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ABSTRACT Partial discharge (PD) monitoring is one of the most used tools for diagnosing the condition of
electrical equipment and machines that operate normally at high voltage levels. Ideally, PD identification can
be easily done if there is a single source acting over the electrical asset during the measurement. However,
in industrial environments, it is common to find the presence of multiple sources acting simultaneously,
which hinders the identification process, due to sources of greater amplitude hiding the presence of other
types of sources of lesser amplitude that could eventually be much more harmful to the insulation system.
In this sense, the separation of PD through the use of clustering techniques allows individual source
recognition once they have been clearly separated. This article describes the main clustering techniques that
have been used over time to separate PD sources and electrical noise. The results obtained by the different
authors in the utilization of each technique demonstrates good performance in terms of separation.

INDEX TERMS Partial discharges, separation techniques, noise sources, progress, review.

I. INTRODUCTION
In the modern electrical industry, engineers and specialist
technicians are responsible for maintaining and operating
the electrical equipment, cables, and machines that integrate
the electrical systems of substations or power plants [1].
Extending the useful life of these assets by lessening the
sources that may cause deterioration or possible failures is
a fundamental part of the work such specialists must perform
[1]–[4]. Regarding high voltage electrical assets, it is well
known that a big part of the failures usually occurs in the
insulation system, due to the uncontrolled presence of mul-
tiple ageing mechanisms of electrical, mechanical, thermal,
and environmental origin [2], [3], [5]–[7], which, over time,
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tend to accelerate the loss of the dielectric properties of the
material, leading to the anticipated failure of the equipment.

One of the main indicators when diagnosing the state of
insulation in an electrical asset is the online or offline mea-
surement of the activity of partial discharges (PD), since the
presence of this phenomenon can be considered a cause and
a consequence of most electrical problems in the insulation
system [8].

In any electrical equipment, PD activity tends to occur in
areas of insulation where dielectric strength is low or where
there is a higher concentration of electric field [9]–[11].
In this sense, it is important not to exceed the nominal operat-
ing values in order to avoid overstressing and damaging any
point or area of the material. However, it has been proven that
even operating at nominal voltage levels, PD activity can be
detected, and even if it is not producing immediate failure
in the equipment, over time it can generate a progressive
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deterioration of the insulation due to the attack of electron-
ions and the chemical degradation that occurs in the area
[8], [12]–[15].

According to their nature, PD can be classified into three
types: internal PD, surface PD and corona PD (see Fig. 1).
Internal PD occur within the systems of solid insulation
in vacuoles or internal imperfections, surface PD occur on
the surface of any insulation under electric field tangential
components, and corona PD starts around sharp conductors
subjected to high magnitudes of electric field [16], [17].
Some types of PD may be less harmful than others in
terms of material degradation, and once identified, they
can be easily mitigated during a scheduled maintenance
work [18]–[22]. Therefore, it is very important to quantify
the PD activity of the equipment during the maintenance pro-
cess, since it will allow to accurately determine the evolution
of any failure or the appearance of new imperfections that
may risk the asset operation in the short, medium or long
term [15], [23]–[25].

Commonly, PD activity is represented by PRPD (Phase
Resolved Partial Discharge) patterns. In this approach,
the magnitude and the time of occurrence of the PD pulses
are represented, taking as a reference the network voltage (50-
60 Hz). For this reason, each type of PD source generates a
different PRPD; thus, the identification process can be done
through the visual interpretation of these patterns [16], [25].
A correct interpretation of the PRPD will allow the identi-
fication of other types of unwanted sources, as is the case of
external sources of electrical noise, whose PRPDwill depend
on the phase correlation of the signals captured (in reference
to the network voltage).

For any specialist or intelligent identification system, one
of the main constrains of using PRPD for an identifica-
tion or diagnosis process, is the simultaneous presence of
multiple sources of PD or electrical noise, since the pat-
terns obtained under these conditions are difficult to interpret
because the sources of greater amplitude hide the presence
of other types of sources with less amplitude [21], [22],
[26], [27]. Also, many of these omitted sources can become
muchmore damaging to the equipment. For example, internal
PD sources detection would reveal problems in the internal
structure of the insulation. On the other hand, if the noise
levels are very high, it would not be possible to identify
other insipient sources of PD that were also associated with
some type of serious insulation failure. For this reason,
in order to avoid omitting important information associated
with the condition of the equipment, it is recommended to
carry out a separation process prior to any identification
process [22], [28]–[42].

Source separation is carried out mainly through clustering
techniques based on the mathematical analysis of the wave-
form of the acquired pulses, and on the assumption that each
type of PD source has a specific behaviour (temporal or spec-
tral). Under these premises, it is possible to extract charac-
teristic parameters from the signals, whether in frequency,
time, load, energy, or other variables that allow correct differ-

entiation between sources. Subsequently, with this informa-
tion, two-dimensional or three-dimensional separation maps
can be generated, representing the sources through clusters
located in different areas of the map, thus generating a clear
source differentiation [21], [22], [41], [42]. Once separated,
it is easier to obtain the corresponding PRPD to each cluster,
so that the individual identification of all the sources can be
done.

