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Abstract 
 
Current techniques for visualising large-scale microarray 
data are unable to present temporal features without 
reducing the number of elements being displayed. This 
paper introduces a technique that overcomes this problem 
by combining a novel display technique, which operates 
over a continuous temporal subset of the time series, with 
direct manipulation of the parameters defining the subset. 

1. Introduction 

The genome is the complete set of instructions for 
making an organism, containing the master blueprint for 
all cellular structures and activities for the lifetime of the 
organism. The current initiative of microbiology is 
focused on advancing understanding of the organism by 
investigating the chemical structure and functioning of the 
genome.  

A genome consists of several chromosomes, each of 
which is essentially a package for one long continuous 
strand of deoxyribonucleic acid (DNA). DNA is 
composed of building blocks called nucleotides consisting 
of a deoxyribose sugar, a phosphate group and one of four 
nitrogen bases – adenine (A), thymine (T), guanine (G) or 
cytosine (C).  There have been several initiatives to map 
the precise chemical structure (the sequence of nitrogen 
bases) of the human genome and that of several model 
organisms. Sequence information is essentially a static 
view of the genome, telling us a lot about structure but 
relatively little about functioning. A better understanding 
of genome functioning can be reached by using 
microarray technology, which monitors the initial output 
of the genome by recording levels of messenger RNA 
(mRNA). 

mRNA is the molecule that carries the code of a 
section of DNA into the cytoplasm surrounding the cell 

nucleus. Once in the cytoplasm, the mRNA encodes a 
protein or polypeptide specific to the section of DNA 
from which it was produced.  This process is known as 
transcription, or expression. The sections of DNA, which 
are capable of transcription, are defined as genes. 
Following expression, the gene product interacts with a 
variety of other biomolecules, all primary or secondary 
gene products which in turn either directly or indirectly 
regulate the expression of genes through complex 
signalling cascades [1]. In effect we have a complex 
network of inter-gene reactions. 

Microarrays facilitate the monitoring of gene 
expression for tens of thousands of genes in parallel [2], 
allowing a view of expression levels over a range of 
samples or over a period of time [3]. When working 
toward a better understanding of the functioning of the 
genome some of the questions typically asked of the data 
are: 
§ What genes, from the entire genome, are 
differentially expressed in a particular sample or cell 
state? 
§ What are the functional roles of genes and in which 
cellular processes do they participate? 
§ What are the me chanisms involved in these 
processes? 

This paper gives an overview of microarray data and 
discusses some of the issues associated with its effective 
visualisation. We evaluate existing visualisation 
techniques and highlight their limitations with regard to 
uncovering certain aspects of the data. We conclude with 
our proposal for a new approach to representing and 
interacting with the data, which uncovers some aspects 
that are not revealed by existing applications. 

2. Microarray Data 

The output of any microarray experiment is in the form 
of a series of images where each gene is represented by a  
coloured dot. The colour of each dot depends on the level 



of mRNA in each sample or, in the case of temporal 
experiments, the control and the sample. Image 
processing software is used to translate these images into 
an expression matrix where columns relate to samples or 
time-points, rows relate to genes, and cells relate to 
relative mRNA abundances.  

Before any analysis can proceed, a statistical 
procedure, known as normalization, is applied to the data. 
Normalization seeks to account for and remove sources of 
variation obscuring the underlying variation of interest, 
the level of gene expression [4]. Normalization adjusts for 
differences in labelling, detection efficiencies for 
florescent labels, and differences in the quality of RNA 
from the two samples examined in the assay. While 
expression values cannot be quantified due to the nature 
of the experimentation, which deals with gross cell 
populations, normalization makes values relative across 
genes and samples/times.  

In the case of time-series experiments, the product of 
normalization can be considered as large-scale time-series 
data. An important aspect of the data, with regard to its 
analysis, is that it constitutes the output of a complex 
network and any investigation of the data will have the 
main objective of uncovering aspects of the underlying 
network's functioning.  

