fails to support multiple overlapping 
classifications and satisfy all the issues associated with 
their proper handling. Even mechanisms described in the 
literature for biological classifications (e.g. the 
Materialization relationship [31] and power types [28]) 
are too limited to support multiple overlapping 
classifications: they either work at class level 
(materialisation), which generate important classification 
reorganisation problems due to schema evolution, or do 
not support multiple overlapping classifications 
(materialisation, power types). 

A new mechanism has been devised in the Prometheus 
project, which is described in this section. First, the 
technique for representing classifications is explained. 
This mechanism allows the representation of all types of 
classifications from single to multiple overlapping 
classifications. Then it is shown how the representation of 
multiple overlapping classifications does not impair the 
ability of the system to retain single points of views. 

 
4.1. Relationships as classifiers 
 

As the previous section explained, the model that 
offers the best support for classification representation is 
the extended object-oriented model. It combines the high 
level approach of object-oriented models with the 
decomposition, low level approach offered by graph-
based models. This allows extended object-oriented 
models to capture some forms of classification. However, 
the previous section has also shown that this model fails to 
capture multiple overlapping classifications properly. The 
approach that has been taken for the Prometheus project is 
the use of such a model combined with additional 
mechanisms. We use relationships with the equivalent of 
weights (as in weighted graphs) to describe classifications. 

 
 
 
 
 
 
 
 
 
 
 

Figure 10: Multiple overlapping classification 
example 

 
Relationships effectively act as classifiers (or the 

classifying mechanism). The action of creating such a 
relationship between two objects implies that these objects 
are classified. Furthermore, these relationships are the 
only objects in the system that are aware of the 
classifications and they contain all the necessary 
information to distinguish them from each other. They 
therefore support the independence of classifications and 
data. Figure 10 shows how the use of relationships as 
classifiers allows the description of multiple overlapping 
classifications. Each of these classifications represents a 
specific opinion, i.e. the context in which the specimens 
are classified. Figure 10 shows three distinct 
classifications: a dashed line classification, a thin line 
classification, and a thick line classification. In taxonomy, 
these distinct classifications would have been published 
by distinct authors and the publication information would 
replace the type of arrow in this example. The leaf nodes 
in these classifications could be for example books or 
plant specimens. The other nodes can be book subjects or 
taxa that are used to classify the leaf nodes. 

 
4.2. Traceability 
 
Traceability is handled by the relationships that act as 

classifiers. Traceability information is part of the 
classification in formation, therefore this is the right place 
to hold it. As relationships can have weights (captured by 

a b c d e f g 

5 4 3 

2 1 



attributes), possibly also as part of the context (e.g. if 
following paths that only contain certain values is of 
interest), some of their attributes may be used to record 
decisions. For example, the edge between nodes 4 and b 
Figure 10 may have been created because 4 and b exhibit 
a specific property. This decision can be captured by an 
attribute of that relationship (with something as simple as 
free text if necessary, or more complex object structures). 

 
4.3. Semantics 
 
Semantics are provided by the fact that all 

relationships can participate in the classification 
description and that the model offers extension of 
relationships by su b-classing and description of behaviour 
and constraints. If part-of classifications are to be 
described, then aggregation relationships can be used and 
their semantics interpreted by the system. If other kinds of 
classifications are to be represented (e.g. similarity), new 
relationships, with specific semantics, can be created and 
used. 

 
4.4. Multiple overlapping classifications 
 
It can be seen in Figure 10 that the different 

classifications have elements in common: node 3 appears 
in the thin line classification and in the dashed line 
classification; node 4 appears in all three classifications. 
On the contrary, node 5 only appears in the thick line 
classification. Likewise, the leaf nodes can appear in one 
classification (node a), in two  classifications (node b), or 
in all three (node e). 

As Figure 10 shows, identity of distinct classifications 
can be handled through the type of the relationships that 
are used to describe them. Sub-classing of relationships 
(as first-class objects) allows for example the creation of 
specific relationships for each classification to be 
represented. It is also possible to manage this identity 
using attributes of relationships: specific values may 
represent each classification. In any case, distinct 
classifications are clearly identified and this distinction 
does not impair querying, as querying attributes and using 
types is inherent in object-oriented query languages. 

 
4.5. Classifying in context 
 
This new approach allows the generic classification of 

entities by context. By "context", one can understand 
"anything that uniquely identifies a view". In plant 
taxonomy, this can be a taxonomist, a publication, or a 
combination of both. For example, one taxonomist's view 
on the world is a context and in that context a set of 
specimens is classified in a certain way. Concurrently, 
another taxonomist's view of the world represents another 
context where the same specimens (or any other set of 
specimens) are classified differently. The overall graph 

that is stored in the database represents a view of 
taxonomy out of context, or within all contexts 
concurrently. This view, although it is the most complete 
because it contains all existing information, does not suit 
some classification work (e.g. taxonomy work), as users 
tend to work in one particular context or in relation to a 
limited set of contexts for comparison purposes. By 
representing classification information on the hierarchies 
that constitute that graph, Prometheus captures single 
contexts that can be extracted as necessary. 

Because the distinct hierarchies created in different 
contexts overlap (in terms of categories and classified 
concepts), the representation of all contexts in a single 
graph makes possible the comparison of classifications 
defined in different contexts and provides the ability to 
switch between contexts in order to gain knowledge. 
Indeed, by following relationships with specific values 
(e.g. publication information), it is possible to follow a 
path of a specific graph. But by switching between these 
values, it is possible to compare and navigate within and 
amongst classifications. For example in Figure 10, it is 
possible to compare nodes 3 and 4 and thereby to realise 
that they have some leaf nodes in common. This can give 
new insight into the data (e.g. in plant taxonomy when 
two groups partially contain the same specimens, they are 
partial synonyms). It is also possible to contrast the 
different meanings of node 4 according to the different 
classifications: it contains nodes d and e in the thin line 
classification, nodes e, f, and g in the dashed line 
classification, and nodes b, c, and e in the thick line 
classification. 

 
5. Conclusion 
 
This paper has presented the concept of classification 

as ranging from single taxonomy to multiple overlapping 
classifications, appearing in many areas of science. The 
latter case represents the multiple overlapping 
classification of objects or classes in separate but 
overlapping classifications. The features identified as 
necessary for handling these classifications include 
trees/graphs, traceability, semantics of classifications, 
independence of classification and data, and identity of 
classifications. 

Common database models have been investigated for 
their support of multiple overlapping classification 
regarding the requirements expressed, and we have 
concluded that none offers full supports for the features 
outlined, but many provide a part of a satisfying solution. 
A new method of capturing multiple overlapping 
classifications has therefore been devised where context, 
i.e. what identifies one classification from another, plays a 
central role. The approach uses an extended object-
oriented model to capture classification information and 
links, so that classes and classified objects can be related 



by classification information but stay independent from 
classifications. 

The technique presented here has been implemented 
and tested in a plant taxonomy database system, and has 
been shown to be effective in handling multiple 
classifications and their associated processes. However 
this approach is applicable to all domains where contexts 
or multifaceted objects exist. For example, context is 
important for ontologies, as pointed out by Priss [34], and 
is often ignored. An approach such as that proposed here 
could be applied to ontology systems in order to introduce 
the concept of context. 
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