Although in literature it is possible to find clustering tech-
niques that have proven to be useful when separating differ-
ent types of PD sources and electrical noise, the obtained
results do not always allow optimal separation since there
are PD sources and electrical noise whose spectral or tem-
poral content can be similar, and hence the obtained clusters
may overlap in the separation map. Additionally, many noise
sources that are normally present in industrial environments,
such as white noise, can alter the signals associated with
PD, affecting some of the mathematical parameters applied
by the utilized technique, making it unsuccessful [42]. For
this reason, the performance of the separation technique will
depend on features such as the type of source beingmeasured,
the sensor used in the measurement process, the environment
where the measurement is made, and the electrical character-
istics of the test object.

This article describes the main clustering techniques
implemented in much of the scientific literature focused on
the characterization of insulation systems through PD mea-
surement. According to the results presented by the different
authors, each technique detailed below has proven to be
useful in differentiating multiple sources, even when they
act simultaneously. Based on the structure of each technique,
an attempt has been made to describe the variables used for
the source differentiation in the different separation maps.
The subsequent identification process either through PRPD
patterns or through intelligent pattern recognition algorithms
is beyond the focus of this work and therefore will not be
addressed.

II. TECHNIQUES FOR SOURCE SEPARATION
A. SEPARATION OF MULTIPLE PD SOURCES USING
WAVELET DECOMPOSITION AND PRINCIPAL
COMPONENT ANALYSIS
The process of separating PD sources and electrical noise
with this technique consists of three stages: an initial wavelet
decomposition stage, then a principal component analysis,
and finally, the density-based spatial clustering of applica-
tionswith noise (DBSCAN) that allows the subsequent search
and identification of clusters [28]. The wavelet decomposi-
tion stage begins by applying the wavelet transform to each
acquired PD pulse (original signal). This decomposition pro-
cess acts as a pair of complementary high-pass and low-pass
filters, which decompose the original signal (S) into two new
signals, each with half the bandwidth and half the duration of
the original signal. As shown in Fig. 2 (a), these new signals
are called the approximation (ca) and detail (cd) coefficients.
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FIGURE 1. Effects generated from different PD sources (Images taken experimentally by the co-authors in the high voltage laboratory).

FIGURE 2. Representation of the Wavelet decomposition: (a) Action of
filters in Wavelet decomposition, (b) Iterative process in wavelet
decomposition.

As it is an iterative process, the approximation coefficients
are used as the new input for the next level of decomposition
and the number of levels can be defined at the beginning of
the process.

The above described can be seen in Fig. 2 (b), where the
original signal is broken down into a certain number of levels
and each level contains a signal with half the bandwidth
and half the number of samples in the time domain of the
signal from the previous level. Once this filtering process

is completed, the original signal is represented as a series
of scaled and displaced transformations in relation to the
mother wavelet (reference function). Therefore, the coeffi-
cients obtained represent a degree of correlation between
the original signal and the mother wavelet [28], [43], [44].
In this technique, the 9th order ‘‘Symlet’’ family was used
as the mother wavelet since, for this particular case, this
mother wavelet allowed the successful decomposition for PD
signals [28], [45]. However, different methodologies can be
found in literature, that allow the optimal selection of the
Mother Wavelet that best adjusts to the temporal characteris-
tics of each signal according to the acquisition system that is
being used. Among these methodologies we can find: CBWS
(correlation based wavelet selection), EBWS (energy based
wavelet selection), SNRBWS (signal-to-noise-ratio based
wavelet selection), SWTBWS (stationary wavelet transform
based wavelet selection) and NewEBWS (new energy based
wavelet selection) [46], [47].

Then, for the separation process, the distribution of signal
energy in each decomposition level is used, as indicated in (1)
and (2):

EDi =

∑Nci
j=1 Cd

2
ij (t)∑n

i=1
∑Nci

j=1 Cd
2
ij (t)+

∑Ncn
j=1 Ca

2
n (t)
· 100 (1)

EAn =

∑Ncn
j=1 Ca

2
n (t)∑n

i=1
∑Nci

j=1 Cd
2
ij (t)+

∑Nci
j=1 Ca

2
n (t)
· 100 (2)

where EDi, represents the energy for the levels of detail
and EAn the energy for the levels of approximation. These
energy levels are more effective in representing the PD pulses
than the wavelet coefficients themselves, in terms of dimen-
sionality reduction and elimination of the influence of pulse
polarity. Finally, principal component analysis (PCA) was
used to implement the clustering and separation process of
each source. PCA is a widely used method for reducing data
dimension [28], [48]–[50]. In this case, the PCA is applied to
reduce to three parameters the number of energy levels asso-
ciated with the different levels of decomposition, thus allow-
ing the representation of the PD signals on a 3D classification
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map through clusters, where the grouping or selection of the
clusters is done by the authors through DBSCAN [20], [51],
[52]. DBSCAN only contributes to the partitioning or auto-
matic search of clusters from the n points that make up the
separation map.