3. Mircroarray Data Analysis 

The primary objective of Microarray data analysis, a 
better understanding of the genome functioning, can be 
addressed by considering a number of lower level 
objectives relating to the data produced. These are: 
§ Representing the experimental results:  A natural first 
step in extracting some of the biological information tied 
up in Microarray data is to examine the extremes by 
viewing the differential expression [5]. A representation 
for individual gene expression patterns is required which, 
when used to represent all of the gene expressions 
measured in the experiment can combine to provide a 
more complete view of the genome. A single model such 
as this facilitates an assessment of differential expression 
between samples or across time.  
§ Inferring associations: This allows us to group genes 
with regard to the particular sample or cellular process, 
which leads to information about each gene's functional 
role and cellular process participation. Grouping genes 
can also be thought of as the first stage in inferring 
interactions. 
§ Inferring interactions: As the genome mechanism 
consists of a network of gene interactions, the uncovering 
of such interactions is necessary to understand the 
genome.  The timing of interactions is a crucial aspect of 
cellular functioning with regard to a number of significant 
biological processes, such as the switching between 
alternate process pathways. It is therefore also important 

to consider the temporal aspect of the data. Moreover, 
observing the timing of events is necessary to infer certain 
mechanisms, such as combinatorial regulation, where the 
expression of a single gene is affected by that of more 
than one other gene.  

To address these objectives, a variety of statistical 
methods and visualisation techniques can be used.  This 
paper is specifically concerned with the challenges of 
developing a visualisation technique. 

4. Challenges of Microarray Data 
Visualisation 

There are a number of significant challenges associated 
with the objectives of microarray data analysis, many of 
which apply specifically to information visualisation 
approaches.  

When representing microarray data the number of 
individual data-elements (genes) being considered in any 
one experiment can be anything up to around ten 
thousand. For time series experiments the quantity of data 
can be further multiplied by the number of time points. 
With such large amounts of data, representative 
visualisation is a significant challenge.  

When modelling an unknown process it is advisable to 
observe as many parameters of the system as possible. 
This is reflected in the current initiative to measure the 
expression of more and more genes [5]. In considering 
associations between expression patterns, the same logic 
leads us to consider all pairwise associations. The number 
of possible associations is equal to the number of genes 
raised to the power of two. Displaying such a large 
quantity of information, anything up to around 108 

associations, is also problematic.  
While the number of possible interactions is equivalent 

to the number of possible associations, there are also a 
number of other challenges pertaining more specifically 
to the complexity of the underlying network. Some 
features of this complexity that prove particularly 
problematic are the variety of gene-gene interaction types 
and the existence of combinatorial regulation.  

A gene may act to inhibit or activate the expression of 
another gene. The time lag between event and reaction is 
variable, depending on the route of the signal, as are the 
relative concentrations of mRNA in each gene. As the 
number of inferred interactions will rise with the variety 
of possible interactions it follows that actual reactions 
will be harder to detect. 

Combinatorial regulation occurs when the expression 
of one gene is controlled by the expression of more than 
one other gene. These types of interaction are crucial for 
many of the more subtle mechanisms within the cell, such 
as pathway switching, yet they are particularly hard to 
detect with existing visualisation methods.  



5. Existing techniques 

This section describes some established techniques 
employed in the visualisation of microarray data. The 
techniques are categorised by the primary objectives that 
they achieve i.e. representing the data, inferring 
associations, and inferring interactions. 

5.1. Representing the data 

Before the data can be presented in a single 
visualisation, a representation for each expression pattern 
is required. 

When the data has been produced by a time -series 
experiment, visualising the expression pattern of an 
individual gene is fairly intuitive. As both expression and 
time are ordered quantities they can be represented in a 
simple graph like the example shown in Figure 1. 

With multi-sample experimental data there is no 
intrinsic ordering of samples making it inappropriate to 
use a graph for displa y. Instead, expression levels are 
usually represented by adjacent colour-coded squares. 
Negative values are green and positive values are red, 
with the colour intensity linearly proportional to the 
expression (or log ratio of the expression). This approach 
has the advantage of being more compact than mapping to 
a graph, and as such, is often also used to represent time -
series data when screen space is at a premium. The 
problem with this approach is that a colour representation 
of expression has fewer distinguishable steps than a 
planar representation. This will make small differences in 
expression between cells harder to detect. This problem 
will be exacerbated for the sizeable minority of the 
population who are colour-blind or have difficulty 
distinguishing between green and red. 

While graph and colour coded representations have the 
advantage of revealing the timing of events they are 
inadequate for presenting the large number of expression 
patterns available from microarray experiments. While 
selection and filtering techniques may reduce the number 
of patterns that require to be displayed at any one time, a 
global view of gene expression is often necessary. To 
facilitate this global view, the expression pattern of a gene 
is often encoded into a single pixel or a small square. The 

position of the representation on the screen, with regard to 
that of other representations, corresponds to aspects of the 
gene's expression pattern.  These techniques often apply 
some measure of association or interaction between gene 
pairings and will be discussed in the following sections. 