As described in [28], the performance of the clustering
technique was validated in different test objects such as
induction motors, synchronous generators and distribution
cables. In [53], the clustering technique was also applied
to PD sources in medium voltage cables, but using t-
Distributed Stochastic Neighbor Embedding (t-SNE) as a
method of dimensional reduction and Simple Statics-based
Near Neighbor SSNN) for the clusters’ search and selection.
As described by the authors, with these new changes in the
structure of the technique, there was an improvement in the
speed and identification rate of the sources.

B. SEPARATION OF PD SOURCES TROUGH T-F MAPS
To address the problem of separating PD signals and elec-
trical noise with this clustering technique, one of the main
considerations is to assume that PD pulses associated with the
same type of source present a similar temporal and spectral
behaviour [21], [22], [54]–[57]. In this sense, the technique is
based on the transformation of the time series of the obtained
pulses (which can be from PD or electrical noise), into time
sub-series, corresponding to pulses with a similar waveform.
To carry out this procedure, the equivalent duration of the
waveform and the equivalent bandwidth of the spectrum in
each pulse are represented on a two-dimensional map called
the Time-Frequency (TF) map [21].

In order to perform a correct extraction of the most impor-
tant characteristics associated with each type of source it is
necessary that the variables used for the generation of the
clusters in the separation map have a clear independence
regarding the amplitude of the signals, this will avoid that
the obtained clusters present, in some cases, a high disper-
sion with respect to their centroids [29]. In accordance with
the above, in this technique the pulses of the acquired S(t)
signals are first normalized (3), later, the standard deviation
of the normalized signal for the time and frequency domain
is obtained, see (4) and (5) [29].

s̃ (t) =
s (t)√∫ T
o s(t)2dt

(3)

σT =

√∫ T

0
(t − t0)2s̃(t)2dt (4)

σF =

√∫
∞

0
f 2
∣∣∣S̃(f )∣∣∣2df (5)

where, f represents the frequency, S̃(f ) the Fast Fourier
Transform (FFT) of s̃(t), and t0 corresponds to the ‘‘gravity
centre’’ of the normalized signal and is defined by (6).

t0 =
∫ T

0
t S̃(t)2dt (6)

FIGURE 3. Diagram of the separation process with TF maps.

In this way, the pulses are represented in the separation map
through two parameters σT and σF , which are used for the
formation of the different clusters associated with each source
found, see Fig. 3. In [54] the use of Fuzzy Maximum Like-
lihood (FML) is mentioned, for the cluster selection process
on the separation map.

After the clustering process is complete, subsequent iden-
tification can be more easily performed on each cluster by
visual evaluation of PRPD patterns or by applying intelligent
pattern recognition techniques such as those described in
[22], [54], [57]. Although some studies have shown that the
performance of this technique can be influenced by parame-
ters such as noise level, sampling frequency, acquisition time,
number of samples and vertical resolution of the measure-
ment system [58], the results obtained so far indicate that
the technique shows a very good performance in separating
multiple sources of PD and electrical noise. TF maps are
currently part of commercial PD measurement systems.

C. SEPARATION OF PD SOURCES BY THE
CHARACTERIZATION OF PULSES WAVEFORM
This technique is based on the extraction of characteristic
parameters taken from the temporal and spectral behaviour
of the signals obtained [30], [31]. Commonly, there are two
main factors that can help differentiate types of PD sources,
these factors are associated with the physical characteristics
that cause the PD pulses and the paths the signals travel to
get to the measurement point, where the sensor is located
[10]. Under these premises, and based on the experimental
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FIGURE 4. Envelope function and parameters of the technique. (a) PD
pulse with respective envelope function, (b) Ap and At areas of the
envelope function.

results obtained by the authors of this technique, it has been
possible to show that the pulses associated with the same type
of source show certain similarities in the frequency spectrum
and in the nature of the envelope function that adjusts to each
type of signal, see Fig. 4 (a).