5.2. Inferring Associations 

The inference of associations between genes is 
normally preceded by the creation of a similarity matrix. 
The similarity matrix compares all possible gene pairings 
using some predefined distance measure. There are a 
number of different distance measures that account for the 
different associations that may exist between genes. Some 
popular distance measures are Euclidean distance, 
Pearson’s linear dissimilarity, Mutual informat ion [6], 
Correlation metric [7] and Edge detection [8].    

‘Euclidean distance measure’ is used to measure direct 
correlation between expression patterns. ‘Pearson’s linear 
dissimilarity’ is similar to Euclidean distance, with the 
addition that it accounts for variable expression amplitude 
between the genes it associates. ‘Mutual information’ 
groups genes according to shared information content, 
picking up negative and positive correlation. ‘Correlation 
metric’ groups genes according to their maximum phase-
shifted correlation. ‘Edge detection’ scores pairs of genes 
with regard to slopes between significant maximum and 
minimum expression levels that have a time lag below a 
set threshold. The resulting measure has amplitude of 1, 
with the sign indicating posit ive or negative correlation.  

The similarity matrix visualisation is a direct 
visualisation of the similarity matrix with similarity 
values colour-coded. If genes are ordered according to 
functional groupings, then the vertical and horizontal 
bands that define the groupings can be analysed, with 
outlying genes easily identifiable.  

The most common display of microarray data is based 
on the results of hierarchical agglomerative clustering [5]. 
The output of this clustering is a type of binary tree 
known as a dendrogram. For display, gene expression 
patterns are colour-coded and stacked. This part of the 
display is known as an expression mosaic.  A tree type 
graphic at the top and/or sides is a direct visual 
representation of the dendrogram. This shows the 
groupings, which have been imposed by the clustering 
algorithm. An example of this visualisation method is 
shown in Figure 2. 

 Parallel Plots can be used to combine the results of 
different clustering algorithms and scientific information 
such as the functional grouping of genes [9]. 

Principal component analysis is a linear mapping of 
data points in n-dimensional space to d-dimensional 
space, where usually d<<n. When dimensionality is 
reduced, the intersection with maximum variation is used 
so as to preserve that aspect of the data. This is principal 

 

Figure 1. Graph representation of expression 
versus time. 



component 1 (PC1), which can be thought of as 
describing most of the data. Principal component 2 (PC2) 
lies perpendicular to PC 1 and can be thought of as 
describing most of the rest of the data. Normally PC1 is 
plotted against PC2 in any visualisation.  

Multidimensional scaling (MDS) is another 
dimensionality reduction technique. Individual elements 
are laid out so that the distance between any two elements 
is approximate to their dissimilarity. As the dissimilarity 
matrix exists in a higher dimensional space than the 
display space, which is normally two or three 
dimensional, it is inevitable that there will be some stress 
in the resultant display. Stress is measured as the total of 
all differences between scaled inter-point distances and 
dissimilarity measures between elements. The major 
advantage of multidimensional scaling over principal 
component analysis is that it can work with a number of 
different (dis) similarity measures in order to reveal more 
subtle inter-gene associations, such as  the inverse 
correlation of expression patterns.  

Self organizing maps [10] are similar to MDS but have 
the advantage that clusters may be seeded to incorporate 
biological knowledge. While evidence shows that self-
organizing maps are more effective at grouping similar 
items [11] it is also evident that SOMs are less effective 
than MDS in preserving the structure of clusters [12]. 

An extension of this standard display of hierarchical 
clusters is the cluster tree produced by the FITCH 
software [13]. The length of the branches joining 
endpoints (genes) is approximate to their dissimilarity. 
The extra freedom provided by using connected-line 
length rather than direct inter-point distance should allow 
a significant reduction in any measure of stress as 
compared with MDS. However, tracking lines to assess 
dissimilarity can be a complicated visual operation [14]. 

Mutual information relevance networks [15] use a 
mutual information distance measure to display genes in a 
graph where joins represent associations above a given 
mutual information threshold. Relationships with higher 
mutual information are drawn with a thicker line. Unlike 
MDS and SOM the positioning of genes in the diagram 
has no significance as to their expression pattern, the 
technique uses a standard graph layout algorithm to 
position gene representations. 

5.3. Inferring interactions 

Many of the methods that infer associations can be 
thought of as working toward the inference of interactions 
e.g. if two genes have closely correlated expression it may 
be inferred that they are functionally related. These 
associations do not, however, assign any form of 
causality. In order to assign causality, the timing of events 
must be accounted for. In order to do this, the time 
structure of the data must be preserved.  