In summary, the authors propose a mathematical model
that allows us to accurately characterize the waveform of a
pulse through a damped mathematical function f (t) (7). f (t)
is going to be composed of two other functions, g(t) that cor-
responds to a sinusoidal function (8) and h(t), the modulating
and enveloping function that is named asymmetric hyperbolic
secant (AHS) (9).

f (t) = g (t) · h (t) (7)

g (t) = sen (wt − ϕ) (8)

h (t) =
I0

eα(t−t0) + eβ(t−t0)
(9)

The functions g(t) and h(t) are defined based on six different
parameters, that is: α, β, I0, t0, f and ϕ. Where g(t) is a
function of the frequency (f = w/ 2π ), and its phase shift
angle ϕ. The parameter t0 in (9) represents the time shift of
h(t) and I0 characterizes the amplitude of h(t). The value of
I0 is related to the peak value (Ip) of the PD pulse according

to (10). Finally, (11) defines the time the maximum peak is
reached [31]:

Ip =
I0 · β
α + β

·(
α

β
)

α
(α+β) (10)

tp =
ln (β/α)
α + β

(11)

By adjusting the values of α, β, I0 and t0, it is possible to
identify the most suitable envelope function to modulate the
sine wave. These values are obtained through least squares,
searching for the best correspondence between the original
signal and f (t). Since the values of α and β depend on the
magnitude of the discharge, for the clustering process it is
necessary to identify other parameters that have a greater
relationship with the pulse waveform. In order to achieve
this, the envelope curve or modulating function is divided
by the value of Ip, thus obtaining the magnitude in values
per unit. Based on the above, two parameters are obtained
that correspond to the Ap and At areas, which are generated
below the envelope function and can be differentiated from
the maximum value of the same function, see (12) and (13):

Ap =
∫ tp

0

h (t)
Ip

dt (12)

At =
∫ tf

tp

h (t)
Ip

dt (13)

As seen in Fig. 4(b), the left area of the envelope is defined
as Ap and the area on the right side as At . Finally, the fre-
quency f , which is another parameter used in this technique
to perform source separation, is determined by analyzing the
frequency spectrumF(f ) of the PD signals. Basically, f corre-
sponds to the arithmetic mean of the values in an interval [f1,
f2] where the energy of the spectrum is more significant, that
is, the frequency band that has spectral components greater
than 70%, see (14) [30], [31].

f =

∫ f2
f1
f · F (f ) · df∫ f2
f1
F (f ) · df

(14)

This way, by extracting the parameters Ap and At, and f from
a group of signals and representing them on a two or three-
dimensional separation map, it is possible to achieve a visual
separation of the PD sources. One of the advantages in the
appliedmethodology is that themathematicalmodel allows to
reconstruct the PD pulses with reasonable accuracy. Further-
more, as reported in [30], the required computational capacity
is lower when compared to other separation techniques. It is
worth mentioning that, for this technique, the noise sources
are previously removed through the use of a wavelet filter.
Furthermore, the authors do not report the use of cluster
search methods in separation maps.

D. PD SOURCE SEPARATION BY IPEAK QE CLUSTERS
TECHNIQUE
As indicated in [32], this clustering technique called
‘‘IpeakQE cluster technique’’ is based on the use of the values
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of load (Q), energy (Ek ) and the peak amplitude (Ipeak ) of the
PD pulses, to carry out the source separation process through
two-dimensional separation maps (Ipeak vs Q, Ipeak vs Ek
and Q vs Ek ). The experimental results showed that these
parameters allow an adequate separation as long as the pulses
waveform has a different temporal behaviour for each type of
source. On the other hand, it was found that the Ek /Ipeak ,
Ipeak /Q y Ek /Q, relationships can also be used as separation
parameters, being more sensitive to subtle differences in the
waveform of the signals associated with each source.

Likewise, the authors indicated that the use of these param-
eters allows obtaining a more robust separation in the face of
variations in the parameters of the acquisition system used,
such as the sampling frequency, the period, the number of
samples and the vertical resolution of the signals captured,
which is useful in the case of using acquisition systems with
different characteristics in the same asset, since the results
obtained in terms of clustering and separation would be
similar.

According to the structure of the technique, to obtain the
Ipeak value, the signal of the PD pulse is recorded in a vector
yk, and Ipeak value is obtained from the maximum value of
yk . Next, the apparent charge value of the PD pulse (Q) is
obtained in the time domain (taking Q as the integral over
the time of the duration of the PD pulse (yk )). However,
due to the implemented measurement circuit, the load value
may not be appropriate according to its definition, since the
PD pulses can present oscillations that affect the actual load
value. To soften the effect of these oscillations, the yk signal
is filtered by a second-order Butterworth low-pass filter, thus
reducing possible calculation errors. Using the filtered signal
xk , the indices ia and ib, are obtained, which represent the first
zero crossings of the peak current value (see Fig. 5(a)). Then,
as shown in (15), the load is obtained as an approximation of
the integral of the first peak value of xk between the values of
ia and ib, where, dT= 1/Fs, and Fs is the sampling frequency
of the acquisition system.

Q = dT
∑ib

i=ia
xk (i) (15)

Finally, the calculation of the energy Ek is obtained from
the voltage signal vk as shown in (16)

Ek =
dT
R · N

·

∑f2

i=f 1
Sk (i) (16)

where R is the input impedance of the acquisition system, N
represents the number of samples, and Sk is the FFT of vk . Sk
is obtained by limiting the spectrum in frequency, considering
the frequency components greater than 10% of the maximum
peak of the spectrum, that is, the frequency spectrum between
f1 and f2 according to Fig. 5(b). This truncation is carried
out to avoid that the spectral components associated with
electrical noise cause errors in the energy calculation [32].
For this separation technique, the use of automatic search
methods or selection of clusters is not reported either.

FIGURE 5. Parameters of truncation necessary to applied in this
technique: (a) Indices ia and ib of the filtered signal xk , (b) Truncation of
the frequency spectrum for the calculation of E k between f1 and f2.

FIGURE 6. Flowchart of the separation algorithm using MMG and CE
technique [33].

E. SOURCE SEPARATION USING CUMULATIVE ENERGY
FUNCTION AND MATHEMATICAL MORPHOLOGY
GRADIENT
In [33], a new algorithm for the separation of PD signals is
presented, based on the application of the cumulative energy
function (CE) and the Mathematical Morphological Gradient
(MMG) to the PD pulses and electrical noise captured during
the measurement process. According to this technique, three
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pairs of characteristic parameters (width, sharpness and grav-
ity) are extracted from the CE and the MMG, both in the time
domain and in the frequency domain. This way it is possible
to compose a space with six-dimensional characteristics (Tw,
FW , ξT , ξF , gT and gF ). For the separation procedure, two-
dimensional separation maps are generated from the Tw - FW ,
ξT - ξF and gT - gF combinations. Depending on the test
object and conditions, one of these three charts may have a
better result during separation. Fig. 6 shows the algorithm that
summarizes the procedure used in this technique. This algo-
rithm uses the waveform of the acquired PD signal and the
calculated frequency spectrum to obtain the energy functions
accumulated in time (TCE, ET(tk )) and in the domain of the
frequency (FCE, EF(fk )); functions defined in (17) and (18).

ET (tk) =

∑k
i=1 v(t i)

2∑N
i=1 v(t i)

2
∗ 100 k = 1, . . . ,N (17)

EF (fk) =

∑k
i=1 F(f i)

2∑N/2
i=1 F(f i)

2
∗ 100 k = 1, . . . ,

N
2

(18)

ET (tk ) represents the energy accumulated in the time domain
up to the instant tk , EF (fk ) is the energy accumulated in the
frequency domain up to the frequency fk , v(ti) is the signal
sampled at the instant ti, F(fi) is the amplitude at the fre-
quency fi obtained through the FFT, andN is the total number
of samples. Regarding these energy functions, the parameters
of width Tw and FW , are defined in (19) and (20) and describe
the time duration and the frequency bandwidth of PD signal.

Tw = t|Et=80 − t|Et=20 (19)

Fw = f |Ef=80 (20)

The next step is the calculation of the MMG defined in
(21) and, as can be seen, makes use of the energy functions
(ET (tk ) or EF (fk )) and g, (a parameter defined as an element
of structure) [33].

mg (n) = E ⊕ g (n)− Eg (n) (21)

TheMMG is used to characterize the increasing inclination
of TCE and FCE. To achieve this characterization, (22) and
(23) are defined, where ξT and ξF , are the maximum values
obtained frommgT andmgF , that correspond to the sharpness
parameters.

ξT = max {mgT } (22)

ξF = max {mgF } (23)

Subsequently, the gravity parameters are obtained using
MMG according to (24) and (25), which represent the instant
(gT ) and the frequency (gF ) where the MMG is greater.

gT =

∑
i (ti ∗ mgTi)∑

imgTi
(24)

gF =

∑
i (fi ∗ mgFi)∑

imgFi
(25)

This is how the six-dimension feature space is composed.
Then, the separation maps described above are generated

using the time and frequency combinations of the character-
istic parameters, that is, Tw - FW , ξT - ξF and gT - gF . Finally,
DBSCAN is used in the generated maps to automatically
search for clusters.

Although the presented method uses a space of six char-
acteristics, in [34] the same authors propose an improvement
and reduce the space to only four dimensions (Tw, FW , ξT
and ξF ), further redefining the method for the calculation of
these values. In addition to this change, and in order to achieve
greater efficiency, a separation quality evaluation parameter
called JT , based on the density function [59] is used. Finally,
in [35] a new variation of the technique is presented, incor-
porating an algorithm that optimizes the parameters obtained
from the CE function and redefining JT , hence maximizing
the separation power of the method, and an adequate sep-
aration is obtained for three or more simultaneous sources
according to reports from the authors. For this technique,
the search for clusters in the separation map is done through
DBSCAN or FML (fuzzy maximum likelihood) depending
on the number of data. DBSCAN is applied to large databases,
while FML is adopted for databases with less than 1000 sam-
ples [34].