Visualisation techniques that compress the expression 
pattern into a single point do so by destroying the time 
structure of the data and therefore they cannot be used to 
assign causality.  Another disadvantage of these 
techniques is that the distance measures employed can 
only detect singular associations over the entire time 
period being considered. This is inconsistent with the 
reality of the biological system, where an individual 
gene’s expression may be regulated by that of a number 
of different genes at different times [16].  

Visualisation techniques that fully accommodate the 
inference of interactions and combinatorial relationships 
are those that preserve the time structure of the data. 
These include the time versus expression graph display 
and the colour coding of the expression pattern.   

5.4. Summary  

At present there is no clear consensus as to the best 
method for revealing patterns of gene expression. Indeed 
it is becoming increasingly clear that there might never be 
a ‘best’ approach and that the application of various 
techniques will allow different aspects of the data to be 
explored [17]. Important aspects of the data which are not 
effectively revealed by any current microarray data 
visualisation technique, at least not when a large number 
of patterns are combined in a single image, are temporal 
features such as the timing of events and the effects of 
combinatorial relationships.   

Graph and colour coded representations of expression 
patterns, which preserve the time structure of the data, are 
too bulky to be included in an entire genome display. 
Genome wide visualisations destroy the time structure of 
the data and have little scope to reveal temporal features. 

 

Figure 2. Combination colour mosaic and 
dendrogram visualisation of expression data. 



6. Visualising Temporal Features in Large 
Scale Microarray Time-series Data 

We propose a technique for visualising microarray 
data that  facilitates mining for temporal features. Our 
strategy is to visualise a continuous temporal subset of the 
data allowing the user direct manipulation of the subset 
parameters. The subset parameters are; t0, the start-time of 
the subset, and ∆t, the subset duration. This allows the 
user to view events only when they occur within the 
subset, giving some indication of the timing of events. 
Altering the subset parameters will reveal multiple events 
within a single expression pattern as distinct entities. This 
will allow the user to mine for more complex mechanisms 
within the network, such as combinatorial regulation. 

We have devised a novel display technique, from 
which the expression pattern subset of each gene can be 
inferred. This display includes all genes from the 
experiment and is combined with a freehand selection 
technique that facilitates the association of gene subset 
representations across time as the subset parameters are 
adjusted.  

6.1. Displaying the subset 

The requirements for displaying each subset are as 
follows: 
1) When t0 is incremented, it would be beneficial for the 

representation of individual genes to have minimal 
displacement in order to reduce the perceptual 
complexity of relating the representation of a single 
gene through successive iterations of t0. 

2) The visualisation should consider all genes that are 
examined in the experiment within any single image. 
Exclusive filtering of the data may hinder innovative 
hypotheses and should be avoided. 

In order to fulfil the first requirement it would be 
beneficial if t0 could be incremented with granularity 
smaller than that of the experiment. Although the time 
series is discrete, it can be presumed that expression 
changes smoothly over time [18] so, t0 can be adjusted in 
small steps and expression levels at time points between 
actual measurements derived using linear interpolation.  

In order to fulfil the second requirement, including all 
genes in each static image of the visualisation, it was 
decided to represent each expression pattern subset as a 
pixel or small square. Given the more compact nature of 
this strategy and the fact that the visual representation of 
each gene is based only on a limited temporal subset, 
there is a greater capacity to place individual 
representations with regard to their absolute expression 
pattern rather than inter-pattern relationships, while 
maintaining the distinction between unrelated patterns. 
This has the advantage of allowing us to design a layout 
where there is minimum displacement of gene 

representations when t0 is incremented. Moreover, the 
position of a representation within the visualisation will 
yield information relating to its expression pattern over 
the specified time period (i.e. whether it is high or low, 
rising or falling) regardless of the state of other genes. 

As a precursor to placing the gene representations on a 
2-dimensional plane, we took the approach of 
conceptualising the range of possible expression levels at 
each time-point as axes defining an n-dimensional space. 

Figure 3 demonstrates this approach with the translation 
of an expression pattern subset, for which there are three 
time-points, into a point in three-dimensional space.  

As the range of possible expression levels at all time 
points are equivalent, we can bound the n-dimensional 
space in an n-dimensional cube that contains all the 
expression patterns.  

In order to cluster genes according to absolute shape, 
the gene representations are positioned according to the 
distance of their n-dimensional mapping to the corners of 
the n-dimensional cube which bounds all the expression 
patterns. This involves the creation of a dissimilarity 
matrix consisting of all gene-corner dissimilarities rather 
than all inter-gene dissimilarities.  

For mapping the corners of the cube to a two-
dimensional surface, the layout chosen was circular with 
the points representing corners distributed evenly around 
the rim. The following algorithm was employed to assign 
corners to points.  
1) Opposing points around the circle should correspond 

to opposing points in the n-dimensional cube. This 
will partially preserve the symmetry of the 
representation, allowing for better detection of 
converse correlation. 

2) The representation of a gene should have minimal 
displacement when t0 is advanced, regardless of 
whether its expression has changed or not. 

We employed this algorithm for three and four time-
point subsets. The resulting layouts are illustrated in 
Figures 4 and 5. Each node corresponds to a corner of, the 
n-dimensional cube that bounds the n-dimensional 
mappings of all expression pattern subsets. The 

 

Figure 3. Translating a three time-point 
expression pattern subset to a point in n-

dimensional space. 



The single point representations of genes were 
positioned according to a least stress direct mapping of 
their Euclidean distance from each corner. The general 
layout of subset representations is shown in Figure 6. 

In addition to the patterns that can be revealed from 
static frames of the display, there are also some 
interesting features revealed by incrementing t0. For 
example, if there is a pulse in expression then the 
representation will rise into the top hemisphere then fall 
sharply into the bottom hemisphere.  

It was found that gene representations would be more 
evenly dispersed, with clusters more distinct, if their 
expression patterns were  rescaled and adjusted so that 
maximum and minimum values equalled ±1. This is a 
standard pre-processing procedure that allows the analysis 
to focus on shape of the expression patterns rather than 
absolute expression. The disadvantage of this technique is 
that it may amplify noise for patterns where the 
expression amplitude is low and may require pre-filtering 
of the data to remove genes with invariant expression 
patterns. 

6.2. Data Exploration 

Figure 7 shows a screen shot of our initial prototype. 
The visualisation comprises three co-ordinated panels, 
one representing traditional gene expression graphs, 
another providing a list of gene names, and the main 
visualisation panel. The main panel employs the 
visualisation technique described above to reveal 
temporal features in the microarray data. Genes are 
selected by either clicking on their names in the list panel, 
or enclosing an area on the main visualisation panel. Once 
selected, the gene representations are highlighted in the 
main panel; their names are highlighted in the list panel, 
and their expression patterns are displayed as traditional 
expression graphs in the graph display panel. A control 
bar, at the bottom of the screen, allows the user to adjust 
the parameters of the continuous temporal subset 
considered in the main visualisation panel. Using a slider 
or a complementary set of play, pause, stop, rewind and 
fast-forward buttons to control t0, the user is able view 
how the expression of any selected gene grouping evolves 
through time. An additional slider can be used to adjust 
∆t, changing the period of time that is considered in each 
static frame of the display. 

7. Conclusions and Further Work 

Given the intrinsic complexity of the system and 
subsequent variation in expression patterns, it is evident 
that the mapping to a lower dimensional space of any 
subset can never be truly representative.  However, the 
technique employed was found to reveal some unique 
patterns in the data leading to information regarding the 

 

Figure 4.  Corner mappings for 3 time points.  

 

Figure 5.  Corner mappings for 4 time points.  

 

Figure 6. General layout of subset 
representations 



timing of events and the evolution of gene clusters. 
Moreover, while it is accepted that in any individual static 
view of the data unrelated pattern subsets may be 
clustered together (e.g. a rising pattern and a pulse) it is 
extremely unlikely that this clustering will persist while 
the subset parameters are adjusted.  

So far we have tested our technique with a small data 
set (~200 genes). The tool proved effective at displaying 
differential expression and gave a clear indication of how 
clusters of genes evolve throughout the period of the 
experiment.  A more comprehensive evaluation, involving 
members of our target user group, will proceed once we 
have adapted our tool to accommodate larger data sets 
(~104 genes).  

Possible extensions for the tool include: 
§ A Boolean selection mechanism, so that the user 
can more effectively mine for cluster events. 
§ A mechanism by which the user can save 
selections to file for cross experiment comparison.   
§ Integrated pre-processing of the data, with some 
measure of confidence integrated into the visualisation, to 
accommodate for the amplification of noise.  

In summary, it was found that our technique has the 
potential to assist the mining of Microarray data for 
features that are not revealed by existing technologies. In 
this capacity, once fully developed, the tool should prove 
a valid addition to the existing arsenal of Microarray 
visualisation techniques already available.  
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Figure 7. Screen shot of initial prototype. 