F. PD AND ELECTRIC NOISE SOURCE SEPARATION USING
S TRANSFORM AND BAG OF WORDS
With this technique, once the measurement process has been
completed, each of the obtained signals is normalized, thus
compensating for the variability that exists in the amplitude of
the data acquired [36]. Next, the time-frequency S transform
(ST) is applied to the normalized signals in order to obtain
an information matrix that incorporates the temporal and
spectral characteristics of each signal. Equation (26) shows
how this time-frequency representation is obtained from a PD
pulse or electrical noise:

A (τ, f ) =

∣∣∣∣∫ +∞
−∞

xn (t)
|f |
√
2π

e−
(t−τ)f 2

2 e−j2π ftdt

∣∣∣∣ (26)

where τ is a parameter representing the location over the
timeline and xn is the normalized pulse.
Once the ST-amplitude matrix is obtained, it is converted

into a grayscale image through (27):

sij =
aij − min

(
aij
)

max(aij)−min(aij)
(27)

where, aij represents one of the elements that are part of the
matrix and sij is an element of the image. This transformation
to an image of the information matrix is carried out to extract
the most important characteristics associated with a segment
of the image, where the most relevant values in terms of
information (non-zero value) are concentrated. According to
the methodology of this technique, the extraction is done
through the Bag of Words (BoW) method, which is normally
applied to the field of image retrieval and image classification
from the natural language processing.

With the application of the BoW method, the image was
converted into a ‘‘feature descriptor’’ vector, which has a
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FIGURE 7. Sequence for the feature extraction from PD signals.

specific length depending on the pulses obtained. Although
the reduction of information with this method is significant,
it was necessary to apply PCA in order to reduce the dimen-
sionality of the data. Finally, each pulse is represented by four
characteristic parameters, which are used to generate the clus-
ters on a two-dimensional separation map. Once the clusters
are generated in the separation map, they are selected with the
unsupervised cluster search model named Gaussian mixture
model (GMM). Fig.7 summarizes the procedure applied with
this technique.

According to the results obtained by the authors of this
technique, it was possible to differentiate up to four types of
PD sources acting simultaneously. For the clusters generation
in the separation maps, out of the four obtained with PCA,
only the first two main components were used.

G. SOURCE SEPARATION USING LINEAR PREDICTION
ANALYSIS AND ISOLATION FOREST ALGORITHM
In [37], a clustering technique that uses linear prediction
analysis (LPA) and isolation forest algorithm (IFA) is pre-
sented to separate different sources acting simultaneously
during a measurement process, into clusters. By using LPA,
it is possible to extract the most representative characteris-
tics from the waveforms of the PD pulses. This procedure
establishes a twelve-dimensional feature space, which is sub-
sequently reduced to two dimensions using PCA. With these
two parameters and a third parameter obtained from the IFA,
a three-dimensional separation map is established. Generally
speaking, the LPA is based on the fact that the value of a
sample at the present time can be approximated by a linear
combination of several values of past samples. This way it
is possible to obtain a linear prediction cepstrum coefficient
(LPCC), if the quadratic sum of the difference between the
real value and the linear prediction reaches a minimum value.

According to the established procedure for this technique,
PD signals can be considered as the outputs of a system.
This way, the relationship in the time domain between an
input signal and an output signal can be described as a linear
constant coefficient difference equation, and is expressed as
indicated in (28).

x (n) =
∑p

i=1
aix (n− i)+ G

∑q

l=1
blu(n− l) (28)

where, x ′(n) is the input of the system and x(n) is the output;
ai, bi and G are parameters of the PD system, likewise, p

and q represent the order of the system. A very important
consideration is that, in order to simplify the system and avoid
solving a nonlinear equation, the parameters bl are set to 0,
therefore (28) is represented as follows:

x ′ (n) =
∑p

m=1
amx(n− m) (29)

where x ′(n) is the estimated value of x(n), which is obtained
from p past values and where am is the linear prediction
coefficient (LPC). This system cannot estimate the current
signal exactly, and consequently it has an error, defined in
(30), as the difference between the signal value x(n) and the
estimated value of x ′(n):

e (n) = x (n)− x ′ (n) = x (n)−
p∑
i=1

aix (n− i) (30)

Then, the quadratic error is given by:

E (n) =
∑
n

e2 (n) =
∑
n

[
x (n)−

p∑
i=1

aix (n− i)

]2
(31)

The LPC ai is determined by minimizing the value of E(n)
and with the partial derivative of LPC equal to 0.

∂E
∂aj
= 2

∑
n
x (n) x (n− j)− 2

∑p

i=1
ai
∑

n
x (n− i)

x (n− j) = 0 (32)

Finally, the LPCC is obtained by the recursive formula (33).

L (1) = a1,

L (n) = an +
∑n−1

i=1

(
1−

i
n

)
aih (n− i),

2 ≤ n ≤ p (33)

where L(n) refers to the LPCC, which can be calculated from
the LPC value. As indicated initially, the order of LPA is
twelve, which means that a twelve character dimensional
space is established after the extraction of LPCC features.
The dimensionality of the feature space is then reduced to
two by applying PCA [37], [60]. Finally, the IFA anomaly
detection algorithm is used in order to quantify the clustering
degree of the signals from the data obtained with PCA. This
allows obtaining a third characteristic parameter called height
score. This way the clustering technique will allow obtaining
a three-dimensional separation map. To search and select the
clusters, the authors use the Fuzzy C-means (FCM) method
(the grouping is done from a centroid that is updated itera-
tively until it converges to the best value). In accordance to
the results obtained with this technique, the authors managed
to separate up to three PD sources acting simultaneously.

H. SEPARATION OF PD SOURCES AND ELECTRICAL NOISE
THROUGH THE CHROMATIC TECHNIQUE
This technique was first applied to PD analysis in [38].
According to its structure, each type of PD source has a dif-
ferent colour signature, which can be represented from three
specific parameters, each of these parameters is derived from
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colour science where an RGB (red, green and blue) colour
space is transformed to an HLS space (‘‘hue’’, ‘‘lightness’’
and ‘‘saturation’’) [38, 39]. In this sense, H is related to the
average frequency or characteristic angular frequency (Wc),
L is the signal energy content (Eb), and S is the Equivalent
signal bandwidth (B). (34), (35) and (36) define the parame-
ters Wc, Eb, and B [39], [40].

ωc =
∫ω |F (ω)|2 dω

2πEb
(34)

Eb =
∫
|f (t)|2 dt =

1
2π

∫
|F (ω)|2 dω (35)

B =

√
1
Eb

∫
(ω − ωc)

2
|F (ω)|2 dω (36)

where F(w) is the FFT of f (t), f (t) corresponds to the pulse
of a partial discharge in time, and w is the angular frequency.
In [39], these three parameters were used to obtain a 3D
separation map where it was possible to adequately classify
different UHF (Ultra high frequency) sources of PD and elec-
tromagnetic noise captured with an antenna, while discharges
acting simultaneously on various test objects. Likewise, it was
found that the clusters associated with each type of source
were located in different positions on the separation map,
which is adequate when there are simultaneous sources dur-
ing the measurement. This same technique was also used
later in [40], in order to separate PD sources and electri-
cal noise obtained from three different inductive sensors (a
high-frequency current transformer, an inductive loop sensor,
and a Rogowski coil). The results showed that separation
with lower frequency signals from inductive sensors (up to
100MHz) was also possible, managing to separate up to three
different sources. Additionally, it was evidenced that the Wc
andB parameters were themost sensitivewhen differentiating
PD types and electrical noise [40]. The use of cluster search
methods was not reported for this technique.

I. SPECTRAL POWER CLUSTERING TECHNIQUE (SPCT)
This technique of clustering PD sources and electrical noise
was first proposed in [41], [42]. According to the description
of the technique, FFT S(f ) is applied to each of the PD S(t)
pulses obtained during the measurement process, making it
possible to select two frequency bands called Power Ratio
Low (PRL) and a Power Ratio High (PRH), which include
the high and low spectral power of greatest interest in the
signal. As observed in (37) and (38), both frequency bands
are delimited by two separation intervals [f1l , f2l] for PRL
and [f1h, f2h] for PRH.

PRL =

∑f2l
f1l
|s (f )|2∑ft

0 |s (f )|
2

(37)

PRH =

∑f2h
f1h
|s (f )|2∑ft

0 |s (f )|
2

(38)

The parameters f1l , f2l , f1h, f2h, that are part of both separation
intervals, and ft that correspond to themaximum spectral con-

tent of each signal, can be adjusted either manually or auto-
matically. Likewise, to guarantee the correct application of
the technique, it is necessary to comply with some restric-
tions: (0 ≤ f1l < f2l), (f1h < f2h ≤ ft ) and (f1l < f2h).
Finally, with the values of PRL and PRH, a two-dimensional
separation map called PR (Power Ratio) map is established
and the clusters associated with each source are formed.
As indicated in [61]–[64] k-means was used to search for
groups on PR maps. The results obtained with this technique
show that up to four different sources of PD and electrical
noise can be separated, even if they are simultaneously acting
[62]. Fig.8 summarizes the clusterization process with this
technique.

The SPCT was initially presented as a manual clustering
technique where the separation intervals had to be adjusted
manually, based on the spectral content of the signals being
acquired. In [61], [62], it was shown that manual interval
selection did not always allow obtaining the best separation
between sources; even if the separation intervals were cor-
rectly selected by the system operator, the clusters associated
with different sources could overlap on the separation map,
limiting any diagnosis. For this reason, an automatic interval
selection algorithm based on the dispersion of the spectral
power of the acquired pulses was implemented [61]. This
algorithm allowed to automatically identify the frequency
bands where the sources presented a clear separation.

Subsequent works evaluated the application of different
optimization techniques such as: particle swarm optimization
[63], [65], genetic algorithms [66], hill climbing [63], [64]
and differential evolution [64]. The results confirmed better
separation than that obtained manually and with the auto-
matic selection algorithm.

A complement to the SPCT technique was presented in
[67], using a third parameter to obtain a three-dimensional
separation map. In this case, UHF PD and electromagnetic
noise signals captured from antennas were used. The param-
eter used for the third axis of the separation map corresponds
to the effective pulse duration time, which provides relevant
information associated with the temporal behaviour of the
signals. In (39) this parameter is mathematically defined.

teff =

∫ T
0 s̃(t)2dt

s̃(t)2max
=

1

s̃(t)2max
(39)

where s̃(t) corresponds to the normalized pulse s(t) and
s(t)max represents the maximum value of the signal.

III. DISCUSSION AND CONCLUSION
This work presents an exhaustive summary of the main clus-
tering techniques used in the separation processes of PD
sources and electrical noise. These techniques’ theoretical
description and mathematical procedures are discussed in
detail, as well as the utilized references, which were carefully
selected in order to facilitate the analysis of the tests and
experimental results obtained by the different authors for any
reader.
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FIGURE 8. Spectral-power clustering technique application process.

TABLE 1. Main characteristics of the analyzed clustering techniques.

As evidenced in this article, one of the main advantages
of applying any of these methodologies, prior to the identifi-
cation process, is to effectively individualize or differentiate
the sources of PD and electrical noise that are simultaneously
present in a measurement process. This way, once the sources
are completely separated through clusters on 2D or 3D sep-
aration maps, the subsequent identification process is much
easier, since it can be carried out either traditionally, through

the individual analysis of the PRPD associated with a certain
cluster, or through complementary methods based on intelli-
gent pattern recognition algorithms.

As summarized in Table 1, each technique uses mathemat-
ical procedures based on the temporal or spectral behaviour
of the signals, this way it is possible to characterize the
signals in different distinctive parameters that are directly
represented in the separation maps to form the respective
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clusters associated with the different sources captured. The
techniques described in sections B, C, D, E, H, and I are
an example of the above, using the characteristic parameters
obtained through fixed formulas or mathematical methods to
represent them directly on the map of separation. One of the
main advantages of these techniques is that they can be easily
applied to on-line monitoring systems, since the computa-
tional cost is low. However, the presence of high-bandwidth
external noise (white noise), that significantly change the
spectral and temporal content of the captured signals, can
limit their separation capacity and, in many cases, signals
associated with multiple sources could be classified in the
same cluster.

Other techniques such as those described in sections A,
F and G require the application of PCA or SSNN, in order
to reduce the dimensionality of the characteristic parameters
obtained, and thus be able to represent them more easily
on 2D or 3D maps. This occurs since an important number
of parameters or variables are extracted from each detected
signal which, according to the technique, can be considered
of great interest and therefore, a subsequent reduction process
is necessary. The main problem with this type of separation
techniques is the additional computational cost that is gen-
erated when applying the dimensionality reduction process,
which could be critical when it comes to being implemented
in real-time monitoring systems. Additionally, white noise
can also affect the performance of this type of techniques,
despite including more characteristic parameters of the sig-
nals in the processing.

Furthermore, some techniques require additional signal
processing in order to obtain better results during separation.
In this sense, the technique described in section C requires
the application of filter tools based on the wavelet transform
in order to minimize the noise sources coupled during the
measurement process. The same is the case with the IpeakQE
clusters technique, which requires a low-pass filter to mini-
mize the effect of signal oscillations when it comes to more
precisely obtain the apparent load value of the PD pulse. Like-
wise, the SPCT described in section I requires an adjustment
of f1l , f2l , f1h, f2h, and ft, which can be done at the beginning
or during the measurement, this way the best intervals can be
established where the separation of the clusters is more evi-
dent. An advantage of applying this pre-processing on each
captured signal is that external noise sources that are normally
present during the measurement can be effectively mitigated.
However, as in previous techniques, the computational cost
could limit the use of these techniques in on-line monitoring
systems. Additionally, if the preprocessing is not carried out
correctly, the temporal and spectral behavior of the PD signals
may change, which could be a problem for the subsequent
identification process.

Finally, for any of these techniques, once the clusters have
been established in the separation maps it is very common
to use automatic cluster search methods such as DBSCAN,
SSNN, FMC, FML, GMM and k-means (sections A, B, E,
F, G and I). These methods allow to automatically search

the different clusters with their respective PRPD. However,
the methods are not always used since the selection can be
made manually in the separation map, without affecting the
result of the clustering technique.
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